Direct tracking of ultrafast proton transfer in water dimers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37436977
PubMed Central
PMC10337913
DOI
10.1126/sciadv.adg7864
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Upon ionization, water forms a highly acidic radical cation H2O+· that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive H3O+, OH[Formula: see text] radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser. An extreme ultraviolet (XUV) pump photon initiates PT, and only dimers that have undergone PT at the instance of the ionizing XUV probe photon result in distinct H3O+ + OH+ pairs. By tracking the delay-dependent yield and kinetic energy release of these ion pairs, we measure a PT time of (55 ± 20) femtoseconds and image the geometrical rearrangement of the dimer cations during and after PT. Our direct measurement shows good agreement with nonadiabatic dynamics simulations for the initial PT and allows us to benchmark nonadiabatic theory.
Deutsches Elektronen Synchrotron DESY Notkestr 85 22607 Hamburg Germany
Max Planck Institute for Nuclear Physics Saupfercheckweg 1 69117 Heidelberg Germany
Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen Switzerland
Zobrazit více v PubMed
Garrett B. C., Dixon D. A., Camaioni D. M., Chipman D. M., Johnson M. A., Jonah C. D., Kimmel G. A., Miller J. H., Rescigno T. N., Rossky P. J., Xantheas S. S., Colson S. D., Laufer A. H., Ray D., Barbara P. F., Bartels D. M., Becker K. H., Bowen K. H., Bradforth S. E., Carmichael I., Coe J. V., Corrales L. R., Cowin J. P., Dupuis M., Eisenthal K. B., Franz J. A., Gutowski M. S., Jordan K. D., Kay B. D., LaVerne J. A., Lymar S. V., Madey T. E., McCurdy C. W., Meisel D., Mukamel S., Nilsson A. R., Orlando T. M., Petrik N. G., Pimblott S. M., Rustad J. R., Schenter G. K., Singer S. J., Tokmakoff A., Wang L.-S., Zwier T. S., Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances. Chem. Rev. 105, 355–390 (2005). PubMed
Marsalek O., Elles C. G., Pieniazek P. A., Pluhǎrová E., VandeVondele J., Bradforth S. E., Jungwirth P., Chasing charge localization and chemical reactivity following photoionization in liquid water. J. Chem. Phys. 135, 224510 (2011). PubMed
Loh Z.-H., Doumy G., Arnold C., Kjellsson L., Southworth S. H., Al Haddad A., Kumagai Y., Tu M.-F., Ho P. J., March A. M., Schaller R. D., Bin Mohd Yusof M. S., Debnath T., Simon M., Welsch R., Inhester L., Khalili K., Nanda K., Krylov A. I., Moeller S., Coslovich G., Koralek J., Minitti M. P., Schlotter W. F., Rubensson J.-E., Santra R., Young L., Observation of the fastest chemical processes in the radiolysis of water. Science 367, 179–182 (2020). PubMed
Lin M.-F., Singh N., Liang S., Mo M., Nunes J. P. F., Ledbetter K., Yang J., Kozina M., Weathersby S., Shen X., Cordones A. A., Wolf T. J. A., Pemmaraju C. D., Ihme M., Wang X. J., Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science 374, 92–95 (2021). PubMed
Liu H. T., Müller J. P., Beutler M., Ghotbi M., Noack F., Radloff W., Zhavoronkov N., Schulz C. P., Hertel I. V., Ultrafast photo-excitation dynamics in isolated, neutral water clusters. J. Chem. Phys. 134, 094305 (2011). PubMed
Svoboda V., Michiels R., LaForge A. C., Med J., Stienkemeier F., Slavíček P., Wörner H. J., Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses. Sci. Adv. 6, eaaz0385 (2020). PubMed PMC
Barth S., Ončk M., Ulrich V., Mucke M., Lischke T., Slavíček P., Hergenhahn U., Valence ionization of water clusters: From isolated molecules to bulk. J. Phys. Chem. A 113, 13519–13527 (2009). PubMed
Zhang C., Lu J., Feng T., Rottke H., Proton transfer dynamics following strong-field ionization of the water dimer. Phys. Rev. A 99, 053408 (2019).
