Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32010776
PubMed Central
PMC6968931
DOI
10.1126/sciadv.aaz0385
PII: aaz0385
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for H2O and D2O clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.
Department of Physical chemistry UCT Prague 16628 Prague Czech Republic
Institute of Physics University of Freiburg 79104 Freiburg Germany
Laboratory of Physical Chemistry ETH Zürich 8093 Zürich Switzerland
Zobrazit více v PubMed
Garrett B. C., Dixon D. A., Camaioni D. M., Chipman D. M., Johnson M. A., Jonah C. D., Kimmel G. A., Miller J. H., Rescigno T. N., Rossky P. J., Xantheas S. S., Colson S. D., Laufer A. H., Ray D., Barbara P. F., Bartels D. M., Becker K. H. Jr., Bradforth S. E., Carmichael I., Coe J. V., Corrales L. R., Cowin J. P., Dupuis M., Eisenthal K. B., Franz J. A., Gutowski M. S., Jordan K. D., Kay B. D., LaVerne J. A., Lymar S. V., Madey T. E., McCurdy C. W., Meisel D., Mukamel S., Nilsson A. R., Orlando T. M., Petrik N. G., Pimblott S. M., Rustad J. R., Schenter G. K., Singer S. J., Tokmakoff A., Wang L.-S., Wettig C., Zwier T. S., Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances. Chem. Rev. 105, 355–390 (2005). PubMed
Young R. M., Neumark D. M., Dynamics of solvated electrons in clusters. Chem. Rev. 112, 5553–5577 (2012). PubMed
Herbert J. M., Coons M. P., The hydrated electron. Annu. Rev. Phys. Chem. 68, 447–472 (2017). PubMed
Bartels D. M., Gosztola D., Jonah C. D., Spur decay kinetics of the solvated electron in heavy water radiolysis. J. Phys. Chem. A 105, 8069–8072 (2001).
Boag J. W., Hart E. J., Absorption spectra in irradiated water and some solutions: Absorption spectra of ‘hydrated’ electron. Nature 197, 45–47 (1963).
Kimura Y., Alfano J. C., Walhout P. K., Barbara P. F., Ultrafast transient absorption spectroscopy of the solvated electron in water. J. Phys. Chem. 98, 3450–3458 (1994).
Baltuška A., Emde M. F., Pshenichnikov M. S., Wiersma D. A., Early-time dynamics of the photoexcited hydrated electron. J. Phys. Chem. A 103, 10065–10082 (1999).
Bradforth S. E., Jungwirth P., Excited states of iodide anions in water: A comparison of the electronic structure in clusters and in bulk solution. J. Phys. Chem. A 106, 1286–1298 (2002).
Lübcke A., Buchner F., Heine N., Hertel I. V., Schultz T., Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12, 14629–14634 (2010). PubMed
Elkins M. H., Williams H. L., Shreve A. T., Neumark D. M., Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013). PubMed
Messina F., Bräm O., Cannizzo A., Chergui M., Real-time observation of the charge transfer to solvent dynamics. Nat. Commun. 4, 2119 (2013). PubMed
Karashima S., Yamamoto Y.-i., Suzuki T., Resolving nonadiabatic dynamics of hydrated electrons using ultrafast photoemission anisotropy. Phys. Rev. Lett. 116, 137601 (2016). PubMed
Crowell R. A., Bartels D. M., Multiphoton ionization of liquid water with 3.0−5.0 eV photons. J. Phys. Chem. 100, 17940–17949 (1996).
Kloepfer J. A., Vilchiz V. H., Lenchenkov V. A., Germaine A. C., Bradforth S. E., The ejection distribution of solvated electrons generated by the one-photon photodetachment of aqueous I− and two-photon ionization of the solvent. J. Chem. Phys. 113, 6288–6307 (2000).
Kambhampati P., Son D. H., Kee T. W., Barbara P. F., Solvation dynamics of the hydrated electron depends on its initial degree of electron delocalization. J. Phys. Chem. A 106, 2374–2378 (2002).
Savolainen J., Uhlig F., Ahmed S., Hamm P., Jungwirth P., Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem. 6, 697–701 (2014). PubMed
Lee G. H., Arnold S. T., Eaton J. G., Sarkas H. W., Bowen K. H., Ludewigt C., Haberland H., Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)n− and (NH3)n−. Z. Phys. D Atoms Mol. Clusters 20, 9–12 (1991).
