Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses

. 2020 Jan ; 6 (3) : eaaz0385. [epub] 20200117

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32010776

The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for H2O and D2O clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.

Zobrazit více v PubMed

Garrett B. C., Dixon D. A., Camaioni D. M., Chipman D. M., Johnson M. A., Jonah C. D., Kimmel G. A., Miller J. H., Rescigno T. N., Rossky P. J., Xantheas S. S., Colson S. D., Laufer A. H., Ray D., Barbara P. F., Bartels D. M., Becker K. H. Jr., Bradforth S. E., Carmichael I., Coe J. V., Corrales L. R., Cowin J. P., Dupuis M., Eisenthal K. B., Franz J. A., Gutowski M. S., Jordan K. D., Kay B. D., LaVerne J. A., Lymar S. V., Madey T. E., McCurdy C. W., Meisel D., Mukamel S., Nilsson A. R., Orlando T. M., Petrik N. G., Pimblott S. M., Rustad J. R., Schenter G. K., Singer S. J., Tokmakoff A., Wang L.-S., Wettig C., Zwier T. S., Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances. Chem. Rev. 105, 355–390 (2005). PubMed

Young R. M., Neumark D. M., Dynamics of solvated electrons in clusters. Chem. Rev. 112, 5553–5577 (2012). PubMed

Herbert J. M., Coons M. P., The hydrated electron. Annu. Rev. Phys. Chem. 68, 447–472 (2017). PubMed

Bartels D. M., Gosztola D., Jonah C. D., Spur decay kinetics of the solvated electron in heavy water radiolysis. J. Phys. Chem. A 105, 8069–8072 (2001).

Boag J. W., Hart E. J., Absorption spectra in irradiated water and some solutions: Absorption spectra of ‘hydrated’ electron. Nature 197, 45–47 (1963).

Kimura Y., Alfano J. C., Walhout P. K., Barbara P. F., Ultrafast transient absorption spectroscopy of the solvated electron in water. J. Phys. Chem. 98, 3450–3458 (1994).

Baltuška A., Emde M. F., Pshenichnikov M. S., Wiersma D. A., Early-time dynamics of the photoexcited hydrated electron. J. Phys. Chem. A 103, 10065–10082 (1999).

Bradforth S. E., Jungwirth P., Excited states of iodide anions in water: A comparison of the electronic structure in clusters and in bulk solution. J. Phys. Chem. A 106, 1286–1298 (2002).

Lübcke A., Buchner F., Heine N., Hertel I. V., Schultz T., Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12, 14629–14634 (2010). PubMed

Elkins M. H., Williams H. L., Shreve A. T., Neumark D. M., Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013). PubMed

Messina F., Bräm O., Cannizzo A., Chergui M., Real-time observation of the charge transfer to solvent dynamics. Nat. Commun. 4, 2119 (2013). PubMed

Karashima S., Yamamoto Y.-i., Suzuki T., Resolving nonadiabatic dynamics of hydrated electrons using ultrafast photoemission anisotropy. Phys. Rev. Lett. 116, 137601 (2016). PubMed

Crowell R. A., Bartels D. M., Multiphoton ionization of liquid water with 3.0−5.0 eV photons. J. Phys. Chem. 100, 17940–17949 (1996).

Kloepfer J. A., Vilchiz V. H., Lenchenkov V. A., Germaine A. C., Bradforth S. E., The ejection distribution of solvated electrons generated by the one-photon photodetachment of aqueous I− and two-photon ionization of the solvent. J. Chem. Phys. 113, 6288–6307 (2000).

Kambhampati P., Son D. H., Kee T. W., Barbara P. F., Solvation dynamics of the hydrated electron depends on its initial degree of electron delocalization. J. Phys. Chem. A 106, 2374–2378 (2002).

Savolainen J., Uhlig F., Ahmed S., Hamm P., Jungwirth P., Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem. 6, 697–701 (2014). PubMed

Lee G. H., Arnold S. T., Eaton J. G., Sarkas H. W., Bowen K. H., Ludewigt C., Haberland H., Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)n− and (NH3)n−. Z. Phys. D Atoms Mol. Clusters 20, 9–12 (1991).

Bragg A. E., Verlet J. R., Kammrath A., Cheshnovsky O., Neumark D. M., Hydrated electron dynamics: From clusters to bulk. Science 306, 669–671 (2004). PubMed

Paik D. H., Lee I.-R., Yang D.-S., Baskin J. S., Zewail A. H., Electrons in finite-sized water cavities: Hydration dynamics observed in real time. Science 306, 672–675 (2004). PubMed

Verlet J. R. R., Bragg A. E., Kammrath A., Cheshnovsky O., Neumark D. M., Observation of large water-cluster anions with surface-bound excess electrons. Science 307, 93–96 (2005). PubMed

Ma L., Majer K., Chirot F., von Issendorff B., Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys. 131, 144303 (2009). PubMed

Abel B., Buck U., Sobolewski A. L., Domcke W., On the nature and signatures of the solvated electron in water. Phys. Chem. Chem. Phys. 14, 22–34 (2012). PubMed

Siefermann K. R., Liu Y., Lugovoy E., Link O., Faubel M., Buck U., Winter B., Abel B., Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010). PubMed

Kumar A., Walker J. A., Bartels D. M., Sevilla M. D., A simple ab initio model for the hydrated electron that matches experiment. J. Phys. Chem. A 119, 9148–9159 (2015). PubMed PMC

Zho C.-C., Schwartz B. J., Time-resolved photoelectron spectroscopy of the hydrated electron: Comparing cavity and noncavity models to experiment. J. Phys. Chem. B. 120, 12604–12614 (2016). PubMed

