Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38842266
PubMed Central
PMC11240271
DOI
10.1021/acs.chemrev.3c00902
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
CY Cergy Paris Université CEA LIDYL 91191 Gif sur Yvette France
Eaton European Innovation Center Bořivojova 2380 25263 Roztoky Czech Republic
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
Institute of Chemistry University of Potsdam Karl Liebknecht Str 24 25 14476 Potsdam Germany
MBN Research Center Altenhöferallee 3 60438 Frankfurt am Main Germany
School of Physics and Astronomy University of Kent Canterbury CT2 7NH United Kingdom
TESCAN GROUP 62300 Brno Czech Republic
Université Claude Bernard Lyon 1 CNRS Institut Lumière Matière F 69622 Villeurbanne France
Université Paris Saclay CEA LIDYL 91191 Gif sur Yvette France
Zobrazit více v PubMed
Landau L. D.; Lifshitz E. M.. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1981.
Landau L. D.; Lifshitz E. M.. Statistical Physics, 3rd ed.; Pergamon Press: Oxford, UK, 1980.
Landau L. D.; Lifshitz E. M.. Statistical Physics: Theory of the Condensed State; Butterworth-Heinemann: Oxford, UK, 1980.
Lifshitz E. M.; Pitaevskii L. P.. Physical Kinetics; Butterworth-Heinemann, Oxford, 1981.
Solov’yov I. A.; Korol A. V.; Solov’yov A. V.. Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer; Springer, 2017.
Solov’yov I. A., Verkhovtsev A. V., Korol A. V., Solov’yov A. V., Eds. Dynamics of Systems on the Nanoscale; Springer, 2022.
Workman R. L.; Burkert V. D.; Crede V.; Klempt E.; Thoma U.; Tiator L.; Agashe K.; Aielli G.; Allanach B. C.; Amsler C.; et al. (Particle Data Group). Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01.10.1093/ptep/ptac097. DOI
Landau L. D.; Lifshitz E. M.. Electrodynamics of Continuous Media, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1984.
Berestetskii V. B.; Lifshitz E. M.; Pitaevskii L. P.. Quantum Electrodynamics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1982.
Nanoscale Insights into Ion-Beam Cancer Therapy; Solov’yov A. V., Ed.; Springer, 2017.
Surdutovich E.; Solov’yov A. V. Multiscale Approach to the Physics of Radiation Damage with Ions. Eur. Phys. J. D 2014, 68, 353.10.1140/epjd/e2014-50004-0. DOI
Surdutovich E.; Solov’yov A. V. Multiscale Modeling for Cancer Radiotherapies. Cancer Nanotechnol. 2019, 10, 6.10.1186/s12645-019-0051-2. DOI
Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Molecular Dynamics for Irradiation Driven Chemistry: Application to the FEBID Process. Eur. Phys. J. D 2016, 70, 217.10.1140/epjd/e2016-70283-5. DOI
de Vera P.; Azzolini M.; Sushko G.; Abril I.; Garcia-Molina R.; Dapor M.; Solov’yov I. A.; Solov’yov A. V. Multiscale Simulation of the Focused Electron Beam Induced Deposition Process. Sci. Rep. 2020, 10, 2082710.1038/s41598-020-77120-z. PubMed DOI PMC
Solov’yov I. A.; Solov’yov A. V.; Kébaili N.; Masson A.; Bréchignac C. Thermally Induced Morphological Transition of Silver Fractals. Phys. Stat. Sol. B 2014, 251, 609–622. 10.1002/pssb.201349254. DOI
Solov’yov I. A.; Sushko G.; Friis I.; Solov’yov A. V. Multiscale Modeling of Stochastic Dynamics Processes With MBN Explorer. J. Comput. Chem. 2022, 43, 1442–1458. 10.1002/jcc.26948. PubMed DOI
Korol A. V.; Solov’yov A. V.. Novel Lights Sources Beyond Free Electron Lasers; Particle Acceleration and Detection; Springer, 2022.
Korol A. V.; Solov’yov A. V. Crystal-Based Intensive Gamma-Ray Light Sources. Eur. Phys. J. D 2020, 74, 201.10.1140/epjd/e2020-10239-8. DOI
Korol A. V.; Solov’yov A. V.; Greiner W.. Channeling and Radiation in Periodically Bent Crystals, 2nd ed.; Springer Series on Atomic, Optical, and Plasma Physics, Vol. 69. Springer, 2014.
Connerade J.-P.; Solov'yov A. V.; Greiner W. The Science of Clusters: An Emerging Field. Europhys. News 2002, 33, 200–202. 10.1051/epn:2002604. DOI
Kim B.; Tripp S. L.; Wei A. Self-Organization of Large Gold Nanoparticle Arrays. J. Am. Chem. Soc. 2001, 123, 7955–7956. 10.1021/ja0160344. PubMed DOI
Eichhorn S. H.; Yu J. K.. Directed Assembly and Self-organization of Metal Nanoparticles in Two and Three Dimensions. In Anisotropic Nanomaterials: Preparation, Properties, and Applications; Li Q., Ed.; NanoScience and Technology; Springer, 2015; pp 289–336.
Kim J.-Y.; Kwon M.-H.; Kim J.-T.; Kwon S.; Ihm D.-W.; Min Y.-K. Crystallization Growth and Micropatterning on Self-Assembled Conductive Polymer Nanofilms. J. Phys. Chem. C 2007, 111, 11252–11258. 10.1021/jp0683622. DOI
Zhang S.; Xing M.; Li B. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering. Int. J. Mol. Sci. 2018, 19, 1641.10.3390/ijms19061641. PubMed DOI PMC
Mae K.; Toyama H.; Nawa-Okita E.; Yamamoto D.; Chen Y.-J.; Yoshikawa K.; Toshimitsu F.; Nakashima N.; Matsuda K.; Shioi A. Self-Organized Micro-Spiral of Single-Walled Carbon Nanotubes. Sci. Rep. 2017, 7, 5267.10.1038/s41598-017-05558-9. PubMed DOI PMC
Macak J. M.; Tsuchiya H.; Ghicov A.; Yasuda K.; Hahn R.; Bauer S.; Schmuki P. TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. 10.1016/j.cossms.2007.08.004. DOI
Shimizu T.; Minamikawa H.; Kogiso M.; Aoyagi M.; Kameta N.; Ding W.; Masuda M. Self-Organized Nanotube Materials and Their Application in Bioengineering. Polym. J. 2014, 46, 831–858. 10.1038/pj.2014.72. DOI
Fan H. J.; Werner P.; Zacharias M. Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small 2006, 2, 700–717. 10.1002/smll.200500495. PubMed DOI
Yi D.; Peres L.; Pierrot A.; Cayez S.; Cours R.; Warot-Fonrose B.; Marcelot C.; Roblin P.; Soulantica K.; Blon T. Self-Organization and Tunable Characteristic Lengths of Two-Dimensional Hexagonal Superlattices of Nanowires Directly Grown on Substrates. Nano Res. 2023, 16, 1606–1613. 10.1007/s12274-022-4804-6. DOI
Zhang X.; Park T.-Y.; Jia Y.; Chang H.; Ng T. K.; Ooi B. S. Self-Organized Growth of Nanowires on a Graphene Film. Cryst. Growth Des. 2023, 23, 3813–3819. 10.1021/acs.cgd.3c00213. DOI
Jensen P. Growth of Nanostructures by Cluster Deposition: Experiments and Simple Models. Rev. Mod. Phys. 1999, 71, 1695–1735. 10.1103/RevModPhys.71.1695. DOI
Lando A.; Kébaïli N.; Cahuzac P.; Masson A.; Bréchignac C. Coarsening and Pearling Instabilities in Silver Nanofractal Aggregates. Phys. Rev. Lett. 2006, 97, 13340210.1103/PhysRevLett.97.133402. PubMed DOI
Dick V. V.; Solov’yov I. A.; Solov’yov A. V. Nanoparticles Dynamics on a Surface: Fractal Pattern Formation and Fragmentation. J. Phys.: Conf. Ser. 2010, 248, 01202510.1088/1742-6596/248/1/012025. DOI
Dick V. V.; Solov’yov I. A.; Solov’yov A. V. Fragmentation Pathways of Nanofractal Structures on Surface. Phys. Rev. B 2011, 84, 11540810.1103/PhysRevB.84.115408. DOI
Panshenskov M.; Solov’yov I. A.; Solov’yov A. V. Efficient 3D Kinetic Monte Carlo Method for Modeling of Molecular Structure and Dynamics. J. Comput. Chem. 2014, 35, 1317–1329. 10.1002/jcc.23613. PubMed DOI
Nanometerials and Nanochemistry; Bréchignac C., Houdy P., Lahmani M., Eds. Springer, 2007.
Yu H.-D.; Regulacio M. D.; Ye E.; Han M.-Y. Chemical Routes to Top-Down Nanofabrication. Chem. Soc. Rev. 2013, 42, 6006–6018. 10.1039/c3cs60113g. PubMed DOI
Biswas A.; Bayer I. S.; Biris A. S.; Wang T.; Dervishi E.; Faupel F. Advances in Top–Down and Bottom–Up Surface Nanofabrication: Techniques, Applications & Future Prospects. Adv. Colloid Interface Sci. 2012, 170, 2–27. 10.1016/j.cis.2011.11.001. PubMed DOI
Shimomura M.; Sawadaishi T. Bottom-Up Strategy of Materials Fabrication: A New Trend in Nanotechnology of Soft Materials. Curr. Opin. Colloid Interface Sci. 2001, 6, 11–16. 10.1016/S1359-0294(00)00081-9. DOI
Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry; Meiwes-Broer K.-H., Ed.; Springer-Verlag, 2000.
Lando A.; Kébaïli N.; Cahuzac P.; Colliex C.; Couillard M.; Masson A.; Schmidt M.; Bréchignac C. Chemically Induced Morphology Change in Cluster-Based Nanostructures. Eur. Phys. J. D 2007, 43, 151–154. 10.1140/epjd/e2007-00063-3. DOI
Bréchignac C.; Cahuzac P.; Carlier F.; Colliex C.; de Frutos M.; Kébaïli N.; Le Roux J.; Masson A.; Yoon B. Thermal and Chemical Nanofractal Relaxation. Eur. Phys. J. D 2003, 24, 265–268. 10.1140/epjd/e2003-00159-8. DOI
Liu H.; Reinke P. C60 Thin Film Growth on Graphite: Coexistence of Spherical and Fractal-Dendritic Islands. J. Chem. Phys. 2006, 124, 16470710.1063/1.2186310. PubMed DOI
Nanofabrication: Nanolithography Techniques and Their Applications; De Teresa J. M., Ed.; IOP Publishing Ltd: Bristol, UK, 2020.
Utke I.; Hoffmann P.; Melngailis J. Gas-Assisted Focused Electron Beam and Ion Beam Processing and Fabrication. J. Vac. Sci. Technol. B 2008, 26, 1197–1276. 10.1116/1.2955728. DOI
Plant S. R.; Cao L.; Palmer R. E. Atomic Structure Control of Size-Selected Gold Nanoclusters During Formation. J. Am. Chem. Soc. 2014, 136, 7559–7562. 10.1021/ja502769v. PubMed DOI
Huth M.; Porrati F.; Schwalb C.; Winhold M.; Sachser R.; Dukic M.; Adams J.; Fantner G. Focused Electron Beam Induced Deposition: A Perspective. Beilstein J. Nanotechnol. 2012, 3, 597–619. 10.3762/bjnano.3.70. PubMed DOI PMC
Nanofabrication Using Focused Ion and Electron Beams; Utke I., Moshkalev S., Russell P., Eds.; Oxford University Press: New York, NY, 2012.
Cui Z.Nanofabrication: Principles, Capabilities and Limits, 2nd ed.; Springer, 2017.