Richter C., Hollas D., Saak C. M., Förstel M., Miteva T., Mucke M., Björneholm O., Sisourat N., Slavíček P., Hergenhahn U., Competition between proton transfer and intermolecular Coulombic decay in water. Nat. Commun. 9, 4988 (2018). PubMed PMC
Tomoda S., Kimura K., Proton-transfer potential-energy surfaces of the water dimer cation
Barnett R. N., Landman U., Pathways and dynamics of dissociation of ionized (H2O)2. J. Phys. Chem. 99, 17305–17310 (1995).
Tachikawa H., Ionization dynamics of the small-sized water clusters: A direct ab initio trajectory study. J. Phys. Chem. A 108, 7853–7862 (2004).
Herr J. D., Talbot J., Steele R. P., Structural progression in clusters of ionized water, PubMed
Mi D., Chingin K., Water radical cations in the gas phase: Methods and mechanisms of formation, structure and chemical properties. Molecules 25, 3490 (2020). PubMed PMC
Radi P. P., Beaud P., Franzke D., Frey H.-M., Gerber T., Mischler B., Tzannis A.-P., Femtosecond photoionization of (H2O)n and (D2O)n clusters. J. Chem. Phys. 111, 512–518 (1999).
Dong F., Heinbuch S., Rocca J. J., Bernstein E. R., Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser. J. Chem. Phys. 124, 224319 (2006). PubMed
Shiromaru H., Shinohara H., Washida N., Yoo H.-S., Kimura K., Synchrotron radiation measurements of appearance potentials for
Svoboda O., Hollas D., Oncak M., Slavíček P., Reaction selectivity in an ionized water dimer: Nonadiabatic ab initio dynamics simulations. Phys. Chem. Chem. Phys. 15, 11531–11542 (2013). PubMed
Dörner R., Mergel V., Jagutzki O., Spielberger L., Ullrich J., Moshammer R., Schmidt-Böcking H., Cold target recoil ion momentum spectroscopy: A ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).
Ullrich J., Moshammer R., Dorn A., Dörner R., Schmidt L. P. H., Schmidt-Böcking H., Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003).
Tomoda S., Achiba Y., Kimura K., Photoelectron spectrum of the water dimer. Chem. Phys. Lett. 87, 197–200 (1982).
Gallagher J. W., Brion C. E., Samson J. A. R., Langhoff P. W., Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes. J. Phys. Chem. Ref. Data Monogr. 17, 9–153 (1988).
Domesle C., Dziarzhytski S., Guerassimova N., Harbo L. S., Heber O., Lammich L., Jordon-Thaden B., Treusch R., Wolf A., Pedersen H. B., Photoionization and fragmentation of H3O+ under XUV irradiation. Phys. Rev. A 88, 043405 (2013).
Pfeifer T., Jiang Y., Düsterer S., Moshammer R., Ullrich J., Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35, 3441–3443 (2010). PubMed
Scott Hopkins W., MacKenzie S. R., Communication: Imaging wavefunctions in dissociative photoionization. J. Chem. Phys. 135, 081104 (2011). PubMed
Schmidt L. P. H., Jahnke T., Czasch A., Schöffler M., Schmidt-Böcking H., Dörner R., Spatial imaging of the PubMed
Zeller S., Kunitski M., Voigtsberger J., Kalinin A., Schottelius A., Schober C., Waitz M., Sann H., Hartung A., Bauer T., Pitzer M., Trinter F., Goihl C., Janke C., Richter M., Kastirke G., Weller M., Czasch A., Kitzler M., Braune M., Grisenti R. E., Schöllkopf W., Schmidt L. P. H., Schöffler M. S., Williams J. B., Jahnke T., Dörner R., Imaging the He2 quantum halo state using a free electron laser. Proc. Natl. Acad. Sci. U.S.A. 113, 14651–14655 (2016). PubMed PMC
Kamarchik E., Kostko O., Bowman J. M., Ahmed M., Krylov A. I., Spectroscopic signatures of proton transfer dynamics in the water dimer cation. J. Chem. Phys. 132, 194311 (2010). PubMed
Tachikawa H., Ionization dynamics of a water dimer: Specific reaction selectivity. Phys. Chem. Chem. Phys. 13, 11206–11212 (2011). PubMed
Lee H. M., Kim K. S., Dynamics and structural changes of small water clusters on ionization. J. Comput. Chem. 34, 1589–1597 (2013). PubMed
Tachikawa H., Takada T., Proton transfer rates in ionized water clusters (H2O)n (n = 2–4). RSC Adv. 5, 6945–6953 (2015).
