Competition between proton transfer and intermolecular Coulombic decay in water
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30478319
PubMed Central
PMC6255891
DOI
10.1038/s41467-018-07501-6
PII: 10.1038/s41467-018-07501-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron-electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40-50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12-52 fs for small water clusters.
Department of Physics and Astronomy Uppsala University Box 516 751 20 Uppsala Sweden
Leibniz Institute of Surface Engineering Permoserstr 15 04318 Leipzig Germany
Max Planck Institute for Plasma Physics Boltzmannstr 2 85748 Garching Germany
Max Planck Institute for Plasma Physics Wendelsteinstr 1 17491 Greifswald Germany
Zobrazit více v PubMed
Cederbaum LS, Zobeley J, Tarantelli F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 1997;79:4778–4781. doi: 10.1103/PhysRevLett.79.4778. DOI
Marburger S, Kugeler O, Hergenhahn U, Möller T. Experimental evidence for interatomic coulombic decay in Ne clusters. Phys. Rev. Lett. 2003;90:203401. doi: 10.1103/PhysRevLett.90.203401. PubMed DOI
Jahnke T, et al. Experimental observation of interatomic coulombic decay in neon dimers. Phys. Rev. Lett. 2004;93:163401. doi: 10.1103/PhysRevLett.93.163401. PubMed DOI
Öhrwall G, et al. Femtosecond interatomic coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 2004;93:173401. doi: 10.1103/PhysRevLett.93.173401. PubMed DOI
Jahnke T, et al. Ultrafast energy transfer between water molecules. Nat. Phys. 2010;6:139–142. doi: 10.1038/nphys1498. DOI
Mucke M, et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 2010;6:143–146. doi: 10.1038/nphys1500. DOI
Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008;455:89–91. doi: 10.1038/nature07252. PubMed DOI
Thürmer S, et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 2013;5:590–596. doi: 10.1038/nchem.1680. PubMed DOI
Slavíček P, Winter B, Cederbaum LS, Kryzhevoi NV. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X-ray irradiated liquid water. J. Am. Chem. Soc. 2014;136:18170–18176. doi: 10.1021/ja5117588. PubMed DOI
Hergenhahn U. Interatomic and intermolecular coulombic decay: the early years. J. Electron Spectrosc. Relat. Phenom. 2011;184:78. doi: 10.1016/j.elspec.2010.12.020. DOI
Jahnke T. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B. At. Mol. Opt. Phys. 2015;48:082001. doi: 10.1088/0953-4075/48/8/082001. DOI
Alizadeh E, Sanche L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 2012;112:5578–5602. doi: 10.1021/cr300063r. PubMed DOI
Vendrell O, Stoychev SD, Cederbaum LS. Generation of highly damaging H2O+ radicals by inner valence shell ionization of water. Chemphyschem. 2010;11:1006–1009. doi: 10.1002/cphc.201000034. PubMed DOI
Kryzhevoi NV, Cederbaum LS. Using ph value to control intermolecular electronic decay. Angew. Chem. Int. Ed. 2011;50:1306–1309. doi: 10.1002/anie.201004446. PubMed DOI
Ma J, Schmidhammer U, Pernot P, Mostafavi M. Reactivity of the strongest oxidizing species in aqueous solutions: the short-lived radical cation H2O•+ J. Phys. Chem. Lett. 2014;5:258–261. doi: 10.1021/jz402411x. PubMed DOI
Schnorr K, et al. Time-resolved measurement of interatomic Coulombic decay in Ne2. Phys. Rev. Lett. 2013;111:093402. doi: 10.1103/PhysRevLett.111.093402. PubMed DOI
Trinter F, et al. Evolution of interatomic Coulombic decay in the time domain. Phys. Rev. Lett. 2013;111:093401. doi: 10.1103/PhysRevLett.111.093401. PubMed DOI
Förstel M, Arion T, Hergenhahn U. Measuring the efficiency of interatomic coulombic decay in Ne clusters. J. Electron Spectrosc. Relat. Phenom. 2014;196:54–57. doi: 10.1016/j.elspec.2014.04.008. DOI
Förstel M, et al. Long-range interatomic Coulombic decay in ArXe clusters: experiment and theory. J. Phys. Chem. C. 2016;120:22957–22971. doi: 10.1021/acs.jpcc.6b06665. DOI
Odelius M. Molecular dynamics simulations of fine structure in oxygen k-edge X-ray emission spectra of liquid water and ice. Phys. Rev. B. 2009;79:144204. doi: 10.1103/PhysRevB.79.144204. DOI
Odelius M. Information content in o[1s] k-edge X-ray emission spectroscopy of liquid water. J. Phys. Chem. A. 2009;113:8176–8181. doi: 10.1021/jp903096k. PubMed DOI
Sisourat N, et al. Interatomic electronic decay driven by nuclear motion. Phys. Rev. Lett. 2010;105:173401. doi: 10.1103/PhysRevLett.105.173401. PubMed DOI
Unger I, et al. Ultrafast proton and electron dynamics in core-ionized hydrated hydrogen peroxide: photoemission measurements with isotopically substituted hydrogen peroxide. J. Phys. Chem. C. 2014;118:29142–29150. doi: 10.1021/jp504707h. DOI
Unger I, et al. Control of X-ray induced electron and nuclear dynamics in ammonia and glycine aqueous solution via hydrogen bonding. J. Phys. Chem. B. 2015;119:10750–10759. doi: 10.1021/acs.jpcb.5b07283. PubMed DOI
