Sulfonothioated meso-Methyl BODIPY Shows Enhanced Uncaging Efficiency and Releases H2Sn

. 2023 Sep 15 ; 25 (36) : 6705-6709. [epub] 20230905

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37668439

meso-Methyl BODIPY photocages stand out for their absorption properties and easy chromophore derivatization. However, their low uncaging efficiencies often hinder applications requiring release of protected substrates in high amounts. In this study, we demonstrate that the sulfonothioated BODIPY group photocleaves a sulfonylthio group from the meso-methyl position with a 10-fold higher quantum yield than the most efficient leaving groups studied to date. Photocleavage, observed in solution and in cells, is accompanied by the spatiotemporally controlled photorelease of H2Sn. For this reason, sulfonothioated BODIPY may be applied in cell signaling, redox homeostasis, and metabolic regulation studies.

Zobrazit více v PubMed

Weinstain R.; Slanina T.; Kand D.; Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem. Rev. 2020, 120, 13135.10.1021/acs.chemrev.0c00663. PubMed DOI PMC

Slanina T.; Shrestha P.; Palao E.; Kand D.; Peterson J. A.; Dutton A. S.; Rubinstein N.; Weinstain R.; Winter A. H.; Klán P. In Search of the Perfect Photocage: Structure–Reactivity Relationships in Meso-Methyl BODIPY Photoremovable Protecting Groups. J. Am. Chem. Soc. 2017, 139 (42), 15168–15175. 10.1021/jacs.7b08532. PubMed DOI

Poryvai A.; Galkin M.; Shvadchak V.; Slanina T. Red-Shifted Water-Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew. Chem., Int. Ed. 2022, 61 (34), e20220585510.1002/anie.202205855. PubMed DOI

Kand D.; Pizarro L.; Angel I.; Avni A.; Friedmann-Morvinski D.; Weinstain R. Organelle-Targeted BODIPY Photocages: Visible-Light-Mediated Subcellular Photorelease. Angew. Chem., Int. Ed. 2019, 58 (14), 4659–4663. 10.1002/anie.201900850. PubMed DOI PMC

Sharma A. K.; Nair M.; Chauhan P.; Gupta K.; Saini D. K.; Chakrapani H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H2S) Release. Org. Lett. 2017, 19 (18), 4822–4825. 10.1021/acs.orglett.7b02259. PubMed DOI

Štacko P.; Muchová L.; Vítek L.; Klán P. Visible to NIR Light Photoactivation of Hydrogen Sulfide for Biological Targeting. Org. Lett. 2018, 20 (16), 4907–4911. 10.1021/acs.orglett.8b02043. PubMed DOI

Fukushima N.; Ieda N.; Kawaguchi M.; Sasakura K.; Nagano T.; Hanaoka K.; Miyata N.; Nakagawa H. Development of Photo-Controllable Hydrogen Sulfide Donor Applicable in Live Cells. Bioorg. Med. Chem. Lett. 2015, 25 (2), 175–178. 10.1016/j.bmcl.2014.11.084. PubMed DOI

Zhang S.; Wu T.; Fan J.; Li Z.; Jiang N.; Wang J.; Dou B.; Sun S.; Song F.; Peng X. A BODIPY-Based Fluorescent Dye for Mitochondria in Living Cells, with Low Cytotoxicity and High Photostability. Org. Biomol. Chem. 2013, 11 (4), 555–558. 10.1039/C2OB26911B. PubMed DOI

Callaghan S.; Filatov M. A.; Savoie H.; Boyle R. W.; Senge M. O. In Vitro Cytotoxicity of a Library of BODIPY-Anthracene and -Pyrene Dyads for Application in Photodynamic Therapy. Photochem. Photobiol. Sci. 2019, 18 (2), 495–504. 10.1039/c8pp00402a. PubMed DOI

Bassan E.; Gualandi A.; Giorgio Cozzi P.; Ceroni P. Design of BODIPY Dyes as Triplet Photosensitizers: Electronic Properties Tailored for Solar Energy Conversion, Photoredox Catalysis and Photodynamic Therapy. Chem. Sci. 2021, 12 (19), 6607–6628. 10.1039/D1SC00732G. PubMed DOI PMC

Goswami P. P.; Syed A.; Beck C. L.; Albright T. R.; Mahoney K. M.; Unash R.; Smith E. A.; Winter A. H. BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. J. Am. Chem. Soc. 2015, 137 (11), 3783–3786. 10.1021/jacs.5b01297. PubMed DOI