Xu W.; Kong J. S.; Yeh Y. T. E.; Chen P. Single-Molecule Nanocatalysis Reveals Heterogeneous Reaction Pathways and Catalytic Dynamics. Nat. Mater. 2008, 7, 992–996. 10.1038/nmat2319. PubMed DOI
Murray R. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 2008, 108, 2688–2720. 10.1021/cr068077e. PubMed DOI
Barth S.; Huth M.; Jungwirth F. Precursors for Direct-Write Nanofabrication with Electrons. J. Mater. Chem. C 2020, 8, 15884–15919. 10.1039/D0TC03689G. DOI
Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics Simulation of the FEBID Process for Pt(PF3)4. Beilstein J. Nanotechnol. 2021, 12, 1151–1172. 10.3762/bjnano.12.86. PubMed DOI PMC
Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic Simulation of the FEBID-Driven Growth of Iron-Based Nanostructures. Phys. Chem. Chem. Phys. 2022, 24, 10807–10819. 10.1039/D2CP00809B. PubMed DOI
Kumar T. P. R.; Weirich P.; Hrachowina L.; Hanefeld M.; Bjornsson R.; Hrodmarsson H. R.; Barth S.; Fairbrother D. H.; Huth M.; Ingólfsson O. Electron Interactions with the Heteronuclear Carbonyl Precursor H2FeRu3(CO)13 and Comparison with HFeCo3(CO)12: From Fundamental Gas Phase and Surface Science Studies to Focused Electron Beam Induced Deposition. Beilstein J. Nanotechnol. 2018, 9, 555–579. 10.3762/bjnano.9.53. PubMed DOI PMC
Wysocki V. H.; Kenttämaa H. I.; Cooks R. G. Internal Energy Distributions of Isolated Ions After Activation by Various Methods. Int. J. Mass Spectrom. Ion Proc. 1987, 75, 181–208. 10.1016/0168-1176(87)83054-9. DOI
Beranová S.; Wesdemiotis C. Internal Energy Distributions of Tungsten Hexacarbonyl Ions After Neutralization–Reionization. J. Am. Soc. Mass Spectrom. 1994, 5, 1093–1101. 10.1016/1044-0305(94)85070-4. PubMed DOI
Cooks R. G.; Ast T.; Kralj B.; Kramer V.; Žigon D. Internal Energy Distributions Deposited in Doubly and Singly Charged Tungsten Hexacarbonyl Ions Generated by Charge Stripping, Electron Impact, and Charge Exchange. J. Am. Soc. Mass Spectrom. 1990, 1, 16–27. 10.1016/1044-0305(90)80003-6. PubMed DOI
Wnorowski K.; Stano M.; Barszczewska W.; Jówko A.; Matejčík Š. Electron Ionization of W(CO)6: Appearance Energies. Int. J. Mass Spectrom. 2012, 314, 42–48. 10.1016/j.ijms.2012.02.002. DOI
Wnorowski K.; Stano M.; Matias C.; Denifl S.; Barszczewska W.; Matejčík Š. Low-Energy Electron Interactions with Tungsten Hexacarbonyl – W(CO)6. Rapid Commun. Mass Spectrom. 2012, 26, 2093–2098. 10.1002/rcm.6324. PubMed DOI
Neustetter M.; Jabbour Al Maalouf E.; Limão Vieira P.; Denifl S. Fragmentation Pathways of Tungsten Hexacarbonyl Clusters Upon Electron Ionization. J. Chem. Phys. 2016, 145, 05430110.1063/1.4959278. PubMed DOI
Lacko M.; Papp P.; Wnorowski K.; Matejčík Š. Electron-Induced Ionization and Dissociative Ionization of Iron Pentacarbonyl Molecules. Eur. Phys. J. D 2015, 69, 84.10.1140/epjd/e2015-50721-8. DOI
Lengyel J.; Fedor J.; Fárník M. Ligand Stabilization and Charge Transfer in Dissociative Ionization of Fe(CO)5 Aggregates. J. Phys. Chem. C 2016, 120, 17810–17816. 10.1021/acs.jpcc.6b05852. DOI
Lengyel J.; Pysanenko A.; Swiderek P.; Heiz U.; Fárník M.; Fedor J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. J. Phys. Chem. A 2021, 125, 1919–1926. 10.1021/acs.jpca.1c00135. PubMed DOI
Massey S.; Bass A. D.; Sanche L. Role of Low-Energy Electrons (< 35 eV) in the Degradation of Fe(CO)5 for Focused Electron Beam Induced Deposition Applications: Study by Electron Stimulated Desorption of Negative and Positive Ions. J. Phys. Chem. C 2015, 119, 12708–12719. 10.1021/acs.jpcc.5b02684. DOI
Bilgilisoy E.; Thorman R. M.; Barclay M. S.; Marbach H.; Fairbrother D. H. Low Energy Electron- and Ion-Induced Surface Reactions of Fe(CO)5 Thin Films. J. Phys. Chem. C 2021, 125, 17749–17760. 10.1021/acs.jpcc.1c05826. DOI
Sushko G. B.; Solov’yov I. A.; Verkhovtsev A. V.; Volkov S. N.; Solov’yov A. V. Studying Chemical Reactions in Biological Systems with MBN Explorer: Implementation of Molecular Mechanics with Dynamical Topology. Eur. Phys. J. D 2016, 70, 12.10.1140/epjd/e2015-60424-9. DOI
Solov’yov I. A.; Yakubovich A. V.; Nikolaev P. V.; Volkovets I.; Solov’yov A. V. MesoBioNano Explorer – A Universal Program for Multiscale Computer Simulations of Complex Molecular Structure and Dynamics. J. Comput. Chem. 2012, 33, 2412–2439. 10.1002/jcc.23086. PubMed DOI
Fowlkes J. D.; Rack P. D. Fundamental Electron-Precursor-Solid Interactions Derived From Time-Dependent Electron-Beam-Induced Deposition Simulations and Experiments. ACS Nano 2010, 4, 1619–1629. 10.1021/nn901363a. PubMed DOI
Solov’yov A. V.; Surdutovich E.; Scifoni E.; Mishustin I.; Greiner W. Physics of Ion Beam Cancer Therapy: A Multiscale Approach. Phys. Rev. E 2009, 79, 01190910.1103/PhysRevE.79.011909. PubMed DOI
Surdutovich E.; Obolensky O. I.; Scifoni E.; Pshenichnov I.; Mishustin I.; Solov’yov A. V.; Greiner W. Ion-Induced Electron Production in Tissue-Like Media and DNA Damage Mechanisms. Eur. Phys. J. D 2009, 51, 63–71. 10.1140/epjd/e2008-00207-y. DOI
Scifoni E.; Surdutovich E.; Solov’yov A. V. Spectra of Secondary Electrons Generated in Water by Energetic Ions. Phys. Rev. E 2010, 81, 02190310.1103/PhysRevE.81.021903. PubMed DOI
Pshenichnov I.; Mishustin I.; Greiner W. Comparative Study of Depth–Dose Distributions for Beams of Light and Heavy Nuclei in Tissue-Like Media. Nucl. Instrum. Meth. B 2008, 266, 1094–1098. 10.1016/j.nimb.2008.02.025. DOI
de Vera P.; Garcia-Molina R.; Abril I.; Solov’yov A. V. Semiempirical Model for the Ion Impact Ionization of Complex Biological Media. Phys. Rev. Lett. 2013, 110, 14810410.1103/PhysRevLett.110.148104. PubMed DOI
Nikjoo H.; Uehara S.; Emfietzoglou D.; Cucinotta F. A. Track-Structure Codes in Radiation Research. Radiat. Meas. 2006, 41, 1052–1074. 10.1016/j.radmeas.2006.02.001. DOI
Surdutovich E.; Solov’yov A. V. Double Strand Breaks in DNA Resulting from Double Ionization Events. Eur. Phys. J. D 2012, 66, 206.10.1140/epjd/e2012-30180-7. DOI
Surdutovich E.; Solov’yov A. V. Transport of Secondary Electrons and Reactive Species in Ion Tracks. Eur. Phys. J. D 2015, 69, 193.10.1140/epjd/e2015-60242-1. DOI
Bug M. U.; Surdutovich E.; Rabus H.; Rosenfeld A. B.; Solov’yov A. V. Nanoscale Characterization of Ion Tracks: MC Simulations Versus Analytical Approach. Eur. Phys. J. D 2012, 66, 291.10.1140/epjd/e2012-30183-4. DOI
Surdutovich E.; Solov’yov A. V. Shock Wave Initiated by an Ion Passing Through Liquid Water. Phys. Rev. E 2010, 82, 05191510.1103/PhysRevE.82.051915. PubMed DOI
Surdutovich E.; Yakubovich A. V.; Solov’yov A. V. Biodamage via Shock Waves Initiated by Irradiation with Ions. Sci. Rep. 2013, 3, 1289.10.1038/srep01289. PubMed DOI PMC
Yakubovich A. V.; Surdutovich E.; Solov’yov A. V. Thermomechanical Damage of Nucleosome by the Shock Wave Initiated by Ion Passing Through Liquid Water. Nucl. Instrum. Meth. B 2012, 279, 135–139. 10.1016/j.nimb.2011.10.069. DOI
Yakubovich A. V.; Surdutovich E.; Solov’yov A. V. Atomic and Molecular Data Needs for Radiation Damage Modeling: Multiscale Approach. AIP Conf. Proc. 2011, 1344, 230–238. 10.1063/1.3585822. DOI
de Vera P.; Mason N. J.; Currell F. J.; Solov’yov A. V. Molecular Dynamics Study of Accelerated Ion-Induced Shock Waves in Biological Media. Eur. Phys. J. D 2016, 70, 183.10.1140/epjd/e2016-70281-7. DOI
de Vera P.; Surdutovich E.; Mason N. J.; Solov’yov A. V. Radial Doses Around Energetic Ion Tracks and the Onset of Shock Waves on the Nanoscale. Eur. Phys. J. D 2017, 71, 281.10.1140/epjd/e2017-80176-8. DOI
de Vera P.; Surdutovich E.; Mason N. J.; Currell F. J.; Solov’yov A. V. Simulation of the Ion-Induced Shock Waves Effects on the Transport of Chemically Reactive Species in Ion Tracks. Eur. Phys. J. D 2018, 72, 147.10.1140/epjd/e2018-90167-x. DOI
Friis I.; Verkhovtsev A.; Solov’yov I. A.; Solov’yov A. V. Modeling the Effect of Ion-Induced Shock Waves and DNA Breakage with the Reactive CHARMM Force Field. J. Comput. Chem. 2020, 41, 2429–2439. 10.1002/jcc.26399. PubMed DOI
Friis I.; Verkhovtsev A.; Solov’yov I. A.; Solov’yov A. V. Lethal DNA Damage Caused by Ion-Induced Shock Waves in Cells. Phys. Rev. E 2021, 104, 05440810.1103/PhysRevE.104.054408. PubMed DOI
Ward J. F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation and Repairability. Prog. Nucleic Acid Res. Mol. Biol. 1988, 35, 95–125. 10.1016/S0079-6603(08)60611-X. PubMed DOI
Ward J. F. Radiation Mutagenesis: The Initial DNA Lesions Responsible. Radiat. Res. 1995, 142, 362–368. 10.2307/3579145. PubMed DOI
Malyarchuk S.; Castore R.; Harrison L. DNA Repair of Clustered Lesions in Mammalian Cells: Involvement of Non-Homologous End-Joining. Nucleic Acids Res. 2008, 36, 4872–4882. 10.1093/nar/gkn450. PubMed DOI PMC
Malyarchuk S.; Castore R.; Harrison L. Apex1 Can Cleave Complex Clustered DNA Lesions in Cells. DNA Repair 2009, 8, 1343–1354. 10.1016/j.dnarep.2009.08.008. PubMed DOI PMC
Sage E.; Harrison L. Clustered DNA Lesion Repair in Eukaryotes: Relevance to Mutagenesis and Cell Survival. Mutat. Res. 2011, 711, 123–133. 10.1016/j.mrfmmm.2010.12.010. PubMed DOI PMC
Verkhovtsev A.; Surdutovich E.; Solov’yov A. V. Multiscale Approach Predictions for Biological Outcomes in Ion-Beam Cancer Therapy. Sci. Rep. 2016, 6, 2765410.1038/srep27654. PubMed DOI PMC
Ion Beam Therapy: Fundamentals, Technology, Clinical Applications; Linz U., Ed.; Springer-Verlag, 2012.
Solov’yov A. V.; Verkhovtsev A. V.; Mason N. J.; Amos R. A.; Bald I.; Baldacchino G.; Dromey B.; Falk M.; Fedor J.; Gerhards L.; et al. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. arXiv 2024, 2311.1340210.48550/arXiv.2311.13402. PubMed DOI PMC
Taylor J. R.Scattering Theory: The Quantum Theory of Nonrelativistic Collisions; Dover Publications Inc.: Garden City, NY, 2006.
Newton R. G.Scattering Theory of Waves and Particles, 2nd ed.; Springer, 1982.
Sushko G. B.; Bezchastnov V. G.; Solov’yov I. A.; Korol A. V.; Greiner W.; Solov’yov A. V. Simulation of Ultra-Relativistic Electrons and Positrons Channeling in Crystals with MBN Explorer. J. Comput. Phys. 2013, 252, 404–418. 10.1016/j.jcp.2013.06.028. DOI
Froese Fischer C.The Hartree-Fock Method for Atoms: A Numerical Approach; John Wiley & Sons Inc., 1977.
Kohn W.; Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. 10.1103/PhysRev.140.A1133. DOI
Parr R. G.; Yang W.. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, 1989.
Metal Clusters; Ekardt W., Ed.; Wiley, 1999.
Latest Advances in Atomic Clusters Collision: Fission, Fusion, Electron, Ion and Photon Impact; Connerade J.-P., Solov’yov A. V., Eds.; Imperial College Press: London, UK, 2004.
Metal Clusters and Nanoalloys: From Modeling to Applications; Mariscal M. M., Oviedo O. A., Leiva E. P. M., Eds.; Springer, 2013.
Jalkanen K. J.; Suhai S.; Bohr H.. Quantum Molecular Biological Methods Using Density Functional Theory. In Handbook of Molecular Biophysics: Methods and Applications; Bohr H. G., Ed.; Wiley-VCH Verlag, Weinheim, 2009; pp 7–66.
Becke A. D. Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A30110.1063/1.4869598. PubMed DOI
Scuseria G. E.; Staroverov V. N.. Development of Approximate Exchange-Correlation Functionals. In Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra C., Frenking G., Kim K., Scuseria G., Eds.; Elsevier, 2005; pp 669–724.
Jones R. O. Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys. 2015, 87, 897–923. 10.1103/RevModPhys.87.897. DOI
Handbook of Computational Chemistry, 2nd ed.; Leszczynski J., Kaczmarek-Kedziera A., Puzyn T., Papadopoulos M. G., Reis H., Shukla M. K., Eds. Springer, 2017.
Kaplan A. D.; Levy M.; Perdew J. P. The Predictive Power of Exact Constraints and Appropriate Norms in Density Functional Theory. Annu. Rev. Phys. Chem. 2023, 74, 193–218. 10.1146/annurev-physchem-062422-013259. PubMed DOI
Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications; Cancès E., Friesecke G., Eds.; Springer, 2023.
Grant I. P. Relativistic Calculation of Atomic Structures. Adv. Phys. 1970, 19, 747–811. 10.1080/00018737000101191. DOI
Mohanty A.; Clementi E. Dirac-Fock Self-Consistent Field Method for Closed-Shell Molecules with Kinetic Balance and Finite Nuclear Size. Int. J. Quantum Chem. 1991, 39, 487–517. 10.1002/qua.560390322. DOI
Pyykkö P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563–594. 10.1021/cr00085a006. DOI
Shavitt I.; Bartlett R.-J.. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory; Cambridge University Press: Cambridge, UK, 2010.
Cizek J.; Paldus J. Coupled Cluster Approach. Phys. Scr. 1980, 21, 251–254. 10.1088/0031-8949/21/3-4/006. DOI
Bartlett R. J.; Musiał M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI
Zhang I. Y.; Grüneis A. Coupled Cluster Theory in Materials Science. Front. Mater. 2019, 6, 123.10.3389/fmats.2019.00123. DOI
Szalay P. G.; Müller T.; Gidofalvi G.; Lischka H.; Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012, 112, 108–181. 10.1021/cr200137a. PubMed DOI
Knowles P. J.; Handy N. C. A Determinant Based Full Configuration Interaction Program. Comput. Phys. Commun. 1989, 54, 75–83. 10.1016/0010-4655(89)90033-7. DOI
Rontani M.; Cavazzoni C.; Bellucci D.; Goldoni G. Full Configuration Interaction Approach to the Few-Electron Problem in Artificial Atoms. J. Chem. Phys. 2006, 124, 12410210.1063/1.2179418. PubMed DOI
Joecker B.; Baczewski A. D.; Gamble J. K.; Pla J. J.; Saraiva A.; Morello A. Full Configuration Interaction Simulations of Exchange-Coupled Donors in Silicon Using Multi-Valley Effective Mass Theory. New J. Phys. 2021, 23, 07300710.1088/1367-2630/ac0abf. DOI
Xu E.; Uejima M.; Ten-no S. L. Full Coupled-Cluster Reduction for Accurate Description of Strong Electron Correlation. Phys. Rev. Lett. 2018, 121, 11300110.1103/PhysRevLett.121.113001. PubMed DOI
Purvis G. D. III; Bartlett R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. 10.1063/1.443164. DOI
Cullen J. M.; Zerner M. C. The Linked Singles and Doubles Model: An Approximate Theory of Electron Correlation Based on the Coupled-Cluster Ansatz. J. Chem. Phys. 1982, 77, 4088–4109. 10.1063/1.444319. DOI
Raghavachari K.; Trucks G. W.; Pople J. A.; Head-Gordon M. A. Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483. 10.1016/S0009-2614(89)87395-6. DOI
Møller C.; Plesset M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. 10.1103/PhysRev.46.618. DOI
Cremer D. Møller–Plesset Perturbation Theory: From Small Molecule Methods to Methods for Thousands of Atoms. WIREs Comput. Mol. Sci. 2011, 1, 509–530. 10.1002/wcms.58. DOI
List of Quantum Chemistry and Solid-State Physics Software. Wikipedia. https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software (accessed 2023-11-15).
Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package – Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 19410310.1063/5.0007045. PubMed DOI
Aidas K.; Angeli C.; Bak K. L.; Bakken V.; Bast R.; Boman L.; Christiansen O.; Cimiraglia R.; Coriani S.; Dahle P.; et al. The Dalton Quantum Chemistry Program System. WIREs Comput. Mol. Sci. 2014, 4, 269–284. 10.1002/wcms.1172. PubMed DOI PMC
Schmidt M. W.; Baldridge K. K.; Boatz J. A.; Elbert S. T.; Gordon M. S.; Jensen J. H.; Koseki S.; Matsunaga N.; Nguyen K. A.; Su S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. 10.1002/jcc.540141112. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.
Valiev M.; Bylaska E. J.; Govind N.; Kowalski K.; Straatsma T. P.; Van Dam H. J. J.; Wang D.; Nieplocha J.; Apra E.; Windus T. L.; de Jong W. A. D. NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI
Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 22410810.1063/5.0004608. PubMed DOI
Grant I.; Quiney H. GRASP: The Future?. Atoms 2022, 10, 108.10.3390/atoms10040108. DOI
Visscher L.; Visser O.; Aerts P.; Merenga H.; Nieuwpoort W. Relativistic Quantum Chemistry: The MOLFDIR Program Package. Comput. Phys. Commun. 1994, 81, 120–144. 10.1016/0010-4655(94)90115-5. DOI
Saue T.; Fægri K.; Helgaker T.; Gropen O. Principles of Direct 4-Component Relativistic SCF: Application to Caesium Auride. Mol. Phys. 1997, 91, 937–950. 10.1080/002689797171058. DOI
Grant I. P.; Quiney H. M. Application of Relativistic Theories and Quantum Electrodynamics to Chemical Problems. Int. J. Quantum Chem. 2000, 80, 283–297. 10.1002/1097-461X(2000)80:3<283::AID-QUA2>3.0.CO;2-L. DOI
Belpassi L.; de Santis M.; Quiney H. M.; Tarantelli F.; Storchi L. BERTHA: Implementation of a Four-Component Dirac-Kohn-Sham Relativistic Framework. J. Chem. Phys. 2020, 152, 16411810.1063/5.0002831. PubMed DOI
Grant I. P.; Quiney H. M.. Progress with Bertha: A Relativistic Atomic and Molecular Structure Package. In Recent Advances in the Theory of Chemical and Physical Systems; Julien J.-P., Maruani J., Mayou D., Wilson S., Delgado-Barrio G., Eds.; Springer, 2006; pp 199–215.