Slavíček P, Kryzhevoi NV, Aziz EF, Winter B. Relaxation processes in aqueous systems upon X-ray ionization: entanglement of electronic and nuclear dynamics. J. Phys. Chem. Lett. 2016;7:234–243. doi: 10.1021/acs.jpclett.5b02665. PubMed DOI
Hollas D, et al. Aqueous solution chemistry of ammonium cation in the auger time window. Sci. Rep. 2017;7:756. doi: 10.1038/s41598-017-00756-x. PubMed DOI PMC
Barth S, et al. Valence ionization of water clusters: from isolated molecules to bulk. J. Phys. Chem. A. 2009;113:13519–13527. doi: 10.1021/jp906113e. PubMed DOI
Hartweg S, Yoder BL, Garcia GA, Nahon L, Signorell R. Size-resolved photoelectron anisotropy of gas phase water clusters and predictions for liquid water. Phys. Rev. Lett. 2017;118:103402. doi: 10.1103/PhysRevLett.118.103402. PubMed DOI
Svoboda O, Hollas D, Ončák M, Slavíček P. Reaction selectivity in an ionized water dimer: nonadiabatic ab initio dynamics simulations. Phys. Chem. Chem. Phys. 2013;15:11531–11542. doi: 10.1039/c3cp51440d. PubMed DOI
Buck U, Winter M. Electron bombardment induced fragmentation of size selected neutral (D2O) n clusters. Z. Phys. D At. Mol. Clust. 1994;31:291–297. doi: 10.1007/BF01445010. DOI
Miteva T, Kazandjian S, Sisourat N. On the computations of decay widths of Fano resonances. Chem. Phys. 2017;482:208–215. doi: 10.1016/j.chemphys.2016.08.014. PubMed DOI
Santra R, Cederbaum LS. Non-hermitian electronic theory and applications to clusters. Phys. Rev. 2002;368:1–117.
Ghosh A, Pal S, Vaval N. Study of interatomic Coulombic decay of Ne(H2O)n(n = 1, 3) clusters using equation-of-motion coupled-cluster method. J. Chem. Phys. 2013;139:064112. doi: 10.1063/1.4817966. PubMed DOI
Eland JHD. Double photoionisation spectra of methane, ammonia and water. Chem. Phys. 2006;323:391–396. doi: 10.1016/j.chemphys.2005.09.047. DOI
Truong SY, et al. Photo-double ionization of water studied by threshold photoelectrons coincidence spectroscopy. Chem. Phys. Lett. 2009;474:41–44. doi: 10.1016/j.cplett.2009.04.036. DOI
Marsalek Ondrej, Elles Christopher G., Pieniazek Piotr A., Pluhařová Eva, VandeVondele Joost, Bradforth Stephen E., Jungwirth Pavel. Chasing charge localization and chemical reactivity following photoionization in liquid water. The Journal of Chemical Physics. 2011;135(22):224510. doi: 10.1063/1.3664746. PubMed DOI
Ren X, et al. Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules. Nat. Phys. 2018;14:1062–1066. doi: 10.1038/s41567-018-0214-9. DOI
Wales, D. J. et al. The cambridge cluster database. http://www-wales.ch.cam.ac.uk/CCD.html.
Skinner LB, et al. Benchmark oxygen-oxygen pair-distribution function of ambient water from X-ray diffraction measurements with a wide q-range. J. Chem. Phys. 2013;138:074506. doi: 10.1063/1.4790861. PubMed DOI
Winter B, Faubel M. Photoemission from liquid aqueous solutions. Chem. Rev. 2006;106:1176–1211. doi: 10.1021/cr040381p. PubMed DOI
Pohl MN, et al. Sensitivity of electron transfer mediated decay to ion pairing. J. Phys. Chem. B. 2017;121:7709–7714. doi: 10.1021/acs.jpcb.7b06061. PubMed DOI
Bobbert C, Schütte S, Steinbach C, Buck U. Fragmentation and reliable size distributions of large ammonia and water clusters. Eur. Phys. J. D. 2002;19:183–192.
Mucke M, et al. Performance of a short “magnetic bottle” electron spectrometer. Rev. Sci. Instrum. 2012;83:063106. doi: 10.1063/1.4729256. PubMed DOI
Arion T, Mucke M, Förstel M, Bradshaw AM, Hergenhahn U. Interatomic coulombic decay in mixed Nekr clusters. J. Chem. Phys. 2011;134:074306. doi: 10.1063/1.3552082. PubMed DOI
Gilbert ATB, Besley NA, Gill PMW. Self-consistent field calculations of excited states using the maximum overlap method (MOM) J. Phys. Chem. A. 2008;112:13164–13171. doi: 10.1021/jp801738f. PubMed DOI
Besley NA, Gilbert ATB, Gill PMW. Self-consistent-field calculations of core excited states. J. Chem. Phys. 2009;130:124308. doi: 10.1063/1.3092928. PubMed DOI
Hollas, D., Suchan, J., Ončák, M. & Slavíček, P. ABIN, a program performing ab initio Born-Oppenheimer molecular dynamics. 10.5281/zenodo.1228463 (2018).
Werner, H.-J. et al. MOLPRO, version 2012.1, a package of ab initio programs (2012).
Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI
Krylov AI, Gill PMW. Q-Chem: An engine for innovation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013;3:317–326. doi: 10.1002/wcms.1122. DOI
Dunning TH. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Kaufmann K, Baumeister W, Jungen M. Universal gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions. J. Phys. B. 1989;22:2223–2240. doi: 10.1088/0953-4075/22/14/007. DOI
Miteva, T. & Sisourat, N. FANO-CI: source code available at https://github.com/cxlsmiles/fanoci_code.
Schmidt MW, et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI