Software for muscle fibre type classification and analysis

. 2009 Apr-Jun ; 53 (2) : e11.

Jazyk angličtina Země Itálie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19683982

Fibre type determination requires a large series of differently stained muscle sections. The manual identification of individual fibres through the series is tedious and time consuming. This paper presents a software that enables (i) adjusting the position of individual fibres through a series of differently stained sections (image registration) and identification of individual fibres through the series as well as (ii) muscle fibre classification and (iii) quantitative analysis. The data output of the system is the following: numerical and areal proportions of fibre types, fibre type size and optical density (grey level) of the final reaction product in every fibre. The muscle fibre type can be determined stepwise, based on one set of stained sections while further, newly stained sections can be added to the already defined muscle fibre profile. Several advantages of the presented software application in skeletal muscle research are presented. The system is semiquantitative, flexible, and user friendly.

Zobrazit více v PubMed

Andersen LJ, Schiaffino S. Mismatch between myosin heavy chain mRNA and protein distribution in human skeletal muscle fibres. Am J Physiol. 1997;272:C1881–9. PubMed

Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE transaction on pattern analysis and machine intelligence. 1989;11:567–85.

Brooke MH, Kaiser KK. Muscle fibre types: how many and what kind? Arch Neurol. 1970;23:369–79. PubMed

Brox T, Kim Y-J, Weickert J, Feiden W. Fully automated analysis of muscle fiber images with combined region and edge based active contours. In: Handels H, Ehrhardt J, Horsch A, Meinzer HP, Tolxdorff, editors. Proc Bildverarbeitung für die Medizin. Springer Verlag; Berlin: 2006. pp. 86–90.

Buche P, Mauron D. Quantitative characterization of muscle fiber by image analysis. Computers and Electronics in Agriculture. 1997;16:189–217.

Čapek M, Bruža P, Janáček J, Karen P, Kubínová L, Vágnerová R. Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration. Microsc Res Tech. 2009;72:110–9. PubMed

Čebašek V, Pernuš F, Obreza S, Ambrož M, Eržen I. Energy metabolism of fibre types within fascicles of human muscles. Pflügers Arch - Eur J Physiol. 1996;431:R211–2. PubMed

Dahmane R, Valenčič V, Knez N, Eržen I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the in basis of the muscle belly response. Med Biol Eng Comput. 2001;38:51–5. PubMed

Dryden IL, Farnoosh R, Taylor CC. Image segmentation using Voronoi polygons and MCMC, with application to muscle fibre images. J Appl Statistics. 2006;33:609–22.

Eržen I, Cvetko E, Obreza S, Angaut-Petit D. Fibre types in the mouse levator auris longus muscle: A convenient preparation to study muscle and nerve plasticity. J Neurosci Res. 2000;59:692–7. PubMed

Eržen I, Primc M, Cvetko E, Sketelj J, D'albis A. Myosin heavy chain profiles in regenerated fast and slow muscles innervated by the same motor nerve become nearly identical. Histochem J. 1999;31:277–83. PubMed

Henckel P, Ducro B, Oksbjerg N, Hassing L. Objectivity of two methods of differentiating fibre types and repeatability of measurements by application of the TEMA image analysing system. Eur J Histochem. 1998;42:49–62. PubMed

Horton MJ, Brandon CA, Morris TJ, Braun TW, Yaw KM, Sciote JJ. Abundant expression of myosin heavy-chain IIB RNA in a subset of human masseter muscle fibres. Arch Oral Biol. 2001;57:1039–50. PubMed PMC

Klemenčič A, Kovačič S, Pernuš F. Automated segmentation of muscle fibre images using active contour models. Cytometry. 1998;32:317–26. PubMed

Kugler P. Microphotometric determination of enzymes in brain sections. Histochemistry. 1991;95:579–83. PubMed

Lefaucher L, Buche P, Ecolan P, Lemoing M. Classification of pig myofibers and assessment of postmortem glycogen depletion according to fibre type by computerized image analysis. Meat Sci. 1992;32:267–78. PubMed

Likar B, Pernuš F. Registration of serial transverse sections of muscle fibers. Cytometry. 1999;37:93–106. PubMed

Lucas CA, Kang LHD, Hoh JFY. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun. 2000;272:303–8. PubMed

Meznarič-Petruša M, Eržen I, Zidar J. Dystrophin-significance for diagnostics of neuromuscular diseases. Basic Appl Myol. 1992;2:255–60.

Novikoff AB, Shin WY, Drucker J. Mitochondrial localization of oxidative enzymes: staining results with two tetrasolium salts. J Biochem Cytol. 1961;9:47–62. PubMed PMC

Otsu NA. Threshold selection method from grey-level histograms. IEEE Trans Sys Man Cyber. 1979;9:62–6.

Pernuš F, Bjelogrlič Z, Eržen I. A computer-aided method for muscle fibre type quantification. Acta Stereol. 1986;5:49–54.

Pernuš F, Eržen I. Arrangement of fibre types within fascicles of human vastus lateralis muscle. Muscle Nerve. 1991;14:304–9. PubMed

Pernuš F, Eržen I. Fibre size atrophy and hypertrophy factors in vastus lateralis muscle from 18- to 29-year-old men. J Neurol Sci. 1994;121:194–202. PubMed

Reichmann H, Pette D. Glycerophosphate oxidase and succinate dehydrogenase activities in IIA and IIB fibres of mouse and rabbit tibialis anterior muscles. Histochemistry. 1991;95:5429–33. PubMed

Schiaffino S, Gorza L, Sartore S, Saggin L, Vianello M, Gundersen K, Lømo T. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989;10:197–205. PubMed

Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electronic Imaging. 2004;13:146–65.

Smerdu V, Karsch Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in IIb fibers of human skeletal muscle. Am J Physiol. 1994;267:C1723–B. PubMed

Smerdu V, Eržen I. Dynamic nature of fibre-type specific expression of myosin heavy chain transcripts in 14 different human skeletal muscles. J Muscle Res Cell Motil. 2001;22:647–55. PubMed

Smerdu V, Soukup T. Demonstration of myosin heavy chain isoforms in rat and humans: the specificity of seven available monoclonal antibodies used in immunohistochemical and immunoblotting methods. Eur J Histochem. 2008;52:179–90. PubMed

Snoj-Cvetko E, Eržen I. Histochemical and morphometric characteristics of the vastus lateralis muscle in children. Basic Appl Myol. 1992;2:277–84.

Snoj-Cvetko E, Sketelj J, Dolenc I, Obreza S, Janmot C, D'albis A, Eržen I. Regenerated rat fast muscle transplanted to the slow muscle bed and innervated by the slow nerve exhibits and identical myosin heavy chain repertoire to that of the slow muscle. Histochemistry. 1996a;106:473–9. PubMed

Snoj-Cvetko E, Smerdu V, Sketelj J, Dolenc I, D'albis A, Janmot C, Eržen I. Adaptive range of myosin heavy chain expression in regenerating soleus is broader than in mature muscle. J Muscle Res Cell Motil. 1996b;17:401–9. PubMed

Škorjanc D, Šalehar A, Eržen I, Kastelic M. Pattern of fibre type distribution within muscle fascicles of pigs (Sus scrofa domestica) Czech J Anim Sci. 2007;52:89–95.

Talmadge RL. Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve. 2000;23:661–79. PubMed

Travnik L, Pernuš F, Eržen I. Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. J Anat. 1995;187:403–11. PubMed PMC

Weiss A, McDonough D, Wertman B, Acakpo-Satchivi L, Montgomery K, Kucherlapati R, Leinwand LA, Krauter K. Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci USA. 1999;96:2958–63. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...