Chernysheva L. V.; Ivanov V. K. ATOM Program System and Computational Experiment. Atoms 2022, 10, 52.10.3390/atoms10020052. DOI
March N. H.Electronic Structure of Atoms, Molecules, and Clusters: Hartree-Fock and Beyond. In Advanced Topics in Theoretical Chemical Physics; Maruani J., Lefebvre R., Brändas E. J., Eds.; Springer, 2003; pp 53–70.
Evarestov R. A.Quantum Chemistry of Solids: LCAO Treatment of Crystals and Nanostructures, 2nd ed.; Springer, 2012.
Ren X.; Rinke P.; Joas C.; Scheffler M. Random-Phase Approximation and Its Applications in Computational Chemistry and Materials Science. J. Mater. Sci. 2012, 47, 7447–7471. 10.1007/s10853-012-6570-4. DOI
Starace A.Photoionization of Atoms. In Springer Handbook of Atomic, Molecular, and Optical Physics; Drake G., Ed.; Springer, 2006; pp 379–390.
Solov’yov A. V. Plasmon Excitations in Metal Clusters and Fullerenes. Int. J. Mod. Phys. B 2005, 19, 4143–4184. 10.1142/S0217979205032668. DOI
Strout D. L.; Scuseria G. E. A Quantitative Study of the Scaling Properties of the Hartree–Fock Method. J. Chem. Phys. 1995, 102, 8448–8452. 10.1063/1.468836. DOI
Scuseria G. E.; Lee T. J. Comparison of Coupled-Cluster Methods Which Include the Effects of Connected Triple Excitations. J. Chem. Phys. 1990, 93, 5851–5855. 10.1063/1.459684. DOI
Leininger M. L.; Allen W. D.; Schaefer III H. F.; Sherrill C. D. Is Møller–Plesset Perturbation Theory a Convergent Ab Initio Method?. J. Chem. Phys. 2000, 112, 9213–9222. 10.1063/1.481764. DOI
Herman M. S.; Hagedorn G. A. Does Møller–Plesset Perturbation Theory Converge? A Look at Two-Electron Systems. Int. J. Quantum Chem. 2009, 109, 210–225. 10.1002/qua.21763. DOI
Cremer D.; He Z. Sixth-Order Møller–Plesset Perturbation Theory – On the Convergence of the MPn Series. J. Phys. Chem. 1996, 100, 6173–6188. 10.1021/jp952815d. DOI
Doser B.; Lambrecht D. S.; Kussmann J.; Ochsenfeld C. Linear-Scaling Atomic Orbital-Based Second-Order Møller–Plesset Perturbation Theory by Rigorous Integral Screening Criteria. J. Chem. Phys. 2009, 130, 06410710.1063/1.3072903. PubMed DOI
Glasbrenner M.; Graf D.; Ochsenfeld C. Efficient Reduced-Scaling Second-Order Møller–Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenuated Coulomb Metric. J. Chem. Theory Comput. 2020, 16, 6856–6868. 10.1021/acs.jctc.0c00600. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI
Vydrov O. A.; Heyd J.; Krukau A.; Scuseria G. E. Importance of Short-Range Versus Long-Range Hartree-Fock Exchange for the Performance of Hybrid Density Functionals. J. Chem. Phys. 2006, 125, 07410610.1063/1.2244560. PubMed DOI
Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI
Tsuneda T.; Hirao K. Long-Range Correction for Density Functional Theory. WIREs Comput. Mol. Sci. 2014, 4, 375–390. 10.1002/wcms.1178. DOI
Li M.; Reimers J. R.; Ford M. J.; Kobayashi R.; Amos R. D. Accurate Prediction of the Properties of Materials Using the CAM-B3LYP Density Functional. J. Comput. Chem. 2021, 42, 1486–1497. 10.1002/jcc.26558. PubMed DOI
Castro A.; Appel H.; Oliveira M.; Rozzi C. A.; Andrade X.; Lorenzen F.; Marques M. A. L.; Gross E. K. U.; Rubio A. Octopus: A Tool for the Application of Time-Dependent Density Functional Theory. Phys. Stat. Sol. B 2006, 243, 2465–2488. 10.1002/pssb.200642067. DOI
Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 39550210.1088/0953-8984/21/39/395502. PubMed DOI
Makkar P.; Ghosh N. N. A Review on the Use of DFT for the Prediction of the Properties of Nanomaterials. RSC Adv. 2021, 11, 27897–27924. 10.1039/D1RA04876G. PubMed DOI PMC
Thoben N.; Kaper T.; de Graaff S.; Gerhards L.; Schmidtmann M.; Klüner T.; Beckhaus R.; Doye S. Density Functional Theory Calculations for Multiple Conformers Explaining the Regio- and Stereoselectivity of Ti-Catalyzed Hydroaminoalkylation Reactions. ChemPhysChem 2023, 24, e20230037010.1002/cphc.202300370. PubMed DOI
Mitschke N.; Chemutai Sum W.; Hassan K.; Kirchenwitz M.; Schrey H.; Gerhards L.; Kellner H.; Stradal T. E. B.; Matasyoh J. C.; Stadler M. Biologically Active Drimane Derivatives Isolated From Submerged Cultures of the Wood-Inhabiting Basidiomycete Dentipellis Fragilis. RSC Adv. 2023, 13, 25752–25761. 10.1039/D3RA04204A. PubMed DOI PMC
Mohrhusen L.; Gerhards L.; Hirsch D.; Klüner T.; Al-Shamery K. Multidentate Interaction of Methylamine with Rutile TiO2 (110). J. Phys. Chem. C 2021, 125, 11975–11986. 10.1021/acs.jpcc.1c02166. DOI
Gerhards L.; Werr M.; Hübner O.; Solov’yov I. A.; Himmel H.-J. Peculiar Differences between Two Copper Complexes Containing Similar Redox-Active Ligands: Density Functional and Multiconfigurational Calculations. Inorg. Chem. 2024, 63, 961–975. 10.1021/acs.inorgchem.3c02949. PubMed DOI PMC
Markovic A.; Gerhards L.; Sander P.; Dosche C.; Klüner T.; Beckhaus R.; Wittstock G. Electronic Transitions in Different Redox States of Trinuclear 5, 6, 11, 12, 17, 18-Hexaazatrinaphthylene-Bridged Titanium Complexes: Spectroelectrochemistry and Quantum Chemistry. ChemPhysChem 2020, 21, 2506–2514. 10.1002/cphc.202000547. PubMed DOI PMC
Perdew J. P.; Zunger A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048–5079. 10.1103/PhysRevB.23.5048. DOI
Tsuneda T.; Hirao K. Self-Interaction Corrections in Density Functional Theory. J. Chem. Phys. 2014, 140, 18A51310.1063/1.4866996. PubMed DOI
Grimme S. Density Functional Theory with London Dispersion Corrections. WIREs Comput. Mol. Sci. 2011, 1, 211–228. 10.1002/wcms.30. DOI
Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI
Müller T.; Sharma S.; Gross E. K. U.; Dewhurst J. K. Extending Solid-State Calculations to Ultra-Long-Range Length Scales. Phys. Rev. Lett. 2020, 125, 25640210.1103/PhysRevLett.125.256402. PubMed DOI
Nakata A.; Baker J. S.; Mujahed S. Y.; Poulton J. T. L.; Arapan S.; Lin J.; Raza Z.; Yadav S.; Truflandier L.; Miyazaki T.; Bowler D. R. Large Scale and Linear Scaling DFT With the CONQUEST Code. J. Chem. Phys. 2020, 152, 16411210.1063/5.0005074. PubMed DOI
Runge E.; Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 10.1103/PhysRevLett.52.997. DOI
Ullrich C. A.Time-Dependent Density-Functional Theory: Concepts and Applications; Oxford University Press: Oxford, UK, 2011.
Maitra N. T. Fundamental Aspects of Time-Dependent Density Functional Theory. J. Chem. Phys. 2016, 144, 22090110.1063/1.4953039. PubMed DOI
Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: A General-Purpose Quantum Chemistry Program Package. WIREs Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI
Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI
Time-Dependent Density Functional Theory; Marques M. A. L., Ullrich C. A., Nogueira F., Rubio A., Burke K., Gross E. K. U., Eds.; Lecture Notes in Physics, Vol. 706; Springer, 2006.
Adamo C.; Jacquemin D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. 10.1039/C2CS35394F. PubMed DOI
Lian C.; Guan M.; Hu S.; Zhang J.; Meng S. Photoexcitation in Solids: First-Principles Quantum Simulations by Real-Time TDDFT. Adv. Theory Simul. 2018, 1 (8), 180005510.1002/adts.201800055. DOI
Malcioğlu O. B.; Calzolari A.; Gebauer R.; Varsano D.; Baroni S. Dielectric and Thermal Effects on the Optical Properties of Natural Dyes: A Case Study on Solvated Cyanin. J. Am. Chem. Soc. 2011, 133, 15425–15433. 10.1021/ja201733v. PubMed DOI
Sjulstok E.; Olsen J. M. H.; Solov’yov I. A. Quantifying Electron Transfer Reactions in Biological Systems: What Interactions Play the Major Role?. Sci. Rep. 2016, 5, 1844610.1038/srep18446. PubMed DOI PMC
Shao Y.; Mei Y.; Sundholm D.; Kaila V. R. I. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. J. Chem. Theory Comput. 2020, 16, 587–600. 10.1021/acs.jctc.9b00823. PubMed DOI PMC
Timmer D.; Hergert G.; Gerhards L.; Lünemann D. C.; Schröder N.; Greven T.; van der Vlugt J. I.; De Sio A.; Solov’yov I. A.; Christoffers J.; Lienau C. Structural Flexibility Slows Down Charge Transfers in Diaminoterephthalate-C60 Dyads. J. Phys. Chem. C 2024, 128, 2380–2391. 10.1021/acs.jpcc.3c08270. DOI
Timrov I.; Vast N.; Gebauer R.; Baroni S. Electron Energy Loss and Inelastic X-Ray Scattering Cross Sections From Time-Dependent Density-Functional Perturbation Theory. Phys. Rev. B 2013, 88, 06430110.1103/PhysRevB.88.064301. DOI
Nicholls R. J. Advances in Modelling Electron Energy Loss Spectra From First Principles. J. Phys. Mater. 2021, 4, 02400810.1088/2515-7639/abebd2. DOI
Moitra T.; Konecny L.; Kadek M.; Rubio A.; Repisky M. Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. J. Phys. Chem. Lett. 2023, 14, 1714–1724. 10.1021/acs.jpclett.2c03599. PubMed DOI PMC
Ghosal A.; Roy A. K. A Real-Time TDDFT Scheme for Strong-Field Interaction in Cartesian Coordinate Grid. Chem. Phys. Lett. 2022, 796, 13956210.1016/j.cplett.2022.139562. DOI
Alberg-Fløjborg A.; Salo A. B.; Solov’yov I. A. Quantum Mechanical Simulations of a Carbon Ion Colliding With a Biological Target. J. Phys. B: At. Mol. Opt. Phys. 2020, 53, 14520210.1088/1361-6455/ab8c56. DOI
Salo A. B.; Alberg-Fløjborg A.; Solov’yov I. A. Free-Electron Production From Nucleotides Upon Collision With Charged Carbon Ions. Phys. Rev. A 2018, 98, 01270210.1103/PhysRevA.98.012702. DOI
Friedrich H.Scattering Theory; Lecture Notes in Physics, Vol. 872; Springer, 2013.
Dreizler R. M.; Kirchner T.; Lüdde C.. Quantum Collision Theory of Nonrelativistic Particles; Springer-Verlag GmbH, 2022.
Wachter A.Relativistic Quantum Mechanics; Springer, 2011.
Hofierka J.; Cunningham B.; Rawlins C. M.; Patterson C. H.; Green D. Many-Body Theory of Positron Binding to Polyatomic Molecules. Nature 2022, 606, 688–693. 10.1038/s41586-022-04703-3. PubMed DOI PMC
Rawlins C. M.; Hofierka J.; Cunningham B.; Patterson C. H.; Green D. G. Many-Body Theory Calculations of Positron Scattering and Annihilation in H2, N2, and CH4. Phys. Rev. Lett. 2023, 130, 26300110.1103/PhysRevLett.130.263001. PubMed DOI
Samanta K.; Tsogbayar T.; Zhang S. B.; Yeager D. L. Electron–Atom and Electron–Molecule Resonances: Some Theoretical Approaches Using Complex Scaled Multiconfigurational Methods. Adv. Quantum Chem. 2018, 77, 317–390. 10.1016/bs.aiq.2017.06.006. DOI
Schneider B. R-matrix Theory for Electron-Atom and Electron-Molecule Collisions Using Analytic Basis Set Expansions. Chem. Phys. Lett. 1975, 31, 237–241. 10.1016/0009-2614(75)85010-X. DOI
Burke P. G.; Mackey I.; Shimamura I. R-Matrix Theory of Electron–Molecule Scattering. J. Phys. B: Atom. Mol. Phys. 1977, 10, 2497–2512. 10.1088/0022-3700/10/12/027. DOI
Tennyson J. Electron–Molecule Collision Calculations Using the R-matrix Method. Phys. Rep. 2010, 491, 29–76. 10.1016/j.physrep.2010.02.001. DOI
Otvos J. W.; Stevenson D. P. Cross-Sections of Molecules for Ionization by Electrons. J. Am. Chem. Soc. 1956, 78, 546–551. 10.1021/ja01584a009. DOI
Deutsch H.; Becker K.; Matt S.; Märk T. D. Theoretical Determination of Absolute Electron-Impact Ionization Cross Sections of Molecules. Int. J. Mass Spectrom. 2000, 197, 37–69. 10.1016/S1387-3806(99)00257-2. DOI
Kim Y.-K.; Rudd M. E. Binary-Encounter-Dipole Model for Electron-Impact Ionization. Phys. Rev. A 1994, 50, 3954–3967. 10.1103/PhysRevA.50.3954. PubMed DOI
Tanaka H.; Brunger M. J.; Campbell L.; Kato H.; Hoshino M.; Rau A. R. P. Scaled Plane-Wave Born Cross Sections for Atoms and Molecules. Rev. Mod. Phys. 2016, 88, 02500410.1103/RevModPhys.88.025004. DOI
Kim Y.-K.; Santos J. P.; Parente F. Extension of the Binary-Encounter-Dipole Model to Relativistic Incident Electrons. Phys. Rev. A 2000, 62, 05271010.1103/PhysRevA.62.052710. DOI
Rudd M. E.; Kim Y. K.; Madison D. H.; Gay T. Electron Production in Proton Collisions with Atoms and Molecules: Energy Distributions. Rev. Mod. Phys. 1992, 64, 441–490. 10.1103/RevModPhys.64.441. DOI
Zatsarinny O. BSR: B-spline Atomic R-matrix Codes. Comput. Phys. Commun. 2006, 174, 273–356. 10.1016/j.cpc.2005.10.006. DOI
Bray I.; Fursa D. V.; Kheifets A. S.; Stelbovics A. T. Electrons and Photons Colliding with Atoms: Development and Application of the Convergent Close-Coupling Method. J. Phys. B: At. Mol. Opt. Phys. 2002, 35, R117–R146. 10.1088/0953-4075/35/15/201. DOI
Gianturco F. A.; Lucchese R. R.; Sanna N. Calculation of Low-Energy Elastic Cross Sections for Electron–CF4 Scattering. J. Chem. Phys. 1994, 100, 6464–6471. 10.1063/1.467237. DOI
Mašín Z.; Benda J.; Gorfinkiel J. D.; Harvey A. G.; Tennyson J. UKRmol+: A Suite for Modelling Electronic Processes in Molecules Interacting With Electrons, Positrons and Photons Using the R-matrix Method. Comput. Phys. Commun. 2020, 249, 10709210.1016/j.cpc.2019.107092. DOI
Borràs V. J.; González-Vázquez J.; Argenti L.; Martín F. Molecular-Frame Photoelectron Angular Distributions of CO in the Vicinity of Feshbach Resonances: An XCHEM Approach. J. Chem. Theory Comput. 2021, 17, 6330–6339. 10.1021/acs.jctc.1c00480. PubMed DOI
AMOS Gateway Homepage.2023. https://amosgateway.org (accessed 2023-11-15).