LaForge A. C., Michiels R., Bohlen M., Callegari C., Clark A., von Conta A., Coreno M., Di Fraia M., Drabbels M., Huppert M., Finetti P., Ma J., Mudrich M., Oliver V., Plekan O., Prince K. C., Shcherbinin M., Stranges S., Svoboda V., Wörner H. J., Stienkemeier F., Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light. Phys. Rev. Lett. 122, 133001 (2019). PubMed

Gartmann T. E., Ban L., Yoder B. L., Hartweg S., Chasovskikh E., Signorell R., Relaxation dynamics and genuine properties of the solvated electron in neutral water clusters. J. Phys. Chem. Lett. 10, 4777–4782 (2019). PubMed PMC

Rajeev R., Hellwagner J., Schumacher A., Jordan I., Huppert M., Tehlar A., Niraghatam B. R., Baykusheva D., Lin N., von Conta A., Wörner H. J., In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses. Light: Sci. Appl. 5, e16170 (2016). PubMed PMC

Ellis J. L., Hickstein D. D., Xiong W., Dollar F., Palm B. B., Keister K. E., Dorney K. M., Ding C., Fan T., Wilker M. B., Schnitzenbaumer K. J., Dukovic G., Jimenez J. L., Kapteyn H. C., Murnane M. M., Materials properties and solvated electron dynamics of isolated nanoparticles and nanodroplets probed with ultrafast extreme ultraviolet beams. J. Phys. Chem. Lett. 7, 609–615 (2016). PubMed

Svoboda V., Ram N. B., Rajeev R., Wörner H. J., Time-resolved photoelectron imaging with a femtosecond vacuum-ultraviolet light source: Dynamics in the PubMed

Belau L., Wilson K. R., Leone S. R., Ahmed M., Vacuum ultraviolet (VUV) photoionization of small water clusters. J. Phys. Chem. A 111, 10075–10083 (2007). PubMed

Elles C. G., Shkrob I. A., Crowell R. A., Bradforth S. E., Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation. J. Chem. Phys. 126, 164503 (2007). PubMed

Ončák M., Slavíček P., Fárník M., Buck U., Photochemistry of hydrogen halides on water clusters: Simulations of electronic spectra and photodynamics, and comparison with photodissociation experiments. J. Phys. Chem. A 115, 6155–6168 (2011). PubMed

Poterya V., Fárník M., Ončák M., Slavíček P., Water photodissociation in free ice nanoparticles at 243 nm and 193 nm. Phys. Chem. Chem. Phys. 10, 4835–4842 (2008). PubMed

Poterya V., Fedor J., Pysanenko A., Tkáč O., Lengyel J., Ončák M., Slavíček P., Fárník M., Photochemistry of HI on argon and waternanoparticles: Hydronium radical generation in HI·(H2O)n. Phys. Chem. Chem. Phys. 13, 2250–2258 (2011). PubMed

Sobolewski A. L., Domcke W., Hydrated hydronium: A cluster model of the solvated electron? Phys. Chem. Chem. Phys. 4, 4–10 (2002).

Poterya V., Tkáč O., Fedor J., Fárník M., Slavíček P., Buck U., Mass spectrometry of hydrogen bonded clusters of heterocyclic molecules: Electron ionization vs. photoionization. Int. J. Mass Spectrom. 290, 85–93 (2010).

Ma J., Schmidhammer U., Mostafavi M., Direct evidence for transient pair formation between a solvated electron and H3O+ observed by picosecond pulse radiolysis. J. Phys. Chem. Lett. 5, 2219–2223 (2014). PubMed

Dierking C. W., Zurheide F., Zeuch T., Med J., Parez S., Slavíček P., Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2–90). J. Chem. Phys. 146, 244303 (2017). PubMed

Bartels D. M., Is the hydrated electron vertical detachment genuinely bimodal? J. Phys. Chem. Lett. 10, 4910–4913 (2019). PubMed

Marsalek O., Elles C. G., Pieniazek P. A., Pluhařová E., VandeVondele J., Bradforth S. E., Jungwirth P., Chasing charge localization and chemical reactivity following photoionization in liquid water. J. Chem. Phys. 135, 224510 (2011). PubMed

Lehr L., Zanni M. T., Frischkorn C., Weinkauf R., Neumark D. M., Electron solvation in finite systems: Femtosecond dynamics of iodide·(water)n anion clusters. Science 284, 635–638 (1999). PubMed

Svoboda O., Hollas D., Ončák M., Slavíček P., Reaction selectivity in an ionized water dimer: Nonadiabatic ab initio dynamics simulations. Phys. Chem. Chem. Phys. 15, 11531–11542 (2013). PubMed

Huppert M., Jordan I., Baykusheva D., von Conta A., Wörner H. J., Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016). PubMed

Jordan I., Huppert M., Brown M. A., van Bokhoven J. A., Wörner H. J., Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Rev. Sci. Instrum. 86, 123905 (2015). PubMed

Fárník M., Lengyel J., Mass spectrometry of aerosol particle analogues in molecular beam experiments. Mass Spectrom. Rev. , 630–651 (2017). PubMed

Lengyel J., Pysanenko A., Poterya V., Slavíček P., Fárník M., Kočišek J., Fedor J., Irregular shapes of water clusters generated in supersonic expansions. Phys. Rev. Lett. 112, 113401 (2014). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment

. 2024 Jul 10 ; 124 (13) : 8014-8129. [epub] 20240606

Direct tracking of ultrafast proton transfer in water dimers

. 2023 Jul 14 ; 9 (28) : eadg7864. [epub] 20230712

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...