3D analysis of capillary network in skeletal muscle of obese insulin-resistant mice

. 2019 Nov ; 152 (5) : 323-331. [epub] 20190831

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31473807

Grantová podpora
P3-0043 Javna Agencija za Raziskovalno Dejavnost RS
P4-0220 Javna Agencija za Raziskovalno Dejavnost RS
P3-0310 Javna Agencija za Raziskovalno Dejavnost RS
CZ.2.16/3.1.00/21544 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001775 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015062 Czech-BioImaging Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 31473807
DOI 10.1007/s00418-019-01810-7
PII: 10.1007/s00418-019-01810-7
Knihovny.cz E-zdroje

In obesity, the skeletal muscle capillary network regresses and the insulin-mediated capillary recruitment is impaired. However, it has been shown that in the early stage of advanced obesity, an increased functional vascular response can partially compensate for other mechanisms of insulin resistance. The present study aimed to investigate the changes in the capillary network around individual muscle fibres during the early stage of obesity and insulin resistance in mice using 3D analysis. Capillaries and muscle fibres of the gluteus maximus muscles of seven high-fat-diet-induced obese and insulin-resistant mice and seven age-matched lean healthy mice were immunofluorescently labelled in thick transverse muscle sections. Stacks of images were acquired using confocal microscope. Capillary network characteristics were estimated by methods of quantitative image analysis. Muscle fibre typing was performed by histochemical analysis of myosin heavy chain isoforms on thin serial sections of skeletal muscle. Capillary length per muscle fibre length and capillary length per muscle fibre surface were increased by 27% and 23%, respectively, around small muscle fibres in obese mice, while there were no significant comparative differences around large fibres of obese and lean mice. Furthermore, the capillarization was larger around small compared to large fibres and there was a shift toward fast type myosin heavy chain isoforms, with no significant changes in muscle fibre diameters, tortuosity and anisotropy in obese mice. Overall, the results show that obese insulin-resistant mice have selective increase in capillarization around small predominantly intermediate muscle fibres, which is most likely related to the impaired glucose metabolism characteristic of type 2 diabetes.

Zobrazit více v PubMed

Oxid Med Cell Longev. 2017;2017:2415246 PubMed

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70 PubMed

J Clin Endocrinol Metab. 2011 May;96(5):1377-84 PubMed

J Appl Physiol (1985). 1989 Nov;67(5):1807-13 PubMed

J Physiol. 1919 May 20;52(6):409-15 PubMed

Acta Physiol Scand. 1970 Jun;79(2):16A PubMed

Am J Physiol Endocrinol Metab. 2014 May 15;306(10):E1163-75 PubMed

Diabetes. 2016 Aug;65(8):2249-57 PubMed

Acta Physiol Scand. 2005 Oct;185(2):89-97 PubMed

Adipocyte. 2013 Apr 1;2(2):109-12 PubMed

Biochem Biophys Res Commun. 2000 May 27;272(1):303-8 PubMed

Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1323-32 PubMed

Diabetes Care. 1994 May;17(5):382-6 PubMed

Reg Anesth Pain Med. 2010 Jul-Aug;35(4):329-32 PubMed

J Appl Physiol (1985). 2005 Jan;98(1):315-21 PubMed

Diabetes. 2016 Mar;65(3):e11-2 PubMed

Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1982-8 PubMed

J Microsc. 2012 May;246(2):107-12 PubMed

J Clin Endocrinol Metab. 2013 May;98(5):2027-36 PubMed

Metabolism. 2005 Aug;54(8):995-1001 PubMed

J Endocrinol. 2006 Aug;190(2):425-32 PubMed

J Appl Physiol (1985). 2001 Nov;91(5):2150-6 PubMed

Physiol Res. 2011;60(1):1-13 PubMed

Muscle Nerve Suppl. 1997;5:S110-2 PubMed

Microvasc Res. 2010 Jan;79(1):40-6 PubMed

J Muscle Res Cell Motil. 1989 Jun;10(3):197-205 PubMed

Diabetes. 1994 Jun;43(6):805-8 PubMed

Eur J Appl Physiol. 2010 Nov;110(4):665-94 PubMed

J Histochem Cytochem. 2009 May;57(5):437-47 PubMed

J Histochem Cytochem. 2018 Jan;66(1):23-31 PubMed

Adv Exp Med Biol. 2017;960:1-17 PubMed

Eur J Histochem. 2009 Apr-Jun;53(2):87-95 PubMed

PLoS One. 2016 Apr 26;11(4):e0147669 PubMed

Nutr Metab (Lond). 2011 Nov 03;8(1):77 PubMed

Ann Anat. 2012 Sep;194(5):467-72 PubMed

Exp Physiol. 1997 Jan;82(1):231-4 PubMed

Diabetes. 1997 Nov;46(11):1822-8 PubMed

Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H654-66 PubMed

Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H375-84 PubMed

Microvasc Res. 2011 Mar;81(2):231-8 PubMed

Microcirculation. 1994 Oct;1(3):183-93 PubMed

Histochem J. 1987 Apr;19(4):225-34 PubMed

Br J Pharmacol. 2012 Jun;166(3):877-94 PubMed

Appl Physiol Nutr Metab. 2018 Dec;43(12):1334-1340 PubMed

J Clin Invest. 1987 Aug;80(2):415-24 PubMed

Diabetes. 2015 Oct;64(10):3386-95 PubMed

J Neurosci Methods. 2004 Sep 30;138(1-2):51-6 PubMed

Curr Opin Lipidol. 2010 Feb;21(1):38-43 PubMed

Diabetes. 1979 Jan;28 Suppl 1:30-2 PubMed

Diabetes. 2006 May;55(5):1436-42 PubMed

Sci Rep. 2017 Feb 07;7:41842 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...