Hamilton K. R.; Bartschat K.; Douguet N.; Pamidighantam S. V.; Schneider B. I. Simulation for All: The Atomic, Molecular, and Optical Science Gateway. Comput. Sci. Eng. 2023, 25, 68–72. 10.1109/MCSE.2023.3312888. DOI
Amusia M. Y.Atomic Photoeffect; Plenum Press: New York, NY, 1990.
McLaughlin B.; Balance C. P.. Petascale Computations for Large-Scale Atomic and Molecular Collisions. In Sustained Simulation Performance 2014; Resch M. M., Bez W., Focht E., Kobayashi H., Patel N., Eds.; Springer, 2014; pp 173–185.
Cooper B.; Tudorovskaya M.; Mohr S.; O’Hare A.; Hanicinec M.; Dzarasova A.; Gorfinkiel J. D.; Benda J.; Mašín Z.; Al-Refaie A. F.; Knowles P. J.; Tennyson J. Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-matrix Method. Atoms 2019, 7, 97.10.3390/atoms7040097. DOI
Bernhardt P.; Paretzke H. G. Calculation of Electron Impact Ionization Cross Sections of DNA Using the Deutsch–Märk and Binary–Encounter–Bethe Formalisms. Int. J. Mass Spectrom. 2003, 223–224, 599–611. 10.1016/S1387-3806(02)00878-3. DOI
Huber S. E.; Mauracher A. Electron Impact Ionisation Cross Sections of Fluoro-Substituted Nucleosides. Eur. Phys. J. D 2019, 73, 137.10.1140/epjd/e2019-90708-9. PubMed DOI PMC
Langer J.; Zawadzki M.; Fárník M.; Pinkas J.; Fedor J.; Kočišek J. Electron Interactions with Bis(pentamethylcyclopentadienyl) Titanium(IV) Dichloride and Difluoride. Eur. Phys. J. D 2018, 72, 112.10.1140/epjd/e2018-80794-6. DOI
Francis Z.; El Bitar Z.; Incerti S.; Bernal M. A.; Karamitros M.; Tran H. N. Calculation of Lineal Energies for Water and DNA Bases Using the Rudd Model Cross Sections Integrated Within the Geant4-DNA Processes. J. Appl. Phys. 2017, 122, 01470110.1063/1.4990293. DOI
Cashwell E. D.; Everett C. J.. A Practical Manual on the Monte Carlo Method for Random Walk Problems; Pergamon Press: London, UK, 1959.
Kawrakow I.; Bielajew A. F. On the Condensed History Technique for Electron Transport. Nucl. Instrum. Meth. B 1998, 142, 253–280. 10.1016/S0168-583X(98)00274-2. DOI
Monte Carlo Transport of Electrons and Photons; Jenkins T. M., Nelson W. R., Rindi A., Eds.; Springer, 1988.
Berger M. J.; Coursey J. S.; Zucker M. A.; Chang J.. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NIST Standard Reference Database 124. U.S. Department of Commerce, National Institute of Standards and Technology, n.d. https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions (accessed 2023-09-08).
Dingfelder M. Track-structure Simulations for Charged Particles. Health Phys. 2012, 103, 590–595. 10.1097/HP.0b013e3182621292. PubMed DOI PMC
Böhlen T. T.; Cerutti F.; Chin M. P. W.; Fassò A.; Ferrari A.; Ortega P. G.; Mairani A.; Sala P. R.; Smirnov G.; Vlachoudis V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. 10.1016/j.nds.2014.07.049. DOI
Ziegler J. F.; Ziegler M. D.; Biersack J. P. SRIM – The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Meth. B 2010, 268, 1818–1823. 10.1016/j.nimb.2010.02.091. DOI
Salvat F.; Fernández-Varea J. M.; Sempau J.. PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport.2023. (accessed 2023–06–13); https://www.oecd-nea.org/science/docs/2011/nsc-doc2011-5.
Agostinelli S.; Allison J.; Amako K.; Apostolakis J.; Araujo H.; Arce P.; Asai M.; Axen D.; Banerjee S.; Barrand G.; et al. GEANT4 – A Simulation Toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303. 10.1016/S0168-9002(03)01368-8. DOI
Uehara S.; Nikjoo H.; Goodhead D. T. Cross-Sections for Water Vapour for the Monte Carlo Electron Track Structure Code From 10 eV to the MeV Region. Phys. Med. Biol. 1993, 38, 1841–1858. 10.1088/0031-9155/38/12/010. DOI
Friedland W.; Dingfelder M.; Kundrát P.; Jacob P. Track Structures, DNA Targets and Radiation Effects in the Biophysical Monte Carlo Simulation Code PARTRAC. Mutat. Res. 2011, 711, 28–40. 10.1016/j.mrfmmm.2011.01.003. PubMed DOI
Pimblott S. M.; Mozumder A. Structure of Electron Tracks in Water. 2. Distribution of Primary Ionizations and Excitations in Water Radiolysis. J. Phys. Chem. 1991, 95, 7291–7300. 10.1021/j100172a036. DOI
Champion C.; Le Loirec C.; Stosic B. EPOTRAN: A Full-differential Monte Carlo Code for Electron and Positron Transport in Liquid and Gaseous Water. Int. J. Radiat. Biol. 2012, 88, 54–61. 10.3109/09553002.2011.641451. PubMed DOI
Incerti S.; Baldacchino G.; Bernal M.; Capra R.; Champion C.; Francis Z.; Guèye P.; Mantero A.; Mascialino B.; Moretto P.; et al. The Geant4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 1, 157–178. 10.1142/S1793962310000122. DOI
Bernal M. A.; Bordage M. C.; Brown J. M. C.; Davídková M.; Delage E.; El Bitar Z.; Enger S. A.; Francis Z.; Guatelli S.; Ivanchenko V. N.; et al. Track Structure Modeling in Liquid Water: A Review of the Geant4-DNA Very Low Energy Extension of the Geant4 Monte Carlo Simulation Toolkit. Phys. Med. 2015, 31, 861–874. 10.1016/j.ejmp.2015.10.087. PubMed DOI
Zein S. A.; Bordage M.-C.; Francis Z.; Macetti G.; Genoni A.; Dal Cappello C.; Shin W.-G.; Incerti S. Electron Transport in DNA Bases: An Extension of the Geant4-DNA Monte Carlo Toolkit. Nucl. Instrum. Meth. B 2021, 488, 70–82. 10.1016/j.nimb.2020.11.021. DOI
Sakata D.; Incerti S.; Bordage M. C.; Lampe N.; Okada S.; Emfietzoglou D.; Kyriakou I.; Murakami K.; Sasaki T.; Tran H.; Guatelli S.; Ivantchenko V. N. An Implementation of Discrete Electron Transport Models for Gold in the Geant4 Simulation Toolkit. J. Appl. Phys. 2016, 120, 24490110.1063/1.4972191. DOI
Radiation Damage in Biomolecular Systems; García Gómez-Tejedor G., Fuss M. C., Eds.; Springer, 2012.
Hahn M. B. Accessing Radiation Damage to Biomolecules on the Nanoscale by Particle-Scattering Simulations. J. Phys. Commun. 2023, 7, 04200110.1088/2399-6528/accb3f. DOI
Kundrát P. A Semi-Analytical Radiobiological Model May Assist Treatment Planning in Light Ion Radiotherapy. Phys. Med. Biol. 2007, 52, 6813–6830. 10.1088/0031-9155/52/23/003. PubMed DOI
Korol A. V.; Sushko G. B.; Solov’yov A. V. All-Atom Relativistic Molecular Dynamics Simulations of Channeling and Radiation Processes in Oriented Crystals. Eur. Phys. J. D 2021, 75, 107.10.1140/epjd/s10053-021-00111-w. DOI
Solov’yov I. A.; Sushko G. B.; Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V.. Relativistic molecular dynamics. In MBN Explorer and MBN Studio Tutorials: Version 5.0; MesoBioNano Science Publishing: Frankfurt am Main, 2024.
Korol A. V.; Solov’yov A. V.; Greiner W. The Influence of the Dechannelling Process on the Photon Emission by an Ultra-Relativistic Positron Channelling in a Periodically Bent Crystal. J. Phys. G: Nucl. Part. Phys. 2001, 27, 95–125. 10.1088/0954-3899/27/1/307. DOI
Sushko G. B.; Korol A. V.; Solov’yov A. V. Atomistic Modeling of the Channeling Process with Radiation Reaction Force Included. Nucl. Instrum. Meth. B 2023, 535, 117–125. 10.1016/j.nimb.2022.12.008. DOI
Born M.; Oppenheimer J. R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. 10.1002/andp.19273892002. DOI
MacKerell Jr. A. D.; Bashford D.; Bellott M.; Dunbrack Jr R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616. 10.1021/jp973084f. PubMed DOI
MacKerell Jr. A. D.; Feig M.; Brooks C. L. III Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. 10.1002/jcc.20065. PubMed DOI
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz Jr K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI
Tersoff J. Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon. Phys. Rev. Lett. 1988, 61, 2879–2882. 10.1103/PhysRevLett.61.2879. PubMed DOI
Tersoff J. New Empirical Approach for the Structure and Energy of Covalent Systems. Phys. Rev. B 1988, 37, 6991–7000. 10.1103/PhysRevB.37.6991. PubMed DOI
Brenner D. W. Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films. Phys. Rev. B 1990, 42, 9458–9471. 10.1103/PhysRevB.42.9458. PubMed DOI
Stuart S. J.; Tutein A. B.; Harrison J. A. A. Reactive Potential for Hydrocarbons with Intermolecular Interactions. J. Chem. Phys. 2000, 112, 6472–6486. 10.1063/1.481208. DOI
Brenner D. W.; Shenderova O. A.; Harrison J. A.; Stuart S. J.; Ni B.; Sinnott S. B. A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons. J. Phys.: Condens. Matter 2002, 14, 783–802. 10.1088/0953-8984/14/4/312. DOI
Case D. A.; Cheatham III T. E.; Darden T.; Gohlke H.; Luo R.; Merz Jr. K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC
Brooks B. R.; Bruccoleri R. E.; Olafson B. D.; States D. J.; Swaminathan S.; Karplus M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. 10.1002/jcc.540040211. DOI
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. 10.1006/jcph.1995.1039. DOI
Phillips J. C.; Braun R.; Wang W.; Gumbart J.; Tajkhorshid E.; Villa E.; Chipot C.; Skeel R. D.; Kalé L.; Schulten K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. 10.1002/jcc.20289. PubMed DOI PMC
Akhukov M. A.; Chorkov V. A.; Gavrilov A. A.; Guseva D. V.; Khalatur P. G.; Khokhlov A. R.; Kniznik A. A.; Komarov P. V.; Okun M. V.; Potapkin B. V.; et al. MULTICOMP Package for Multilevel Simulation of Polymer Nanocomposites. Comput. Mater. Sci. 2023, 216, 11183210.1016/j.commatsci.2022.111832. DOI
Feig M.; Karanicolas J.; Brooks C. L. III C. L. B. MMTSB Tool Set: Enhanced Sampling and Multiscale Modeling Methods for Applications in Structural Biology. J. Mol. Graph. Model. 2004, 22, 377–395. 10.1016/j.jmgm.2003.12.005. PubMed DOI
Shankar U.; Gogoi R.; Sethi S. K.; Verma A.. Introduction to Materials Studio Software for the Atomistic-Scale Simulations. In Forcefields for Atomistic-Scale Simulations: Materials and Applications; Verma A., Rangappa S. M., Ogata S., Siengchin S., Eds.; Springer, 2022; pp 299–313.
Theory of Atomic and Molecular Clusters; Jellinek J., Ed.; Springer-Verlag Berlin Heidelberg, 1999.
Saito K.Chemical Physics of Molecular Condensed Matter; Springer, 2020.
Mathematical Approaches to Biomolecular Structure and Dynamics; Mesirov J. P., Schulten K., Sumners D. W., Eds.; Springer, 1996.