Rubinstein N.; Liu P.; Miller E. W.; Weinstain R. Meso-Methylhydroxy BODIPY: A Scaffold for Photo-Labile Protecting Groups. Chem. Commun. 2015, 51 (29), 6369–6372. 10.1039/C5CC00550G. PubMed DOI

Guthrie J. P. Hydrolysis of Esters of Oxy Acids: pKa Values for Strong Acids; Bro̷nsted Relationship for Attack of Water at Methyl; Free Energies of Hydrolysis of Esters of Oxy Acids; and a Linear Relationship between Free Energy of Hydrolysis and pKa Holding over a Range of 20 pK Units. Can. J. Chem. 1978, 56 (17), 2342–2354. 10.1139/v78-385. DOI

Kolluru G. K.; Shen X.; Kevil C. G. Reactive Sulfur Species. Arterioscler. Thromb. Vasc. Biol. 2020, 40 (4), 874–884. 10.1161/ATVBAHA.120.314084. PubMed DOI PMC

Poljak M.; Wohlrábová L.; Palao E.; Nociarová J.; Míšek J.; Slanina T.; Klán P. Chalcogen-Based Ratiometric Reversible BODIPY Redox Sensors for the Determination of Enantioselective Methionine Sulfoxide Reductase Activity. Chem. Commun. 2022, 58 (44), 6389–6392. 10.1039/D2CC02016E. PubMed DOI

Reinfelds M.; Hermanns V.; Halbritter T.; Wachtveitl J.; Braun M.; Slanina T.; Heckel A. A Robust, Broadly Absorbing Fulgide Derivative as a Universal Chemical Actinometer for the UV to NIR Region. ChemPhotoChem. 2019, 3 (6), 441–449. 10.1002/cptc.201900010. DOI

Meyer A. U.; Straková K.; Slanina T.; König B. Eosin Y (EY) Photoredox-Catalyzed Sulfonylation of Alkenes: Scope and Mechanism. Chem. Eur. J. 2016, 22 (25), 8694–8699. 10.1002/chem.201601000. PubMed DOI

Aoyama K.; Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015, 20 (5), 8742–8758. 10.3390/molecules20058742. PubMed DOI PMC

Zhang M.; Ding X.; Lu A.; Kang J.; Gao Y.; Wang Z.; Li H.; Wang Q. Generation and Precise Control of Sulfonyl Radicals: Visible-Light-Activated Redox-Neutral Formation of Sulfonates and Sulfonamides. Org. Chem. Front. 2021, 8 (5), 961–967. 10.1039/D0QO01413C. DOI

Cline J. D. Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters1. Limnol. Oceanogr. 1969, 14 (3), 454–458. 10.4319/lo.1969.14.3.0454. DOI

Jacob C.; Anwar A.; Burkholz T. Perspective on Recent Developments on Sulfur-Containing Agents and Hydrogen Sulfide Signaling. Planta Med. 2008, 74 (13), 1580–1592. 10.1055/s-0028-1088299. PubMed DOI

Liu C.; Chen W.; Shi W.; Peng B.; Zhao Y.; Ma H.; Xian M. Rational Design and Bioimaging Applications of Highly Selective Fluorescence Probes for Hydrogen Polysulfides. J. Am. Chem. Soc. 2014, 136 (20), 7257–7260. 10.1021/ja502968x. PubMed DOI PMC

Organic Chemistry of Sulfur; Oae S., Ed.; Springer US: Boston, MA, 1977.10.1007/978-1-4684-2049-4. DOI

Kimura H. Signaling Molecules: Hydrogen Sulfide and Polysulfide. Antioxid. Redox Signal. 2015, 22 (5), 362–376. 10.1089/ars.2014.5869. PubMed DOI PMC

Kasamatsu S.; Ihara H. Regulation of Redox Signaling by Reactive Sulfur Species. J. Clin. Biochem. Nutr. 2021, 68 (2), 111–115. 10.3164/jcbn.20-124. PubMed DOI PMC

Fu M.; Zhang W.; Wu L.; Yang G.; Li H.; Wang R. Hydrogen Sulfide (H2S) Metabolism in Mitochondria and Its Regulatory Role in Energy Production. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (8), 2943–2948. 10.1073/pnas.1115634109. PubMed DOI PMC

Koike S.; Ogasawara Y.; Shibuya N.; Kimura H.; Ishii K. Polysulfide Exerts a Protective Effect against Cytotoxicity Caused by t-Buthylhydroperoxide through Nrf2 Signaling in Neuroblastoma Cells. FEBS Lett. 2013, 587 (21), 3548–3555. 10.1016/j.febslet.2013.09.013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...