Chipman D. M., Hemibonding between water cation and water. J. Phys. Chem. A 120, 9618–9624 (2016). PubMed
Chalabala J., Uhlig F., Slavíček P., Assessment of real-time time-dependent density functional theory (RT-TDDFT) in radiation chemistry: Ionized water dimer. J. Phys. Chem. A 122, 3227–3237 (2018). PubMed
Wang Z. P., Dinh P. M., Reinhard P. G., Suraud E., Ultrafast nonadiabatic dynamics of a water dimer in femtosecond laser pulses. Laser Phys. 24, 106004 (2014).
P. Slavíček, D. Hollas, O. Svoboda, M. Ončk, ABIN, version 1.1 (2015).
Schmid G., Schnorr K., Augustin S., Meister S., Lindenblatt H., Trost F., Liu Y., Braune M., Treusch R., Schröter C. D., Pfeifer T., Moshammer R., Reaction microscope endstation at FLASH2. J. Synchrotron Radiat. 26, 854–867 (2019). PubMed
Meister S., Lindenblatt H., Trost F., Schnorr K., Augustin S., Braune M., Treusch R., Pfeifer T., Moshammer R., Atomic, molecular and cluster science with the reaction microscope endstation at FLASH2. Appl. Sci. 10, 2953 (2020).
A. Senftleben, T. Pfeifer, K. Schnorr, K. Meyer, Y. H. Jiang, A. Rudenko, O. Herrwerth, L. Foucar, M. Kurka, K. U. Kühnel, M. Kübel, M. F. Kling, A. Yamada, K. Motomura, K. Ueda, R. Treusch, C. D. Schröter, R. Moshammer, J. Ullrich, Characterization of Extreme Ultra-Violet Free-Electron Laser Pulses by Autocorrelation, in Multiphoton Processes and Attosecond Physics K. Yamanouchi, M. Katsumi, Eds. (Springer, 2012), pp. 61–68.
Tully J. C., Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).
Shiozaki T., BAGEL: Brilliantly advanced general electronic-structure library. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1331 (2018).
Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M., Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 242–253 (2012).
Ceriotti M., Bussi G., Parrinello M., Langevin equation with colored noise for constant-temperature molecular dynamics simulations. Phys. Rev. Lett. 102, 020601 (2009). PubMed
M. Ceriotti, G. Bussi, M. Parrinello, http://gle4md.org/.
Boese A. D., Martin J. M., Development of density functionals for thermochemical kinetics. J. Chem. Phys. 121, 3405–3416 (2004). PubMed
G. W. T. M. J. Frisch H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izma, Gaussian 09 (2013).
K. Schnorr, “XUV pump-probe experiments on electron rearrangement and interatomic Coulombic decay in diatomic molecules,” thesis, Ruprecht Karls University Heidelberg (2014).
S. Meister, “XUV free-electron laser experiments on weakly bound dimers: Construction of a water-dimer jet source and resonance-enhanced ICD in Ne2,” thesis, Ruprecht Karls University Heidelberg (2016).
F. Trost, “Pulse duration measurement at FLASH2 by intensity autocorrelation in neon and argon,” thesis, Ruprecht Karls University Heidelberg (2017).
Jiang Y. H., Rudenko A., Pérez-Torres J. F., Foucar L., Kurka M., Kühnel K. U., Toppin M., Plésiat E., Morales F., Martín F., Jahnke T., Dörner R., Sanz-Vicario J. L., van Tilborg J., Belkacem A., Schulz M., Ueda K., Zouros T. J. M., Düsterer S., Treusch R., Schröter C. D., Lezius M., Kling M. F., Moshammer R., Ullrich J., Investigating two-photon double ionization of D2 by XUV-pump–XUV-probe experiments. Phys. Rev. A 81, 051402 (2010).
Meyer K., Ott C., Raith P., Kaldun A., Jiang Y., Senftleben A., Kurka M., Moshammer R., Ullrich J., Pfeifer T., Noisy optical pulses enhance the temporal resolution of pump-probe spectroscopy. Phys. Rev. Lett. 108, 098302 (2012). PubMed