Zhao G.; Perilla J. R.; Yufenyuy E. L.; Meng X.; Chen B.; Ning J.; Ahn J.; Gronenborn A. M.; Schulten K.; Aiken C.; Zhang P. Mature HIV-1 Capsid Structure by Cryo-Electron Microscopy and All-Atom Molecular Dynamics. Nature 2013, 497, 643–646. 10.1038/nature12162. PubMed DOI PMC
Vashishta P.; Kalia R. K.; Nakano A. Multimillion Atom Simulations of Dynamics of Oxidation of an Aluminum Nanoparticle and Nanoindentation on Ceramics. J. Phys. Chem. B 2006, 110, 3727–3733. 10.1021/jp0556153. PubMed DOI
Shaw D. E.; Maragakis P.; Lindorff-Larsen K.; Piana S.; Dror R. O.; Eastwood M. P.; Bank J. A.; Jumper J. M.; Salmon J. K.; Shan Y.; Wriggers W. Atomic-Level Characterization of the Structural Dynamics of Proteins. Science 2010, 330, 341–346. 10.1126/science.1187409. PubMed DOI
Pierce L. C. T.; Salomon-Ferrer R.; de Oliveira C. A. F.; McCammon J. A.; Walker R. C. Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics. J. Chem. Theory Comput. 2012, 8, 2997–3002. 10.1021/ct300284c. PubMed DOI PMC
Lu D.; Wang H.; Chen M.; Lin L.; Car R.; E W.; Jia W.; Zhang L. 86 PFLOPS Deep Potential Molecular Dynamics Simulation of 100 Million Atoms With Ab Initio Accuracy. Comput. Phys. Commun. 2021, 259, 10762410.1016/j.cpc.2020.107624. DOI
Jia W.; Wang H.; Chen M.; Lu D.; Lin L.; Car R.; E W.; Zhang L. Pushing the Limit of Molecular Dynamics With Ab Initio Accuracy to 100 Million Atoms with Machine Learning. arXiv 2023, 2005.0022310.48550/arXiv.2005.00223. DOI
Warshel A.; Levitt M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227–249. 10.1016/0022-2836(76)90311-9. PubMed DOI
Field M. J.; Bash P. A.; Karplus M. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. J. Comput. Chem. 1990, 11, 700–733. 10.1002/jcc.540110605. DOI
Senn H. M.; Thiel W. QM/MM Methods for Biomolecular Systems. Angew. Chem., Int. Ed. 2009, 48, 1198–1229. 10.1002/anie.200802019. PubMed DOI
Maseras F.; Morokuma K. IMOMM: A New Integrated Ab Initio + Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition States. J. Comput. Chem. 1995, 16, 1170–1179. 10.1002/jcc.540160911. DOI
Svensson M.; Humbel S.; Froese R. D. J.; Matsubara T.; Sieber S.; Morokuma K. ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357–19363. 10.1021/jp962071j. DOI
Cao L.; Ryde U. On the Difference Between Additive and Subtractive QM/MM Calculations. Front. Chem. 2018, 6, 89.10.3389/fchem.2018.00089. PubMed DOI PMC
Dapprich S.; Komáromi I.; Byun K. S.; Morokuma K.; Frisch M. J. A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives. J. Mol. Struct. 1999, 461–462, 1–21. 10.1016/S0166-1280(98)00475-8. DOI
Söderhjelm P.; Husberg C.; Strambi A.; Olivucci M.; Ryde U. Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities. J. Chem. Theory Comput. 2009, 5, 649–658. 10.1021/ct800459t. PubMed DOI
Olsen J. M.; Aidas K.; Kongsted J. Excited States in Solution Through Polarizable Embedding. J. Chem. Theory Comput. 2010, 6, 3721–3734. 10.1021/ct1003803. DOI
Olsen J. M. H.; Kongsted J. Molecular Properties through Polarizable Embedding. Adv. Quantum Chem. 2011, 61, 107–143. 10.1016/B978-0-12-386013-2.00003-6. DOI
Bondanza M.; Nottoli M.; Cupellini L.; Lipparini F.; Mennucci B. Polarizable Embedding QM/MM: The Future Gold Standard for Complex (Bio)systems?. Phys. Chem. Chem. Phys. 2020, 22, 14433–14448. 10.1039/D0CP02119A. PubMed DOI
Gordon M. S.; Fedorov D. G.; Pruitt S. R.; Slipchenko L. V. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chem. Rev. 2012, 112, 632–672. 10.1021/cr200093j. PubMed DOI
Gao J.; Truhlar D. G.; Wang Y.; Mazack M. J. M.; Löffler P.; Provorse M. R.; Rehak P. Explicit Polarization: A Quantum Mechanical Framework for Developing Next Generation Force Fields. Acc. Chem. Res. 2014, 47, 2837–2845. 10.1021/ar5002186. PubMed DOI PMC
Warshel A.; Kato M.; Pisliakov A. V. Polarizable Force Fields: History, Test Cases, and Prospects. J. Chem. Theory Comput. 2007, 3, 2034–2045. 10.1021/ct700127w. PubMed DOI
Cieplak P.; Dupradeau F.-Y.; Duan Y.; Wang J. Polarization Effects in Molecular Mechanical Force Fields. J. Phys.: Condens. Matter 2009, 21, 33310210.1088/0953-8984/21/33/333102. PubMed DOI PMC
Jing Z.; Liu C.; Cheng S. Y.; Qi R.; Walker B. D.; Piquemal J.-P.; Ren P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu. Rev. Biophys. 2019, 48, 371–394. 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC
Curutchet C.; Muñoz Losa A.; Monti S.; Kongsted J.; Scholes G. D.; Mennucci B. Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model. J. Chem. Theory Comput. 2009, 5, 1838–1848. 10.1021/ct9001366. PubMed DOI
Boulanger E.; Thiel W. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model. J. Chem. Theory Comput. 2012, 8, 4527–4538. 10.1021/ct300722e. PubMed DOI
Lemkul J. A.; Huang J.; Roux B.; MacKerell Jr. A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116, 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC
Stern H. A.; Kaminski G. A.; Banks J. L.; Zhou R.; Berne B. J.; Friesner R. A. Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry. J. Phys. Chem. B 1999, 103, 4730–4737. 10.1021/jp984498r. DOI
Giovannini T.; Puglisi A.; Ambrosetti M.; Cappelli C. Polarizable QM/MM Approach with Fluctuating Charges and Fluctuating Dipoles: The QM/FQFμ Model. J. Chem. Theory Comput. 2019, 15, 2233–2245. 10.1021/acs.jctc.8b01149. PubMed DOI
Dziedzic J.; Mao Y.; Shao Y.; Ponder J.; Head-Gordon T.; Head-Gordon M.; Skylaris C.-K. TINKTEP: A Fully Self-Consistent, Mutually Polarizable QM/MM Approach Based on the AMOEBA Force Field. J. Chem. Phys. 2016, 145, 12410610.1063/1.4962909. PubMed DOI
Wu X.; Teuler J.-M.; Cailliez F.; Clavaguéra C.; Salahub D. R.; de la Lande A. Simulating Electron Dynamics in Polarizable Environments. J. Chem. Theory Comput. 2017, 13, 3985–4002. 10.1021/acs.jctc.7b00251. PubMed DOI
Ponder W.; Wu C.; Ren P.; Pande V. S.; Chodera J. D.; Schnieders M. J.; Haque I.; Mobley D. L.; Lambrecht D. S.; DiStasio Jr. R. A.; et al. Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B 2010, 114, 2549–2564. 10.1021/jp910674d. PubMed DOI PMC
Shi Y.; Xia Z.; Zhang J.; Best R.; Wu C.; Ponder J. W.; Ren P. Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins. J. Chem. Theory Comput. 2013, 9, 4046–4063. 10.1021/ct4003702. PubMed DOI PMC
Loco D.; Lagardère L.; Caprasecca S.; Lipparini F.; Mennucci B.; Piquemal J.-P. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. J. Chem. Theory Comput. 2017, 13, 4025–4033. 10.1021/acs.jctc.7b00572. PubMed DOI
Zhang C.; Lu C.; Jing Z.; Wu C.; Piquemal J.-P.; Ponder J. W.; Ren P. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J. Chem. Theory Comput. 2018, 14, 2084–2108. 10.1021/acs.jctc.7b01169. PubMed DOI PMC
Nottoli M.; Bondanza M.; Mazzeo P.; Cupellini L.; Curutchet C.; Loco D.; Lagardère L.; Piquemal J.-P.; Mennucci B.; Lipparini F. QM/AMOEBA Description of Properties and Dynamics of Embedded Molecules. WIREs Comput. Mol. Sci. 2023, 13, e167410.1002/wcms.1674. DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N · log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Herce H. D.; Garcia A. E.; Darden T. The Electrostatic Surface Term: (I) Periodic Systems. J. Chem. Phys. 2007, 126, 12410610.1063/1.2714527. PubMed DOI
Frenkel D.; Smit B.. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Academic Press, San Diego, CA, 2002.
Field M. J. The pDynamo Program for Molecular Simulations Using Hybrid Quantum Chemical and Molecular Mechanical Potentials. J. Chem. Theory Comput. 2008, 4, 1151–1161. 10.1021/ct800092p. PubMed DOI
Zhang B.; Altarawy D.; Barnes T.; Turney J. M.; Schaefer III H. F. Janus: An Extensible Open-Source Software Package for Adaptive QM/MM Methods. J. Chem. Theory Comput. 2019, 15, 4362–4373. 10.1021/acs.jctc.9b00182. PubMed DOI
Lin H.; Zhang Y.; Pezeshki S.; Wang B.; Wu X.-P.; Gagliardi L.; Truhlar D. G.. QMMM 2018; University of Minnesota: Minneapolis, MN, 2018. http://comp.chem.umn.edu/qmmm (accessed 2023-09-13).
Korol V.; Husen P.; Sjulstok E.; Nielsen C.; Friis I.; Frederiksen A.; Salo A. B.; Solov’yov I. A. Introducing VIKING: A Novel Online Platform for Multiscale Modeling. ACS Omega 2020, 5, 1254–1260. 10.1021/acsomega.9b03802. PubMed DOI PMC
Metz S.; Kästner J.; Sokol A. A.; Keal T. W.; Sherwood P. ChemShell–A Modular Software Package for QM/MM Simulations. WIREs Comput. Mol. Sci. 2014, 4, 101–110. 10.1002/wcms.1163. DOI
Cofer-Shabica D. V.; Menger M. F. S. J.; Ou Q.; Shao Y.; Subotnik J. E.; Faraji S. INAQS, A Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM Simulations. J. Chem. Theory Comput. 2022, 18, 4601–4614. 10.1021/acs.jctc.2c00204. PubMed DOI
Kong J.; White C. A.; Krylov A. I.; Sherrill D.; Adamson R. D.; Furlani T. R.; Lee M. S.; Lee A. M.; Gwaltney S. R.; Adams T. R.; et al. Q-Chem 2.0: A High-Performance Ab Initio Electronic Structure Program Package. J. Comput. Chem. 2000, 21, 1532–1548. 10.1002/1096-987X(200012)21:16<1532::AID-JCC10>3.0.CO;2-W. DOI
Epifanovsky E.; Gilbert A. T. B.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; et al. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 08480110.1063/5.0055522. PubMed DOI PMC
Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface. GROMACS, n.d. https://manual.gromacs.org/current/reference-manual/special/qmmm.html (accessed 2023-09-13).
Melo M. C. R.; Bernardi R. C.; Rudack T.; Scheurer M.; Riplinger C.; Phillips J. C.; Maia J. D. C.; Rocha G. B.; Ribeiro J. V.; Stone J. E.; Neese F.; Schulten K.; Luthey-Schulten Z. NAMD Goes Quantum: An Integrative Suite for Hybrid Simulations. Nat. Meth. 2018, 15, 351–354. 10.1038/nmeth.4638. PubMed DOI PMC
Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Stewart J. J. MOPAC: A Semiempirical Molecular Orbital Program. J. Comp.-Aided Mol. Design 1990, 4, 1–103. 10.1007/BF00128336. PubMed DOI
Mroginski M.-A.; Adam S.; Amoyal G. S.; Barnoy A.; Bondar A.-N.; Borin V. A.; Church J. R.; Domratcheva T.; Ensing B.; Fanelli F.; et al. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem. Photobiol. 2021, 97, 243–269. 10.1111/php.13372. PubMed DOI PMC
Nielsen C.; Nørby M. S.; Kongsted J.; Solov’yov I. A. Absorption Spectra of FAD Embedded in Cryptochromes. J. Phys. Chem. Lett. 2018, 9, 3618–3623. 10.1021/acs.jpclett.8b01528. PubMed DOI
Reese A.; List N. H.; Kongsted J.; Solov’yov I. A. How Far Does a Receptor Influence Vibrational Properties of an Odorant?. PLoS One 2016, 11, e015234510.1371/journal.pone.0152345. PubMed DOI PMC
Shaik S.; Cohen S.; Wang Y.; Chen H.; Kumar D.; Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity–Modeled by QM/MM Calculations. Chem. Rev. 2010, 110, 949–1017. 10.1021/cr900121s. PubMed DOI
Gomes A. S. P.; Jacob C. R. Quantum-Chemical Embedding Methods for Treating Local Electronic Excitations in Complex Chemical Systems. Ann. Rep. Sect. C (Phys. Chem.) 2012, 108, 222–277. 10.1039/c2pc90007f. DOI
Dinh P. M.; Reinhard P. G.; Suraud E. Dynamics of Clusters and Molecules in Contact with an Environment. Phys. Rep. 2010, 485, 43–107. 10.1016/j.physrep.2009.07.006. DOI
Lopes P. E. M.; Roux B.; MacKerell Jr. A. D. Molecular Modeling and Dynamics Studies with Explicit Inclusion of Electronic Polarizability: Theory and Applications. Theor. Chem. Acc. 2009, 124, 11–28. 10.1007/s00214-009-0617-x. PubMed DOI PMC
Macías Labrada I. M.; Estévez Baños L. I.; Codorniu Pujals D.; Márquez Mijares M. Carbon Nanotubes with Point Defects Produced by Ionizing Radiation: A Study Using DFTB. Eur. Phys. J. D 2023, 77, 153.10.1140/epjd/s10053-023-00735-0. DOI
Elstner M.; Frauenheim T.; Suhai S. An Approximate DFT Method for QM/MM Simulations of Biological Structures and Processes. J. Mol. Struct. THEOCHEM 2003, 632, 29–41. 10.1016/S0166-1280(03)00286-0. DOI
Masson F.; Laino T.; Rothlisberger U.; Hutter J. A QM/MM Investigation of Thymine Dimer Radical Anion Splitting Catalyzed by DNA Photolyase. ChemPhysChem 2009, 10, 400–410. 10.1002/cphc.200800624. PubMed DOI
Maity S.; Bold B. M.; Prajapati J. D.; Sokolov M.; Kubař T.; Elstner M.; Kleinekathöfer U. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex. J. Phys. Chem. Lett. 2020, 11, 8660–8667. 10.1021/acs.jpclett.0c02526. PubMed DOI
Kubař T.; Welke K.; Groenhof G. New QM/MM Implementation of the DFTB3 Method in the Gromacs Package. J. Comput. Chem. 2015, 36, 1978–1989. 10.1002/jcc.24029. PubMed DOI
Bold B. M.; Sokolov M.; Maity S.; Wanko M.; Dohmen P. M.; Kranz J. J.; Kleinekathöfer U.; Höfener S.; Elstner M. Benchmark and Performance of Long-Range Corrected Time-Dependent Density Functional Tight Binding (LC-TD-DFTB) on Rhodopsins and Light-Harvesting Complexes. Phys. Chem. Chem. Phys. 2020, 22, 10500–10518. 10.1039/C9CP05753F. PubMed DOI
Maity S.; Sarngadharan P.; Daskalakis V.; Kleinekathöfer U. Time-Dependent Atomistic Simulations of the CP29 Light-Harvesting Complex. J. Chem. Phys. 2021, 155, 05510310.1063/5.0053259. PubMed DOI
Maity S.; Daskalakis V.; Elstner M.; Kleinekathöfer U. Multiscale QM/MM Molecular Dynamics Simulations of the Trimeric Major Light-Harvesting Complex II. Phys. Chem. Chem. Phys. 2021, 23, 7407–7417. 10.1039/D1CP01011E. PubMed DOI
Multiscale Dynamics Simulations: Nano and Nano-bio Systems in Complex Environments, Vol. 22; Salahub D. R., Wei D., Eds.; Royal Society of Chemistry: Cambridge, UK, 2021.
Humeniuk A.Methods for Simulating Light-Induced Dynamics in Large Molecular Systems. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2018.
