3D analysis of capillary network in skeletal muscle of obese insulin-resistant mice
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P3-0043
Javna Agencija za Raziskovalno Dejavnost RS
P4-0220
Javna Agencija za Raziskovalno Dejavnost RS
P3-0310
Javna Agencija za Raziskovalno Dejavnost RS
CZ.2.16/3.1.00/21544
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015062 Czech-BioImaging
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31473807
DOI
10.1007/s00418-019-01810-7
PII: 10.1007/s00418-019-01810-7
Knihovny.cz E-zdroje
- Klíčová slova
- 3D analysis, Capillary network, Fibre type, Insulin resistance, Obesity, Skeletal muscle,
- MeSH
- inzulinová rezistence MeSH
- kapiláry chemie metabolismus MeSH
- kosterní svaly chemie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- obezita metabolismus patologie MeSH
- těžké řetězce myosinu analýza metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těžké řetězce myosinu MeSH
In obesity, the skeletal muscle capillary network regresses and the insulin-mediated capillary recruitment is impaired. However, it has been shown that in the early stage of advanced obesity, an increased functional vascular response can partially compensate for other mechanisms of insulin resistance. The present study aimed to investigate the changes in the capillary network around individual muscle fibres during the early stage of obesity and insulin resistance in mice using 3D analysis. Capillaries and muscle fibres of the gluteus maximus muscles of seven high-fat-diet-induced obese and insulin-resistant mice and seven age-matched lean healthy mice were immunofluorescently labelled in thick transverse muscle sections. Stacks of images were acquired using confocal microscope. Capillary network characteristics were estimated by methods of quantitative image analysis. Muscle fibre typing was performed by histochemical analysis of myosin heavy chain isoforms on thin serial sections of skeletal muscle. Capillary length per muscle fibre length and capillary length per muscle fibre surface were increased by 27% and 23%, respectively, around small muscle fibres in obese mice, while there were no significant comparative differences around large fibres of obese and lean mice. Furthermore, the capillarization was larger around small compared to large fibres and there was a shift toward fast type myosin heavy chain isoforms, with no significant changes in muscle fibre diameters, tortuosity and anisotropy in obese mice. Overall, the results show that obese insulin-resistant mice have selective increase in capillarization around small predominantly intermediate muscle fibres, which is most likely related to the impaired glucose metabolism characteristic of type 2 diabetes.
Faculty of Medicine Institute of Anatomy University of Ljubljana Korytkova 2 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Oxid Med Cell Longev. 2017;2017:2415246 PubMed
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70 PubMed
J Clin Endocrinol Metab. 2011 May;96(5):1377-84 PubMed
J Appl Physiol (1985). 1989 Nov;67(5):1807-13 PubMed
J Physiol. 1919 May 20;52(6):409-15 PubMed
Acta Physiol Scand. 1970 Jun;79(2):16A PubMed
Am J Physiol Endocrinol Metab. 2014 May 15;306(10):E1163-75 PubMed
Diabetes. 2016 Aug;65(8):2249-57 PubMed
Acta Physiol Scand. 2005 Oct;185(2):89-97 PubMed
Adipocyte. 2013 Apr 1;2(2):109-12 PubMed
Biochem Biophys Res Commun. 2000 May 27;272(1):303-8 PubMed
Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1323-32 PubMed
Diabetes Care. 1994 May;17(5):382-6 PubMed
Reg Anesth Pain Med. 2010 Jul-Aug;35(4):329-32 PubMed
J Appl Physiol (1985). 2005 Jan;98(1):315-21 PubMed
Diabetes. 2016 Mar;65(3):e11-2 PubMed
Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1982-8 PubMed
J Microsc. 2012 May;246(2):107-12 PubMed
J Clin Endocrinol Metab. 2013 May;98(5):2027-36 PubMed
Metabolism. 2005 Aug;54(8):995-1001 PubMed
J Endocrinol. 2006 Aug;190(2):425-32 PubMed
J Appl Physiol (1985). 2001 Nov;91(5):2150-6 PubMed
Physiol Res. 2011;60(1):1-13 PubMed
Muscle Nerve Suppl. 1997;5:S110-2 PubMed
Microvasc Res. 2010 Jan;79(1):40-6 PubMed
J Muscle Res Cell Motil. 1989 Jun;10(3):197-205 PubMed
Diabetes. 1994 Jun;43(6):805-8 PubMed
Eur J Appl Physiol. 2010 Nov;110(4):665-94 PubMed
J Histochem Cytochem. 2009 May;57(5):437-47 PubMed
J Histochem Cytochem. 2018 Jan;66(1):23-31 PubMed
Adv Exp Med Biol. 2017;960:1-17 PubMed
Eur J Histochem. 2009 Apr-Jun;53(2):87-95 PubMed
PLoS One. 2016 Apr 26;11(4):e0147669 PubMed
Nutr Metab (Lond). 2011 Nov 03;8(1):77 PubMed
Ann Anat. 2012 Sep;194(5):467-72 PubMed
Exp Physiol. 1997 Jan;82(1):231-4 PubMed
Diabetes. 1997 Nov;46(11):1822-8 PubMed
Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H654-66 PubMed
Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H375-84 PubMed
Microvasc Res. 2011 Mar;81(2):231-8 PubMed
Microcirculation. 1994 Oct;1(3):183-93 PubMed
Histochem J. 1987 Apr;19(4):225-34 PubMed
Br J Pharmacol. 2012 Jun;166(3):877-94 PubMed
Appl Physiol Nutr Metab. 2018 Dec;43(12):1334-1340 PubMed
J Clin Invest. 1987 Aug;80(2):415-24 PubMed
Diabetes. 2015 Oct;64(10):3386-95 PubMed
J Neurosci Methods. 2004 Sep 30;138(1-2):51-6 PubMed
Curr Opin Lipidol. 2010 Feb;21(1):38-43 PubMed
Diabetes. 1979 Jan;28 Suppl 1:30-2 PubMed
Diabetes. 2006 May;55(5):1436-42 PubMed
Sci Rep. 2017 Feb 07;7:41842 PubMed