Bragg A. E., Verlet J. R., Kammrath A., Cheshnovsky O., Neumark D. M., Hydrated electron dynamics: From clusters to bulk. Science 306, 669–671 (2004). PubMed
Paik D. H., Lee I.-R., Yang D.-S., Baskin J. S., Zewail A. H., Electrons in finite-sized water cavities: Hydration dynamics observed in real time. Science 306, 672–675 (2004). PubMed
Verlet J. R. R., Bragg A. E., Kammrath A., Cheshnovsky O., Neumark D. M., Observation of large water-cluster anions with surface-bound excess electrons. Science 307, 93–96 (2005). PubMed
Ma L., Majer K., Chirot F., von Issendorff B., Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys. 131, 144303 (2009). PubMed
Abel B., Buck U., Sobolewski A. L., Domcke W., On the nature and signatures of the solvated electron in water. Phys. Chem. Chem. Phys. 14, 22–34 (2012). PubMed
Siefermann K. R., Liu Y., Lugovoy E., Link O., Faubel M., Buck U., Winter B., Abel B., Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010). PubMed
Kumar A., Walker J. A., Bartels D. M., Sevilla M. D., A simple ab initio model for the hydrated electron that matches experiment. J. Phys. Chem. A 119, 9148–9159 (2015). PubMed PMC
Zho C.-C., Schwartz B. J., Time-resolved photoelectron spectroscopy of the hydrated electron: Comparing cavity and noncavity models to experiment. J. Phys. Chem. B. 120, 12604–12614 (2016). PubMed
LaForge A. C., Michiels R., Bohlen M., Callegari C., Clark A., von Conta A., Coreno M., Di Fraia M., Drabbels M., Huppert M., Finetti P., Ma J., Mudrich M., Oliver V., Plekan O., Prince K. C., Shcherbinin M., Stranges S., Svoboda V., Wörner H. J., Stienkemeier F., Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light. Phys. Rev. Lett. 122, 133001 (2019). PubMed
Gartmann T. E., Ban L., Yoder B. L., Hartweg S., Chasovskikh E., Signorell R., Relaxation dynamics and genuine properties of the solvated electron in neutral water clusters. J. Phys. Chem. Lett. 10, 4777–4782 (2019). PubMed PMC
Rajeev R., Hellwagner J., Schumacher A., Jordan I., Huppert M., Tehlar A., Niraghatam B. R., Baykusheva D., Lin N., von Conta A., Wörner H. J., In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses. Light: Sci. Appl. 5, e16170 (2016). PubMed PMC
Ellis J. L., Hickstein D. D., Xiong W., Dollar F., Palm B. B., Keister K. E., Dorney K. M., Ding C., Fan T., Wilker M. B., Schnitzenbaumer K. J., Dukovic G., Jimenez J. L., Kapteyn H. C., Murnane M. M., Materials properties and solvated electron dynamics of isolated nanoparticles and nanodroplets probed with ultrafast extreme ultraviolet beams. J. Phys. Chem. Lett. 7, 609–615 (2016). PubMed
Svoboda V., Ram N. B., Rajeev R., Wörner H. J., Time-resolved photoelectron imaging with a femtosecond vacuum-ultraviolet light source: Dynamics in the PubMed
Belau L., Wilson K. R., Leone S. R., Ahmed M., Vacuum ultraviolet (VUV) photoionization of small water clusters. J. Phys. Chem. A 111, 10075–10083 (2007). PubMed
Elles C. G., Shkrob I. A., Crowell R. A., Bradforth S. E., Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation. J. Chem. Phys. 126, 164503 (2007). PubMed
Ončák M., Slavíček P., Fárník M., Buck U., Photochemistry of hydrogen halides on water clusters: Simulations of electronic spectra and photodynamics, and comparison with photodissociation experiments. J. Phys. Chem. A 115, 6155–6168 (2011). PubMed
Poterya V., Fárník M., Ončák M., Slavíček P., Water photodissociation in free ice nanoparticles at 243 nm and 193 nm. Phys. Chem. Chem. Phys. 10, 4835–4842 (2008). PubMed
Poterya V., Fedor J., Pysanenko A., Tkáč O., Lengyel J., Ončák M., Slavíček P., Fárník M., Photochemistry of HI on argon and waternanoparticles: Hydronium radical generation in HI·(H2O)n. Phys. Chem. Chem. Phys. 13, 2250–2258 (2011). PubMed
Sobolewski A. L., Domcke W., Hydrated hydronium: A cluster model of the solvated electron? Phys. Chem. Chem. Phys. 4, 4–10 (2002).
Poterya V., Tkáč O., Fedor J., Fárník M., Slavíček P., Buck U., Mass spectrometry of hydrogen bonded clusters of heterocyclic molecules: Electron ionization vs. photoionization. Int. J. Mass Spectrom. 290, 85–93 (2010).
Ma J., Schmidhammer U., Mostafavi M., Direct evidence for transient pair formation between a solvated electron and H3O+ observed by picosecond pulse radiolysis. J. Phys. Chem. Lett. 5, 2219–2223 (2014). PubMed
Dierking C. W., Zurheide F., Zeuch T., Med J., Parez S., Slavíček P., Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2–90). J. Chem. Phys. 146, 244303 (2017). PubMed
Bartels D. M., Is the hydrated electron vertical detachment genuinely bimodal? J. Phys. Chem. Lett. 10, 4910–4913 (2019). PubMed
Marsalek O., Elles C. G., Pieniazek P. A., Pluhařová E., VandeVondele J., Bradforth S. E., Jungwirth P., Chasing charge localization and chemical reactivity following photoionization in liquid water. J. Chem. Phys. 135, 224510 (2011). PubMed
Lehr L., Zanni M. T., Frischkorn C., Weinkauf R., Neumark D. M., Electron solvation in finite systems: Femtosecond dynamics of iodide·(water)n anion clusters. Science 284, 635–638 (1999). PubMed
Svoboda O., Hollas D., Ončák M., Slavíček P., Reaction selectivity in an ionized water dimer: Nonadiabatic ab initio dynamics simulations. Phys. Chem. Chem. Phys. 15, 11531–11542 (2013). PubMed
Huppert M., Jordan I., Baykusheva D., von Conta A., Wörner H. J., Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016). PubMed
Jordan I., Huppert M., Brown M. A., van Bokhoven J. A., Wörner H. J., Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Rev. Sci. Instrum. 86, 123905 (2015). PubMed
Fárník M., Lengyel J., Mass spectrometry of aerosol particle analogues in molecular beam experiments. Mass Spectrom. Rev. , 630–651 (2017). PubMed
Lengyel J., Pysanenko A., Poterya V., Slavíček P., Fárník M., Kočišek J., Fedor J., Irregular shapes of water clusters generated in supersonic expansions. Phys. Rev. Lett. 112, 113401 (2014). PubMed
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Direct tracking of ultrafast proton transfer in water dimers