Brunk E.; Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem. Rev. 2015, 115, 6217–6263. 10.1021/cr500628b. PubMed DOI
Kubař T.; Gutiérrez R.; Kleinekathöfer U.; Cuniberti G.; Elstner M. Modeling Charge Transport in DNA Using Multi-scale Methods. Phys. Stat. Sol. (b) 2013, 250, 2277–2287. 10.1002/pssb.201349148. DOI
Kubař T.; Elstner M. Coarse-Grained Time-Dependent Density Functional Simulation of Charge Transfer in Complex Systems: Application to Hole Transfer in DNA. J. Phys. Chem. B 2010, 114, 11221–11240. 10.1021/jp102814p. PubMed DOI
Yusef Buey M.; Mineva T.; Rapacioli M. Coupling Density Functional Based Tight Binding with Class 1 Force Fields in a Hybrid QM/MM Scheme. Theor. Chem. Acc. 2022, 141, 16.10.1007/s00214-022-02878-6. DOI
Paris A.; Taioli S. Multiscale Investigation of Oxygen Vacancies in TiO2 Anatase and Their Role in Memristor’s Behavior. J. Phys. Chem. C 2016, 120, 22045–22053. 10.1021/acs.jpcc.6b07196. DOI
Malerba L.; Caturla M. J.; Gaganidze E.; Kaden C.; Konstantinović M. J.; Olsson P.; Robertson C.; Rodney D.; Ruiz-Moreno A. M.; Serrano M.; et al. Multiscale Modelling for Fusion and Fission Materials: The M4F Project. Nucl. Mater. Energy 2021, 29, 10105110.1016/j.nme.2021.101051. DOI
Seabra G. de M.; Walker R. C.; Elstner M.; Case D. A.; Roitberg A. E. Implementation of the SCC-DFTB Method for Hybrid QM/MM Simulations within the Amber Molecular Dynamics Package. J. Phys. Chem. A 2007, 111, 5655–5664. 10.1021/jp070071l. PubMed DOI PMC
Feng S.; Guo F.; Yuan C.; Cheng X.; Wang Y.; Zhang H.; Chen J.; Su L. Effect of Neutron Irradiation on Structure and Decomposition of α-RDX: A ReaxFF Molecular Dynamics Study. Comput. Theor. Chem. 2023, 1219, 11396510.1016/j.comptc.2022.113965. DOI
Nagaya K.; Motomura K.; Kukk E.; Takahashi Y.; Yamazaki K.; Ohmura S.; Fukuzawa H.; Wada S.; Mondal S.; Tachibana T.; et al. Femtosecond Charge and Molecular Dynamics of I-containing Organic Molecules Induced by Intense X-ray Free-Electron Laser Pulses. Faraday Disc. 2016, 194, 537–562. 10.1039/C6FD00085A. PubMed DOI
Rödl M.; Kerschbaumer S.; Kopacka H.; Blaser L.; Purtscher F. R. S.; Huppertz H.; Hofer T. S.; Schwartz H. A. Structural, Dynamical, and Photochemical Properties of Ortho-tetrafluoroazobenzene Inside a Flexible MOF Under Visible Light Irradiation. RSC Adv. 2021, 11, 3917–3930. 10.1039/D0RA10500G. PubMed DOI PMC
Cui Q.; Elstner M.; Kaxiras E.; Frauenheim T.; Karplus M. A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method. J. Phys. Chem. B 2001, 105, 569–585. 10.1021/jp0029109. DOI
Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitricǎ T.; Dominguez A.; et al. DFTB+, A Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations. J. Chem. Phys. 2020, 152, 12410110.1063/1.5143190. PubMed DOI
Galván I. Fdez.; Vacher M.; Alavi A.; Angeli C.; Aquilante F.; Autschbach J.; Bao J. J.; Bokarev S. I.; Bogdanov N. A.; Carlson R. K.; et al. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. 10.1021/acs.jctc.9b00532. PubMed DOI
Sjulstok E.; Lüdemann G.; Kubař T.; Elstner M.; Solov’yov I. A. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome. Biophys. J. 2018, 114, 2563–2572. 10.1016/j.bpj.2018.04.014. PubMed DOI PMC
Lüdemann G.; Solov’yov I. A.; Kubař T.; Elstner M. Solvent Driving Force Ensures Fast Formation of a Persistent and Well-Separated Radical Pair in Plant Cryptochrome. J. Am. Chem. Soc. 2015, 137, 1147–1156. 10.1021/ja510550g. PubMed DOI
Timmer D.; Frederiksen A.; Lünemann D. C.; Thomas A. R.; Xu J.; Bartölke R.; Schmidt J.; Kubař T.; De Sio A.; Solov’yov I. A.; Mouritsen H.; Lienau C. Tracking the Electron Transfer Cascade in European Robin Cryptochrome 4 Mutants. J. Am. Chem. Soc. 2023, 145, 11566–11578. 10.1021/jacs.3c00442. PubMed DOI PMC
Yagi K.; Ito S.; Sugita Y. Exploring the Minimum-Energy Pathways and Free-Energy Profiles of Enzymatic Reactions with QM/MM Calculations. J. Phys. Chem. B 2021, 125, 4701–4713. 10.1021/acs.jpcb.1c01862. PubMed DOI PMC
Guo L.; Qi C.; Zheng X.; Zhang R.; Shen X.; Kaya S. Toward Understanding the Adsorption Mechanism of Large Size Organic Corrosion Inhibitors on an Fe(110) Surface Using the DFTB Method. RSC Adv. 2017, 7, 29042–29050. 10.1039/C7RA04120A. DOI
Murmu M.; Saha S. K.; Guo L.; Murmu N. C.; Banerjee P. Intrinsic Electronic Property and Adsorption of Organic Molecules on Specific Iron Surface: An ab initio DFT and DFTB Study. J. Adhes. Sci. Technol. 2023, 37, 1837–1855. 10.1080/01694243.2022.2097580. DOI
Nénon S.; Champagne B. SCC-DFTB Calculation of the Static First Hyperpolarizability: From Gas Phase Molecules to Functionalized Surfaces. J. Chem. Phys. 2013, 138, 20410710.1063/1.4806259. PubMed DOI
Xu S. C.; Irle S.; Musaev D. G.; Lin M. C. Quantum Chemical Study of the Dissociative Adsorption of OH and H2O on Pristine and Defective Graphite (0001) Surfaces: Reaction Mechanisms and Kinetics. J. Phys. Chem. C 2007, 111, 1355–1365. 10.1021/jp066142i. DOI
Goyal P.; Qian H.-J.; Irle S.; Lu X.; Roston D.; Mori T.; Elstner M.; Cui Q. Molecular Simulation of Water and Hydration Effects in Different Environments: Challenges and Developments for DFTB Based Models. J. Phys. Chem. B 2014, 118, 11007–11027. 10.1021/jp503372v. PubMed DOI PMC
Barone V.; Carnimeo I.; Scalmani G. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach. J. Chem. Theory Comput. 2013, 9, 2052–2071. 10.1021/ct301050x. PubMed DOI
Bursch M.; Caldeweyher E.; Hansen A.; Neugebauer H.; Ehlert S.; Grimme S. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Acc. Chem. Res. 2019, 52, 258–266. 10.1021/acs.accounts.8b00505. PubMed DOI
Ehrlich S.; Moellmann J.; Grimme S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Acc. Chem. Res. 2013, 46, 916–926. 10.1021/ar3000844. PubMed DOI
Brandenburg J. G.; Grimme S. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). J. Phys. Chem. Lett. 2014, 5, 1785–1789. 10.1021/jz500755u. PubMed DOI
Miriyala V. M.; Řezáč J. Description of Non-Covalent Interactions in SCC-DFTB Methods. J. Comput. Chem. 2017, 38, 688–697. 10.1002/jcc.24725. PubMed DOI
Gómez-Flores C. L.; Maag D.; Kansari M.; Vuong V.-Q.; Irle S.; Gräter F.; Kubař T.; Elstner M. Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology. J. Chem. Theory Comput. 2022, 18, 1213–1226. 10.1021/acs.jctc.1c00811. PubMed DOI
Marx D.; Hutter J.. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press, Cambridge, UK, 2009.
Tuckerman M. E. Ab initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications. J. Phys.: Condens. Matter 2002, 14, R1297–R1355. 10.1088/0953-8984/14/50/202. DOI
Iftimie R.; Minary P.; Tuckerman M. E. Ab initio Molecular Dynamics: Concepts, Recent Developments, and Future Trends. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6654–6659. 10.1073/pnas.0500193102. PubMed DOI PMC
Barnett R. N.; Landman U. Born-Oppenheimer Molecular-Dynamics Simulations of Finite Systems: Structure and Dynamics of (H2O)2. Phys. Rev. B 1993, 48, 2081–2097. 10.1103/PhysRevB.48.2081. PubMed DOI
Niklasson A. M. N.; Negre C. F. A. Shadow Energy Functionals and Potentials in Born–Oppenheimer Molecular Dynamics. J. Chem. Phys. 2023, 158, 15410510.1063/5.0146431. PubMed DOI
Worth G. A.; Cederbaum L. S. Beyond Born-Oppenheimer: Molecular Dynamics Through a Conical Intersection. Annu. Rev. Phys. Chem. 2004, 55, 127–158. 10.1146/annurev.physchem.55.091602.094335. PubMed DOI
Kirrander A.; Vacher M.. Ehrenfest Methods for Electron and Nuclear Dynamics. In Quantum Chemistry and Dynamics of Excited States: Methods and Applications; González L., Lindh R., Eds.; John Wiley & Sons Ltd., 2020; pp 469–497.
Car R.; Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474. 10.1103/PhysRevLett.55.2471. PubMed DOI
Hutter J. Car-Parrinello Molecular Dynamics. WIREs Comput. Mol. Sci. 2012, 2, 604–612. 10.1002/wcms.90. DOI
Gonze X.; Beuken J.-M.; Caracas R.; Detraux F.; Fuchs M.; Rignanese G.-M.; Sindic L.; Verstraete M.; Zerah G.; Jollet F.; et al. First-Principles Computation of Material Properties: The ABINIT Software Project. Comput. Mater. Sci. 2002, 25, 478–492. 10.1016/S0927-0256(02)00325-7. DOI
Clark S. J.; Segall M. D.; Pickard C. J.; Hasnip P. J.; Probert M. J.; Refson K.; Payne M. C. First Principles Methods Using CASTEP. Z. Kristallogr. 2005, 220, 567–570. 10.1524/zkri.220.5.567.65075. DOI
Klöffel T.; Mathias G.; Meyer B. Integrating State of the Art Compute, Communication, and Autotuning Strategies to Multiply the Performance of Ab Initio Molecular Dynamics on Massively Parallel Multi-Core Supercomputers. Comput. Phys. Commun. 2021, 260, 10774510.1016/j.cpc.2020.107745. DOI
Ojanperä A.; Havu V.; Lehtovaara L.; Puska M. Nonadiabatic Ehrenfest Molecular Dynamics Within the Projector Augmented-Wave Method. J. Chem. Phys. 2012, 136, 14410310.1063/1.3700800. PubMed DOI
Andrade X.; Alberdi-Rodriguez J.; Strubbe D. A.; Oliveira M. J.; Nogueira F.; Castro A.; Muguerza J.; Arruabarrena A.; Louie S. G.; Aspuru-Guzik A.; Rubio A.; Marques M. A. Time-Dependent Density-Functional Theory in Massively Parallel Computer Architectures: The OCTOPUS Project. J. Phys.: Condens. Matter 2012, 24, 23320210.1088/0953-8984/24/23/233202. PubMed DOI
Soler J. M.; Artacho E.; Gale J. D.; García A.; Junquera J.; Ordejón P.; Sánchez-Portal D. The SIESTA Method for Ab Initio Order-N Materials Simulation. J. Phys.: Condens. Matter 2002, 14, 2745–2779. 10.1088/0953-8984/14/11/302. DOI
Andreoni W.; Marx D.; Sprik M. Editorial: A Tribute to Michele Parrinello: From Physics via Chemistry to Biology. ChemPhysChem 2005, 6, 1671–1676. 10.1002/cphc.200500427. PubMed DOI
Boero M.; Oshiyama A.. Car-Parrinello Molecular Dynamics. In Encyclopedia of Nanotechnology; Bhushan B., Ed.; Springer, 2015; pp 1–10.
van Duin A. C. T.; Dasgupta S.; Lorant F.; Goddard W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. 10.1021/jp004368u. DOI
Senftle T. P.; Hong S.; Islam M. M.; Kylasa S. B.; Zheng Y.; Shin Y. K.; Junkermeier C.; Engel-Herbert R.; Janik M. J.; Aktulga H. M.; Verstraelen T.; Grama A.; van Duin A. C. T. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. npj Comput. Mater. 2016, 2, 1501110.1038/npjcompumats.2015.11. DOI
Russo Jr. M. F.; van Duin A. C. T. Atomistic-Scale Simulations of Chemical Reactions: Bridging From Quantum Chemistry to Engineering. Nucl. Instrum. Meth. B 2011, 269, 1549–1554. 10.1016/j.nimb.2010.12.053. DOI
ReaxxFF Manual, Amsterdam Modeling Suite 2024.1; SCM, 2024. https://www.scm.com/doc/ReaxFF/_downloads/af5ba007160596ded1785a11e54b6c8b/ReaxFF.pdf.
Shchygol G.; Yakovlev A.; Trnka T.; van Duin A. C. T.; Verstraelen T. ReaxFF Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines and Insights. J. Chem. Theory Comput. 2019, 15, 6799–6812. 10.1021/acs.jctc.9b00769. PubMed DOI
te Velde G.; Bickelhaupt F. M.; Baerends E. J.; Fonseca Guerra C.; van Gisbergen S. J. A.; Snijders J. G.; Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. 10.1002/jcc.1056. DOI
Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V. Classical Molecular Dynamics Simulations of Fusion and Fragmentation in Fullerene–Fullerene Collisions. Eur. Phys. J. D 2017, 71, 212.10.1140/epjd/e2017-80117-7. DOI
de Vera P.; Verkhovtsev A.; Sushko G.; Solov’yov A. V. Reactive Molecular Dynamics Simulations of Organometallic Compound W(CO)6 Fragmentation. Eur. Phys. J. D 2019, 73, 215.10.1140/epjd/e2019-100232-9. DOI
Andreides B.; Verkhovtsev A. V.; Fedor J.; Solov’yov A. V. Role of the Molecular Environment in Quenching the Irradiation-Driven Fragmentation of Fe(CO)5: A Reactive Molecular Dynamics Study. J. Phys. Chem. A 2023, 127, 3757–3767. 10.1021/acs.jpca.2c08756. PubMed DOI PMC
Verkhovtsev A. V.; Solov’yov I. A.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics: A Review. Eur. Phys. J. D 2021, 75, 213.10.1140/epjd/s10053-021-00223-3. DOI
Ebel D. S.; Ghiorso M. S.; Sack R. O.; Grossman L. Gibbs Energy Minimization in Gas + Liquid + Solid Systems. J. Comput. Chem. 2000, 21, 247–256. 10.1002/(SICI)1096-987X(200003)21:4<247::AID-JCC1>3.0.CO;2-J. DOI
de Nevers N.Physical and Chemical Equilibrium for Chemical Engineers; John Wiley & Sons, Inc., 2012.
Thermodynamic Databases. Thermo-Calc Software. https://thermocalc.com/products/databases/ (accessed 2023-09-15).
The Thermodynamic Reference Database (THEREDA). https://www.thereda.de/en (accessed 2023-09-15).
Blasco M.; Gimeno M. J.; Auqué L. F. Comparison of Different Thermodynamic Databases used in a Geothermometrical Modelling Calculation. Procedia Earth Planet. Sci. 2017, 17, 120–123. 10.1016/j.proeps.2016.12.023. DOI
Kaufman L.; Bernstein H.. Computer Calculation of Phase Diagrams; Academic Press: New York, NY, 1970.
Liu Z.-K.; Yi W.. Computational Thermodynamics of Materials; Cambridge University Press, 2016.
Müller B.ChemEQL – A Software for the Calculation of Chemical Equilibria. Eawag - Swiss Federal Institute of Aquatic Science and Technology, n.d. https://www.eawag.ch/en/department/surf/projects/chemeql/ (accessed 2023-09-15).
MINEQL+ Homepage. https://www.mineql.com/ (accessed 2023-09-15).
Visual MINTEQ Homepage. https://vminteq.com (accessed 2023-09-15).
Voter A. F. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events. Phys. Rev. Lett. 1997, 78, 3908–3911. 10.1103/PhysRevLett.78.3908. DOI
Miron R. A.; Fichthorn K. A. Accelerated Molecular Dynamics with the Bond-Boost Method. J. Chem. Phys. 2003, 119, 6210–6216. 10.1063/1.1603722. DOI
Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Modeling MesoBioNano Systems with MBN Studio Made Easy. J. Mol. Graph. Model. 2019, 88, 247–260. 10.1016/j.jmgm.2019.02.003. PubMed DOI
PyMOL Homepage. https://pymol.org/ (accessed 2023-09-16).
Liu G. R.; Quek S. S.. The Finite Element Method: A Practical Course, 2nd ed.; Elsevier, 2014.
Whiteley J.Finite Element Methods: A Practical Guide; Springer, 2017.
Ataei H.; Mamaghani M.. Finite Element Analysis Applications and Solved Problems using ABAQUS; CreateSpace Independent Publishing Platform, 2017.
Boulbes R. J.Troubleshooting Finite-Element Modeling with Abaqus; Springer, 2020.
EIC-Pathfinder Project “Emerging Technologies for Crystal-Based Gamma-Ray Light Sources” (TECHNO-CLS). MBN Research Center. https://www.mbnresearch.com/TECHNO-CLS/Main (accessed 2023-10-26)
Han B.; Isborn C. M.; Shi L. Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models. J. Chem. Theory Comput. 2021, 17, 889–901. 10.1021/acs.jctc.0c01102. PubMed DOI
Bleiziffer P.; Schaller K.; Riniker S. Machine Learning of Partial Charges Derived From High-Quality Quantum-Mechanical Calculations. J. Chem. Inf. Model. 2018, 58, 579–590. 10.1021/acs.jcim.7b00663. PubMed DOI
Müser M. H.; Sukhomlinov S. V.; Pastewka L. Interatomic Potentials: Achievements and Challenges. Adv. Phys. X 2023, 8, 209312910.1080/23746149.2022.2093129. DOI
Elstner M.; Porezag D.; Jungnickel G.; Elsner J.; Haugk M.; Frauenheim T.; Suhai S.; Seifert G. Self-Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Complex Materials Properties. Phys. Rev. B 1998, 58, 7260–7268. 10.1103/PhysRevB.58.7260. DOI
Vennelakanti V.; Nazemi A.; Mehmood R.; Steeves A. H.; Kulik H. J. Harder, Better, Faster, Stronger: Large-scale QM and QM/MM for Predictive Modeling in Enzymes and Proteins. Curr. Opin. Struct. Biol. 2022, 72, 9–17. 10.1016/j.sbi.2021.07.004. PubMed DOI
Kubař T.; Elstner M.; Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu. Rev. Biophys. 2023, 52, 525–551. 10.1146/annurev-biophys-111622-091140. PubMed DOI PMC
Kulik H. J.; Zhang J.; Klinman J. P.; Martinez T. J. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. J. Phys. Chem. B 2016, 120, 11381–11394. 10.1021/acs.jpcb.6b07814. PubMed DOI PMC
Jindal G.; Warshel A. Exploring the Dependence of QM/MM Calculations of Enzyme Catalysis on the Size of the QM Region. J. Phys. Chem. B 2016, 120, 9913–9921. 10.1021/acs.jpcb.6b07203. PubMed DOI PMC
Das S.; Nam K.; Major D. T. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical–Molecular Mechanical Simulations of Proton Transfer in DNA. J. Chem. Theory Comput. 2018, 14, 1695–1705. 10.1021/acs.jctc.7b00964. PubMed DOI
Azzolini M.; Angelucci M.; Cimino R.; Larciprete R.; Pugno N. M.; Taioli S.; Dapor M. Secondary Electron Emission and Yield Spectra of Metals from Monte Carlo Simulations and Experiments. J. Phys.: Condens. Matter 2019, 31, 05590110.1088/1361-648X/aaf363. PubMed DOI
Solov’yov I. A.; Prosvetov A.; Sushko G.; Solov’yov A. V.. Book of Abstracts, The Second Conference “Multiscale Irradiation and Chemistry Driven Processes and Related Technologies”. Book of Abstracts, 2023; p 26.
