Sulfonothioated meso-Methyl BODIPY Shows Enhanced Uncaging Efficiency and Releases H2Sn
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37668439
PubMed Central
PMC10510718
DOI
10.1021/acs.orglett.3c02511
Knihovny.cz E-zdroje
- MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene MeSH Prohlížeč
meso-Methyl BODIPY photocages stand out for their absorption properties and easy chromophore derivatization. However, their low uncaging efficiencies often hinder applications requiring release of protected substrates in high amounts. In this study, we demonstrate that the sulfonothioated BODIPY group photocleaves a sulfonylthio group from the meso-methyl position with a 10-fold higher quantum yield than the most efficient leaving groups studied to date. Photocleavage, observed in solution and in cells, is accompanied by the spatiotemporally controlled photorelease of H2Sn. For this reason, sulfonothioated BODIPY may be applied in cell signaling, redox homeostasis, and metabolic regulation studies.
Department of Chemistry Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Weinstain R.; Slanina T.; Kand D.; Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem. Rev. 2020, 120, 13135.10.1021/acs.chemrev.0c00663. PubMed DOI PMC
Slanina T.; Shrestha P.; Palao E.; Kand D.; Peterson J. A.; Dutton A. S.; Rubinstein N.; Weinstain R.; Winter A. H.; Klán P. In Search of the Perfect Photocage: Structure–Reactivity Relationships in Meso-Methyl BODIPY Photoremovable Protecting Groups. J. Am. Chem. Soc. 2017, 139 (42), 15168–15175. 10.1021/jacs.7b08532. PubMed DOI
Poryvai A.; Galkin M.; Shvadchak V.; Slanina T. Red-Shifted Water-Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew. Chem., Int. Ed. 2022, 61 (34), e20220585510.1002/anie.202205855. PubMed DOI
Kand D.; Pizarro L.; Angel I.; Avni A.; Friedmann-Morvinski D.; Weinstain R. Organelle-Targeted BODIPY Photocages: Visible-Light-Mediated Subcellular Photorelease. Angew. Chem., Int. Ed. 2019, 58 (14), 4659–4663. 10.1002/anie.201900850. PubMed DOI PMC
Sharma A. K.; Nair M.; Chauhan P.; Gupta K.; Saini D. K.; Chakrapani H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H2S) Release. Org. Lett. 2017, 19 (18), 4822–4825. 10.1021/acs.orglett.7b02259. PubMed DOI
Štacko P.; Muchová L.; Vítek L.; Klán P. Visible to NIR Light Photoactivation of Hydrogen Sulfide for Biological Targeting. Org. Lett. 2018, 20 (16), 4907–4911. 10.1021/acs.orglett.8b02043. PubMed DOI
Fukushima N.; Ieda N.; Kawaguchi M.; Sasakura K.; Nagano T.; Hanaoka K.; Miyata N.; Nakagawa H. Development of Photo-Controllable Hydrogen Sulfide Donor Applicable in Live Cells. Bioorg. Med. Chem. Lett. 2015, 25 (2), 175–178. 10.1016/j.bmcl.2014.11.084. PubMed DOI
Zhang S.; Wu T.; Fan J.; Li Z.; Jiang N.; Wang J.; Dou B.; Sun S.; Song F.; Peng X. A BODIPY-Based Fluorescent Dye for Mitochondria in Living Cells, with Low Cytotoxicity and High Photostability. Org. Biomol. Chem. 2013, 11 (4), 555–558. 10.1039/C2OB26911B. PubMed DOI
Callaghan S.; Filatov M. A.; Savoie H.; Boyle R. W.; Senge M. O. In Vitro Cytotoxicity of a Library of BODIPY-Anthracene and -Pyrene Dyads for Application in Photodynamic Therapy. Photochem. Photobiol. Sci. 2019, 18 (2), 495–504. 10.1039/c8pp00402a. PubMed DOI
Bassan E.; Gualandi A.; Giorgio Cozzi P.; Ceroni P. Design of BODIPY Dyes as Triplet Photosensitizers: Electronic Properties Tailored for Solar Energy Conversion, Photoredox Catalysis and Photodynamic Therapy. Chem. Sci. 2021, 12 (19), 6607–6628. 10.1039/D1SC00732G. PubMed DOI PMC