Moskovkin P.; Panshenskov M.; Lucas S.; Solov’yov A. V. Simulation of Nanowire Fragmentation By Means of Kinetic Monte Carlo Approach: 2D Case. Phys. Stat. Sol. B 2014, 251, 1456–1462. 10.1002/pssb.201350376. DOI
Yakubovich A. V.; Solov’yov I. A.; Solov’yov A. V.; Greiner W. Phase Transition in Polypeptides: A Step Towards the Understanding of Protein Folding. Eur. Phys. J. D 2006, 40, 363–367. 10.1140/epjd/e2006-00241-9. DOI
Yakubovich A. V.; Solov’yov I. A.; Solov’yov A. V.; Greiner W. Ab initio Theory of Helix ↔Coil Phase Transition. Eur. Phys. J. D 2008, 46, 215–225. 10.1140/epjd/e2007-00328-9. DOI
Solov’yov I. A.; Yakubovich A. V.; Solov’yov A. V.; Greiner W. α-Helix ↔Random Coil Phase Transition: Analysis of Ab Initio Theory Predictions. Eur. Phys. J. D 2008, 46, 227–240. 10.1140/epjd/e2007-00327-x. DOI
Yakubovich A. V.; Solov’yov A. V. Quantitative Thermodynamic Model for Globular Protein Folding. Eur. Phys. J. D 2014, 68, 145.10.1140/epjd/e2014-50097-3. DOI
Landau L. D.; Lifshitz E. M.. Fluid Mechanics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1987.
Zel’dovich Y. B.; Raiser Y. P.. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Academic Press: New York, NY, 1966.
Surdutovich E.; Solov’yov A. V. Cell Survival Probability in a Spread-Out Bragg Peak for Novel Treatment Planning. Eur. Phys. J. D 2017, 71, 210.10.1140/epjd/e2017-80120-0. DOI
Winkler R.; Fowlkes J. D.; Rack P. D.; Plank H. 3D Nanoprinting via Focused Electron Beams. J. Appl. Phys. 2019, 125, 21090110.1063/1.5092372. DOI
Plank H.; Winkler R.; Schwalb C. H.; Hütner J.; Fowlkes J. D.; Rack P. D.; Utke I.; Huth M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2020, 11, 48.10.3390/mi11010048. PubMed DOI PMC
Fleming I.; Williams D.. Spectroscopic Methods in Organic Chemistry, 7th ed.; Springer, 2019.
Molecular Spectroscopy – Experiment and Theory: From Molecules to Functional Materials; Koleżyński A., Król M., Eds. Springer, 2018219.
Svanberg S.Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications, 5th ed.; Springer, 2022.
Cramer S. P.X-Ray Spectroscopy with Synchrotron Radiation: Fundamentals and Applications; Springer, 2020.
Advances in Spectroscopic Monitoring of the Atmosphere; Chen W., Venables D. S., Sigrist M. W., Eds. Elsevier, 2021.
Protopopov V.Spectroscopic Techniques For Semiconductor Industry; World Scientific Publishing: Singapore, 2022.
Tennyson J.Astronomical Spectroscopy: An Introduction to the Atomic and Molecular Physics of Astronomical Spectroscopy, 3rd ed.; World Scientific Publishing Europe: London, UK, 2019.
VAMDC Portal. https://portal.vamdc.org/vamdc_portal/home.seam (accessed 2023-10-18).
Albert D.; Antony B. K.; Ba Y. A.; Babikov Y. L.; Bollard P.; Boudon V.; Delahaye F.; Del Zanna G.; Dimitrijević M. S.; Drouin B. J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76.10.3390/atoms8040076. DOI
VESPA (Virtual European Solar and Planetary Access) Portal. https://vespa.obspm.fr/planetary/data/ (accessed 2023-10-18).
Cavity Ring-Down Spectroscopy: Techniques and Applications; Giel Berden R. E., Ed.; Blackwell Publishing: Chichester, UK, 2009.
Maiuri M.; Garavelli M.; Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J. Am. Chem. Soc. 2020, 142, 3–15. 10.1021/jacs.9b10533. PubMed DOI
Fabrikant I. I.; Shpenik O. B.; Snegursky A. V.; Zavilopulo A. N. Electron Impact Formation of Metastable Atoms. Phys. Rep. 1988, 159, 1–97. 10.1016/0370-1573(88)90164-0. DOI
Brydson R.Electron Energy Loss Spectroscopy, 1st ed.; Garland Science: London, UK, 2001.
Ibach H.; Mills D. L.. Electron Energy Loss Spectroscopy and Surface Vibration; Academic Press: New York, NY, 1982.
Mason N. J.; Dawes A.; Holtom P. D.; Mukerji R. J.; Davis M. P.; Sivaraman B.; Kaiser R. I.; Hoffmann S. V.; Shaw D. A. VUV Spectroscopy and Photo-Processing of Astrochemical Ices: An Experimental Study. Faraday Discus 2006, 133, 311–329. 10.1039/b518088k. PubMed DOI
Hüfner S.Photoelectron Spectroscopy: Principles and Applications, 3rd ed.; Springer, 2003.
Whitten J. E. Ultraviolet Photoelectron Spectroscopy: Practical Aspects and Best Practices. Appl. Surf. Sci. Adv. 2023, 13, 10038410.1016/j.apsadv.2023.100384. DOI
van der Heide P.X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices; John Wiley & Sons, Hoboken, NJ, 2012.
Leading Edge Techniques in Forensic Trace Evidence Analysis: More New Trace Analysis Methods; Blackledge R. D., Ed.; John Wiley & Sons, 2023.
de Hoffmann E.; Stroobant V.. Mass Spectrometry: Principles and Applications, 3rd ed.; John Wiley & Sons, 2007.
Gross J. H.Mass Spectrometry: A Textbook, 3rd ed.; Springer, 2017.
McCullagh J.; Oldham N.. Mass Spectrometry; Oxford University Press: Oxford, UK, 2019.
Mass Spectrometry Applications Areas. ThermoFisher Scientific. https://www.thermofisher.com/de/de/home/industrial/mass-spectrometry/mass-spectrometry-learning-center/mass-spectrometry-applications-area.html (accessed 2023-10-18).
Leseigneur G.; Bredehöft J. H.; Gautier T.; Giri C.; Krüger H.; MacDermott A. J.; Meierhenrich U. J.; Caro G. M. M.; Raulin F.; Steele A.; et al. ESA’s Cometary Mission Rosetta – Re-Characterization of the COSAC Mass Spectrometry Results. Angew. Chem., Int. Ed. 2022, 61, e20220192510.1002/anie.202201925. PubMed DOI PMC
Altwegg K.; Balsiger H.; Berthelier J. J.; Bieler A.; Calmonte U.; Fuselier S. A.; Goesmann F.; Gasc S.; Gombosi T. I.; Le Roy L.; et al. Organics in Comet 67P – A First Comparative Analysis of Mass Spectra From ROSINA–DFMS, COSAC and Ptolemy. Mon. Not. R. Astron. Soc. 2017, 469, S130–S141. 10.1093/mnras/stx1415. DOI
Hübschmann H.-J.Handbook of GC-MS: Fundamentals and Applications; Wiley-VCH Verlag, 2015.
Tegami S.; Bello S. D.; Luan S.; Mairani A.; Parodi K.; Holzscheiter M. H. LET Monitoring Using Liquid Ionization Chambers. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 2017, 6, 197–207. 10.4236/ijmpcero.2017.62018. DOI
Bauer P. How to Measure Absolute Stopping Cross Sections by Backscattering and by Transmission Methods: Part I. Backscattering. Nucl. Instrum. Meth. B 1987, 27, 301–314. 10.1016/0168-583X(87)90569-6. DOI
Mertens P. How to Measure Absolute Stopping Cross Sections by Backscattering and by Transmission Methods: Part II. Transmission. Nucl. Instrum. Meth. B 1987, 27, 315–322. 10.1016/0168-583X(87)90570-2. DOI
Räisänen J.; Wätjen U.; Plompen A. J. M.; Munnik F. Stopping Power Determinations by the Transmission Technique. Nucl. Instrum. Meth. B 1996, 118, 1–6. 10.1016/0168-583X(95)01185-4. DOI
Mertens P.; Bauer P.; Semrad D. Proton Stopping Powers in Al, Ni, Cu, Ag and Au Measured Comparatively on Identical Targets in Backscattering and Transmission Geometry. Nucl. Instrum. Meth. B 1986, 15, 91–95. 10.1016/0168-583X(86)90260-0. DOI
Fontana C. L.; Chen C.-H.; Crespillo M. L.; Graham J. T.; Xue H.; Zhang Y.; Weber W. J. Stopping Power Measurements with the Time-of-Flight (ToF) Technique. Nucl. Instrum. Meth. B 2016, 366, 104–116. 10.1016/j.nimb.2015.10.048. DOI
Sihver L.; Schardt D.; Kanai T. Depth-Dose Distributions of High-Energy Carbon, Oxygen and Neon Beams in Water. Jpn. J. Med. Phys. 1998, 18, 1–21. 10.11323/jjmp1992.18.1_1. DOI
Haettner E.; Iwase H.; Schardt D. Experimental Fragmentation Studies with 12C Therapy Beams. Radiat. Prot. Dosim. 2006, 122, 485–487. 10.1093/rpd/ncl402. PubMed DOI
Schauer J.; Wieser H. P.; Huang Y.; Ruser H.; Lascaud J.; Würl M.; Chmyrov A.; Vidal M.; Herault J.; Ntziachristos V.; Assmann W.; Parodi K.; Dollinger G. Proton Beam Range Verification by Means of Ionoacoustic Measurements at Clinically Relevant Doses Using a Correlation-Based Evaluation. Front. Oncol. 2022, 12, 92554210.3389/fonc.2022.925542. PubMed DOI PMC
Jette D.; Chen W. Creating a Spread-Out Bragg Peak in Proton Beams. Phys. Med. Biol. 2011, 56, N131–N138. 10.1088/0031-9155/56/11/N01. PubMed DOI
Jia S. B.; Romano F.; Cirrone G. A. P.; Cuttone G.; Hadizadeh M. H.; Mowlavi A. A.; Raffaele L. Designing a Range Modulator Wheel to Spread-Out the Bragg Peak for a Passive Proton Therapy Facility. Nucl. Instrum. Meth. A 2016, 806, 101–108. 10.1016/j.nima.2015.10.006. DOI
Stewart K. J.; Elliott A.; Seuntjens J. P. Development of a Guarded Liquid Ionization Chamber for Clinical Dosimetry. Phys. Med. Biol. 2007, 52, 3089–3104. 10.1088/0031-9155/52/11/011. PubMed DOI
Conte V.; Colautti P.; Grosswendt B.; Moro D.; De Nardo L. Track Structure of Light Ions: Experiments and Simulations. New J. Phys. 2012, 14, 09301010.1088/1367-2630/14/9/093010. DOI
Stein J. D.; White F. A. New Method for the Measurement of Electron Yield from Ion Bombardment. J. Appl. Phys. 1972, 43, 2617–2620. 10.1063/1.1661567. DOI
Lohmann S.; Niggas A.; Charnay V.; Holeňák R.; Primetzhofer D. Assessing Electron Emission Induced by Pulsed Ion Beams: A Time-of-Flight Approach. Nucl. Instrum. Meth. B 2020, 479, 217–221. 10.1016/j.nimb.2020.06.026. DOI
Apak R.; Calokerinos A.; Gorinstein S.; Segundo M. A.; Hibbert D. B.; Gülçin I.; Çekiç S. D.; Güçlü K.; Özyürek M.; Çelik S. E.; et al. Methods to Evaluate the Scavenging Activity of Antioxidants Toward Reactive Oxygen and Nitrogen Species (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 87–144. 10.1515/pac-2020-0902. DOI
Zhang K.; Zhao M.; Sun D.-W.; Tiwari B. K Correlation of Plasma Generated Long-Lived Reactive Species in Aqueous and Gas Phases with Different Feeding Gases. Plasma Sources Sci. Technol. 2023, 32, 04501510.1088/1361-6595/acc684. DOI
Kondeti V. S. S. K.; Phan C. Q.; Wende K.; Jablonowski H.; Gangal U.; Granick J. L.; Hunter R. C.; Bruggeman P. J. Long-Lived and Short-Lived Reactive Species Produced by a Cold Atmospheric Pressure Plasma Jet for the Inactivation of Pseudomonas Aeruginosa and Staphylococcus Aureus. Free Radic. Biol. Med. 2018, 124, 275–287. 10.1016/j.freeradbiomed.2018.05.083. PubMed DOI
Mason N. J.; Nair B.; Jheeta S.; Szymańska E. Electron Induced Chemistry: A New Frontier in Astrochemistry. Faraday Discuss. 2014, 168, 235–247. 10.1039/C4FD00004H. PubMed DOI
Strazzulla G.; Palumbo M. E.; Boduch P.; Rothard H. Ion Implantation and Chemical Cycles in the Icy Galilean Satellites. Earth Moon Planets 2023, 127, 2.10.1007/s11038-023-09550-4. DOI
Halliwell B.; Adhikary A.; Dingfelder M.; Dizdaroglu M. Hydroxyl Radical is a Significant Player in Oxidative DNA Damage In Vivo. Chem. Soc. Rev. 2021, 50, 8355–8360. 10.1039/D1CS00044F. PubMed DOI PMC
Schumacher B.; Pothof J.; Vijg J.; Hoeijmakers J. H. J. The Central Role of DNA Damage in the Ageing Process. Nature 2021, 592, 695–703. 10.1038/s41586-021-03307-7. PubMed DOI PMC
Olano L.; Montero I. Energy Spectra of Secondary Electrons in Dielectric Materials by Charging Analysis. Results Phys. 2020, 19, 10345610.1016/j.rinp.2020.103456. DOI
Mehnaz; Yang L. H.; Zou Y. B.; Da B.; Mao S. F.; Li H. M.; Zhao Y. F.; Ding Z. J. A Comparative Study on Monte Carlo Simulations of Electron Emission From Liquid Water. Med. Phys. 2020, 47, 759–771. 10.1002/mp.13913. PubMed DOI
Thiberge S.; Zik O.; Moses E. An Apparatus for Imaging Liquids, Cells, and Other Wet Samples in the Scanning Electron Microscopy. Rev. Sci. Instrum. 2004, 75, 2280–2289. 10.1063/1.1763262. DOI
Joy D. C.; Joy C. S. Scanning Electron Microscope Imaging in Liquids – Some Data on Electron Interactions in Water. J. Microsc. 2006, 221, 84–88. 10.1111/j.1365-2818.2006.01548.x. PubMed DOI
Kaneda M.; Shimizu M.; Hayakawa T.; Iriki Y.; Tsuchida H.; Itoh A. Positive and Negative Cluster Ions From Liquid Ethanol by Fast Ion Bombardment. J. Chem. Phys. 2010, 132, 14450210.1063/1.3367767. PubMed DOI
Kitajima K.; Tsuchida H.; Majima T.; Saito M. Secondary Electron-Induced Biomolecular Fragmentation in Fast Heavy-Ion Irradiation of Microdroplets of Glycine Solution. J. Chem. Phys. 2019, 150, 09510210.1063/1.5081883. PubMed DOI
Nag P.; Ranković M.; Schewe H. C.; Rakovský J.; Sala L.; Kočišek J.; Fedor J. Experimental Setup for Probing Electron-Induced Chemistry in Liquid Micro-Jets. J. Phys. B: At. Mol. Opt. Phys. 2023, 56, 21520110.1088/1361-6455/ad0205. DOI
Knowles K. E.; Koch M. D.; Shelton J. L. Three Applications of Ultrafast Transient Absorption Spectroscopy of Semiconductor Thin Films: Spectroelectrochemistry, Microscopy, and Identification of Thermal Contributions. J. Mater. Chem. C 2018, 6, 11853–11867. 10.1039/C8TC02977F. DOI
Senje L.; Coughlan M.; Jung D.; Taylor M.; Nersisyan G.; Riley D.; Lewis C. L. S.; Lundh O.; Wahlström C.-G.; Zepf M.; Dromey B. Experimental Investigation of Picosecond Dynamics Following Interactions Between Laser Accelerated Protons and Water. Appl. Phys. Lett. 2017, 110, 10410210.1063/1.4977846. DOI
Taylor M.; Coughlan M.; Nersisyan G.; Senje L.; Jung D.; Currell F.; Riley D.; Lewis C. L. S.; Zepf M.; Dromey B. Probing Ultrafast Proton Induced Dynamics in Transparent Dielectrics. Plasma Phys. Control. Fusion 2018, 60, 05400410.1088/1361-6587/aab16c. DOI
Rothemund P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440, 297–302. 10.1038/nature04586. PubMed DOI
Dey S.; Fan C.; Gothelf K. V.; Li J.; Lin C.; Liu L.; Liu N.; Nijenhuis M. A. D.; Saccà B.; Simmel F. C.; et al. DNA Origami. Nat. Rev. Methods Primers 2021, 1, 13.10.1038/s43586-020-00009-8. DOI
Extreme Light Infrastructure Homepage. https://eli-laser.eu/ (accessed 2023-11-15).