Goswami P. P.; Syed A.; Beck C. L.; Albright T. R.; Mahoney K. M.; Unash R.; Smith E. A.; Winter A. H. BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. J. Am. Chem. Soc. 2015, 137 (11), 3783–3786. 10.1021/jacs.5b01297. PubMed DOI
Rubinstein N.; Liu P.; Miller E. W.; Weinstain R. Meso-Methylhydroxy BODIPY: A Scaffold for Photo-Labile Protecting Groups. Chem. Commun. 2015, 51 (29), 6369–6372. 10.1039/C5CC00550G. PubMed DOI
Guthrie J. P. Hydrolysis of Esters of Oxy Acids: pKa Values for Strong Acids; Bro̷nsted Relationship for Attack of Water at Methyl; Free Energies of Hydrolysis of Esters of Oxy Acids; and a Linear Relationship between Free Energy of Hydrolysis and pKa Holding over a Range of 20 pK Units. Can. J. Chem. 1978, 56 (17), 2342–2354. 10.1139/v78-385. DOI
Kolluru G. K.; Shen X.; Kevil C. G. Reactive Sulfur Species. Arterioscler. Thromb. Vasc. Biol. 2020, 40 (4), 874–884. 10.1161/ATVBAHA.120.314084. PubMed DOI PMC
Poljak M.; Wohlrábová L.; Palao E.; Nociarová J.; Míšek J.; Slanina T.; Klán P. Chalcogen-Based Ratiometric Reversible BODIPY Redox Sensors for the Determination of Enantioselective Methionine Sulfoxide Reductase Activity. Chem. Commun. 2022, 58 (44), 6389–6392. 10.1039/D2CC02016E. PubMed DOI
Reinfelds M.; Hermanns V.; Halbritter T.; Wachtveitl J.; Braun M.; Slanina T.; Heckel A. A Robust, Broadly Absorbing Fulgide Derivative as a Universal Chemical Actinometer for the UV to NIR Region. ChemPhotoChem. 2019, 3 (6), 441–449. 10.1002/cptc.201900010. DOI
Meyer A. U.; Straková K.; Slanina T.; König B. Eosin Y (EY) Photoredox-Catalyzed Sulfonylation of Alkenes: Scope and Mechanism. Chem. Eur. J. 2016, 22 (25), 8694–8699. 10.1002/chem.201601000. PubMed DOI
Aoyama K.; Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015, 20 (5), 8742–8758. 10.3390/molecules20058742. PubMed DOI PMC
Zhang M.; Ding X.; Lu A.; Kang J.; Gao Y.; Wang Z.; Li H.; Wang Q. Generation and Precise Control of Sulfonyl Radicals: Visible-Light-Activated Redox-Neutral Formation of Sulfonates and Sulfonamides. Org. Chem. Front. 2021, 8 (5), 961–967. 10.1039/D0QO01413C. DOI
Cline J. D. Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters1. Limnol. Oceanogr. 1969, 14 (3), 454–458. 10.4319/lo.1969.14.3.0454. DOI
Jacob C.; Anwar A.; Burkholz T. Perspective on Recent Developments on Sulfur-Containing Agents and Hydrogen Sulfide Signaling. Planta Med. 2008, 74 (13), 1580–1592. 10.1055/s-0028-1088299. PubMed DOI
Liu C.; Chen W.; Shi W.; Peng B.; Zhao Y.; Ma H.; Xian M. Rational Design and Bioimaging Applications of Highly Selective Fluorescence Probes for Hydrogen Polysulfides. J. Am. Chem. Soc. 2014, 136 (20), 7257–7260. 10.1021/ja502968x. PubMed DOI PMC
Organic Chemistry of Sulfur; Oae S., Ed.; Springer US: Boston, MA, 1977.10.1007/978-1-4684-2049-4. DOI
Kimura H. Signaling Molecules: Hydrogen Sulfide and Polysulfide. Antioxid. Redox Signal. 2015, 22 (5), 362–376. 10.1089/ars.2014.5869. PubMed DOI PMC
Kasamatsu S.; Ihara H. Regulation of Redox Signaling by Reactive Sulfur Species. J. Clin. Biochem. Nutr. 2021, 68 (2), 111–115. 10.3164/jcbn.20-124. PubMed DOI PMC
Fu M.; Zhang W.; Wu L.; Yang G.; Li H.; Wang R. Hydrogen Sulfide (H2S) Metabolism in Mitochondria and Its Regulatory Role in Energy Production. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (8), 2943–2948. 10.1073/pnas.1115634109. PubMed DOI PMC
Koike S.; Ogasawara Y.; Shibuya N.; Kimura H.; Ishii K. Polysulfide Exerts a Protective Effect against Cytotoxicity Caused by t-Buthylhydroperoxide through Nrf2 Signaling in Neuroblastoma Cells. FEBS Lett. 2013, 587 (21), 3548–3555. 10.1016/j.febslet.2013.09.013. PubMed DOI