Ebel K.; Bald I. Low-Energy (5 – 20 eV) Electron-Induced Single and Double Strand Breaks in Well-Defined DNA Sequences. J. Phys. Chem. Lett. 2022, 13, 4871–4876. 10.1021/acs.jpclett.2c00684. PubMed DOI PMC
Sykes D.Surface Chemical Analysis. In Springer Handbook of Electronic and Photonic Materials, 2nd ed.; Kasap S., Capper P., Eds.; Springer, 2017; pp 413–423.
Erdoğan G.; Güler G.; Kiliç T.; Kiliç D. O.; Erdoğan B.; Tosun Z.; Kivrak H. D.; Türkan U.; Özcan F.; Gürsoy M.; Karaman M.. Surface Characterization Techniques. In Surface Treatments for Biological, Chemical, and Physical Applications; Gürsoy M., Karaman M., Eds.; WILEY-VCH Verlag, 2017; pp 67–114.
Surface Analysis Techniques. ThermoFisher Scientific. https://www.thermofisher.com/de/de/home/materials-science/xps-technology/multi-technique-workflow.html (accessed 2024-02-29).
Krishna D. N. G.; Philip J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Appl. Surf. Sci. Adv. 2022, 12, 10033210.1016/j.apsadv.2022.100332. DOI
Lannon Jr. J. M.; Stinespring C. D.. Auger Electron Spectroscopy in Analysis of Surfaces. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation; Meyers R., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2006; pp 1–15.
Strehblow H.-H. Review – Ion Scattering as a Surface Analytical Tool for the Study of Passive Layers. J. Electrochem. Soc. 2021, 168, 02151010.1149/1945-7111/abdfe2. DOI
Wang Z. L.Reflection Electron Microscopy and Spectroscopy for Surface Analysis; Cambridge University Press: Cambridge, UK, 1996.
Biliškov N. Infrared Spectroscopic Monitoring of Solid-State Processes. Phys. Chem. Chem. Phys. 2022, 24, 19073–19120. 10.1039/D2CP01458K. PubMed DOI
Kudelski A. Raman Spectroscopy of Surfaces. Surf. Sci. 2009, 603, 1328–1334. 10.1016/j.susc.2008.11.039. DOI
Vickerman J. C.; Briggs D.. ToF-SIMS: Materials Analysis by Mass Spectrometry, 2nd ed.; IM Publications: Chichester, UK, 2013.
Vad K.; Csik A.; Langer G. A. Secondary Neutral Mass Spectrometry – A Powerful Technique for Quantitative Elemental and Depth Profiling Analyses of Nanostructures. Spectrosc. Eur. 2009, 21, 13–16.
Ferus M.; Petera L.; Koukal J.; Lenža L.; Drtinová B.; Haloda J.; Matýsek D.; Pastorek A.; Laitl V.; Poltronieri R. C.; et al. Elemental Composition, Mineralogy and Orbital Parameters of the Porangaba Meteorite. Icarus 2020, 341, 11367010.1016/j.icarus.2020.113670. DOI
Kaczmarek K.; Leniart A.; Lapinska B.; Skrzypek S.; Lukomska-Szymanska M. Selected Spectroscopic Techniques for Surface Analysis of Dental Materials: A Narrative Review. Materials 2021, 14, 2624.10.3390/ma14102624. PubMed DOI PMC
Hunter E. E.Practical Electron Microscopy: A Beginner’s Illustrated Guide, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993.
Goldstein J. I.; Newbury D. E.; Michael J. R.; Ritchie N. W. M.; Scott J. H. J.; Joy D. C.. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer, 2017.
Trummer C.; Winkler R.; Plank H.; Kothleitner G.; Haberfehlner G. Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography. ACS Appl. Nano Mater. 2019, 2, 5356–5359. 10.1021/acsanm.9b01390. DOI
Hinum-Wagner J.; Kuhness D.; Kothleitner G.; Winkler R.; Plank H. FEBID 3D-Nanoprinting at Low Substrate Temperatures: Pushing the Speed While Keeping the Quality. Nanomaterials 2021, 11, 1527.10.3390/nano11061527. PubMed DOI PMC
Jurczyk J.; Pillatsch L.; Berger L.; Priebe A.; Madajska K.; Kapusta C.; Szymańska I. B.; Michler J.; Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. Nanomaterials 2022, 12, 2710.10.3390/nano12152710. PubMed DOI PMC
Jiang N. Electron Beam Damage in Oxides: A Review. Rep. Prog. Phys. 2016, 79, 01650110.1088/0034-4885/79/1/016501. PubMed DOI
Egerton R. F.; Li P.; Malac M. Radiation Damage in the TEM and SEM. Micron 2004, 35, 399–409. 10.1016/j.micron.2004.02.003. PubMed DOI
Verkhovtsev A. V.; Erofeev Y.; Solov’yov A. V. Mechanisms of Radiation-Induced Structural Transformations in Deposited Gold Clusters. Phys. Rev. B 2023, 108, 11542310.1103/PhysRevB.108.115423. DOI
Wang Z. W.; Palmer R. E. Determination of the Ground-State Atomic Structures of Size-Selected Au Nanoclusters by Electron-Beam-Induced Transformation. Phys. Rev. Lett. 2012, 108, 24550210.1103/PhysRevLett.108.245502. PubMed DOI
Dearg M.; Roncaglia C.; Nelli D.; El Koraychy E. Y.; Ferrando R.; Slater T. J. A.; Palmer R. E. Frame-By-Frame Observations of Structure Fluctuations in Single Mass-Selected Au Clusters Using Aberration-Corrected Electron Microscopy. Nanoscale Horiz. 2024, 9, 143–147. 10.1039/D3NH00291H. PubMed DOI
Lepore M. A.; Maligno A. R.; Berto F. A Unified Approach to Simulate the Creep-Fatigue Crack Growth in P91 Steel at Elevated Temperature Under SSY and SSC Conditions. Eng. Fail. Anal. 2021, 127, 10556910.1016/j.engfailanal.2021.105569. DOI
Suzuki M.; Funayama T.; Suzuki M.; Kobayashi Y. Radiation-Quality-Dependent Bystander Cellular Effects Induced by Heavy-Ion Microbeams Through Different Pathways. J. Radiat. Res. 2023, 64, 824–832. 10.1093/jrr/rrad059. PubMed DOI PMC
Cheng S.; Cheadle E. J.; Illidge T. M. Understanding the Effects of Radiotherapy on the Tumour Immune Microenvironment to Identify Potential Prognostic and Predictive Biomarkers of Radiotherapy Response. Cancers 2020, 12, 2835.10.3390/cancers12102835. PubMed DOI PMC
Ding Y.; Zhao Z.; Matysik J.; Gärtner W.; Losi A. Mapping the Role of Aromatic Amino Acids Within a Blue-Light Sensing LOV Domain. Phys. Chem. Chem. Phys. 2021, 23, 16767–16775. 10.1039/D1CP02217B. PubMed DOI
Thamarath S. S.; Heberle J.; Hore P. J.; Kottke T.; Matysik J. Solid-State Photo-CIDNP Effect Observed in Phototropin LOV1-C57S by 13C Magic-Angle Spinning NMR Spectroscopy. J. Am. Chem. Soc. 2010, 132, 15542–15543. 10.1021/ja1082969. PubMed DOI
Losi A.; Gardner K. H.; Möglich A. Blue-Light Receptors for Optogenetics. Chem. Rev. 2018, 118, 10659–10709. 10.1021/acs.chemrev.8b00163. PubMed DOI PMC
Kottke T.; Batschauer A.; Ahmad M.; Heberle J. Blue-Light-Induced Changes in Arabidopsis Cryptochrome 1 Probed by FTIR Difference Spectroscopy. Biochemistry 2006, 45, 2472–2479. 10.1021/bi051964b. PubMed DOI
Berlew E. E.; Kuznetsov I. A.; Yamada K.; Bugaj L. J.; Chow B. Y. Optogenetic Rac1 Engineered from Membrane Lipid-Binding RGS-LOV for Inducible Lamellipodia Formation. Photochem. Photobiol. Sci. 2020, 19, 353–361. 10.1039/c9pp00434c. PubMed DOI PMC
Badura A.; Esper B.; Ataka K.; Grunwald C.; Wöll C.; Kuhlmann J.; Heberle J.; Rögner M. Light-Driven Water Splitting for (Bio-)Hydrogen Production: Photosystem 2 as the Central Part of a Bioelectrochemical Device. Photochem. Photobiol. 2006, 82, 1385–1390. 10.1562/2006-07-14-RC-969. PubMed DOI
Krassen H.; Schwarze A.; Friedrich B.; Ataka K.; Lenz O.; Heberle J. Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS Nano 2009, 3, 4055–4061. 10.1021/nn900748j. PubMed DOI
Hore P.; Mouritsen H. The Radical-Pair Mechanism of Magnetoreception. Annu. Rev. Biophys. 2016, 45, 299–344. 10.1146/annurev-biophys-032116-094545. PubMed DOI
Ritz T.; Thalau P.; Phillips J. B.; Wiltschko R.; Wiltschko W. Resonance Effects Indicate a Radical-Pair Mechanism for Avian Magnetic Compass. Nature 2004, 429, 177–180. 10.1038/nature02534. PubMed DOI
Pedersen J. B.; Nielsen C.; Solov’yov I. A. Multiscale Description of Avian Migration: From Chemical Compass to Behaviour Modeling. Sci. Rep. 2016, 6, 3670910.1038/srep36709. PubMed DOI PMC
Grüning G.; Wong S. Y.; Gerhards L.; Schuhmann F.; Kattnig D. R.; Hore P. J.; Solov’yov I. A. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. J. Am. Chem. Soc. 2022, 144, 22902–22914. 10.1021/jacs.2c06233. PubMed DOI
Gerhards L.; Nielsen C.; Kattnig D.; Hore P. J.; Solov’yov I. A. Modeling Spin Relaxation in Complex Radical Systems Using MolSpin. J. Comput. Chem. 2023, 44, 1704–1714. 10.1002/jcc.27120. PubMed DOI
Husen P.; Nielsen C.; Martino C. F.; Solov’yov I. A. Molecular Oxygen Binding in the Mitochondrial Electron Transfer Flavoprotein. J. Chem. Inf. Model. 2019, 59, 4868–4879. 10.1021/acs.jcim.9b00702. PubMed DOI
Moser C. C.; Keske J. M.; Warncke K.; Farid R. S.; Dutton P. L. Nature of Biological Electron Transfer. Nature 1992, 355, 796–802. 10.1038/355796a0. PubMed DOI
de la Lande A.; Babcock N. S.; Rezác J.; Lévy B.; Sanders B. C.; Salahub D. R. Quantum Effects in Biological Electron Transfer. Phys. Chem. Chem. Phys. 2012, 14, 5902–5918. 10.1039/c2cp21823b. PubMed DOI
Solov’yov I. A.; Domratcheva T.; Moughal Shahi A. R.; Schulten K. Decrypting Cryptochrome: Revealing the Molecular Identity of the Photoactivation Reaction. J. Am. Chem. Soc. 2012, 134, 18046–18052. 10.1021/ja3074819. PubMed DOI PMC
Solov’yov I. A.; Domratcheva T.; Schulten K. Separation of Photo-Induced Radical Pair in Cryptochrome to a Functionally Critical Distance. Sci. Rep. 2014, 4, 3845.10.1038/srep03845. PubMed DOI PMC
Gerhards L.; Klüner T. Quantum Chemical Investigation of Photocatalytical Sulfoxidation of Hydrocarbons on TiO2. J. Phys. Chem. C 2021, 125, 13313–13323. 10.1021/acs.jpcc.1c03377. DOI
Gerhards L.; Klüner T. Theoretical Investigation of CH-Bond Activation by Photocatalytic Excited SO2 and the Effects of C-, N-, S-, and Se-doped TiO2. Phys. Chem. Chem. Phys. 2022, 24, 2051–2069. 10.1039/D1CP04335H. PubMed DOI
Frederiksen A.; Teusch T.; Solov’yov I. A.. Quantum Effects in Biological Systems. In Dynamics of Systems on the Nanoscale; Solov’yov I. A., Verkhovtsev A. V., Korol A. V., Solov’yov A. V., Eds.; Springer, 2022; pp 201–247.
Guallar V.; Wallrapp F. Mapping Protein Electron Transfer Pathways with QM/MM Methods. J. R. Soc. Interface 2008, 5, 233–239. 10.1098/rsif.2008.0061.focus. PubMed DOI PMC
Stevens D. R.; Hammes-Schiffer S. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase with QM/MM Free Energy Simulations. J. Am. Chem. Soc. 2018, 140, 8965–8969. 10.1021/jacs.8b05177. PubMed DOI PMC
Ko C.; Hammes-Schiffer S. Charge-Transfer Excited States and Proton Transfer in Model Guanine–Cytosine DNA Duplexes in Water. J. Phys. Chem. Lett. 2013, 4, 2540–2545. 10.1021/jz401144c. DOI
Zeugner A.; Byrdin M.; Bouly J. P.; Bakrim N.; Giovani B.; Brettel K.; Ahmad M. Light-Induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with In Vivo Function. J. Biol. Chem. 2005, 280, 19437–19440. 10.1074/jbc.C500077200. PubMed DOI
Losi A.; Gärtner W. The Evolution of Flavin-Binding Photoreceptors: An Ancient Chromophore Serving Trendy Blue-Light Sensors. Annu. Rev. Plant Biol. 2012, 63, 49–72. 10.1146/annurev-arplant-042811-105538. PubMed DOI
Stepanenko O. V.; Stepanenko O. V.; Shcherbakova D. M.; Kuznetsova I. M.; Turoverov K. K.; Verkhusha V. V. Modern Fluorescent Proteins: From Chromophore Formation to Novel Intracellular Applications. Biotechniques 2011, 51, 313–327. 10.2144/000113765. PubMed DOI PMC
Lax M. The Franck-Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. 10.1063/1.1700283. DOI
Christie J. M. Phototropin Blue-Light Receptors. Annu. Rev. Plant Biol. 2007, 58, 21–45. 10.1146/annurev.arplant.58.032806.103951. PubMed DOI
Briggs W. R.; Beck C. F.; Cashmore A.; Christie J. M.; Hughes J.; Jarillo J. A.; Kagawa T.; Kanegae H.; Liscum E.; Nagatani A.; et al. The Phototropin Family of Photoreceptors. Plant Cell 2001, 13, 993–997. 10.1105/tpc.13.5.993. PubMed DOI PMC
Matysik J.; Gerhards L.; Theiss T.; Timmermann L.; Kurle-Tucholski P.; Musabirova G.; Qin R.; Ortmann F.; Solov’yov I. A.; Gulder T. Spin Dynamics of Flavoproteins. Int. J. Mol. Sci. 2023, 24, 8218.10.3390/ijms24098218. PubMed DOI PMC
van Wonderen J. H.; Adamczyk K.; Wu X.; Jiang X.; Piper S. E. H.; Hall C. R.; Edwards M. J.; Clarke T. A.; Zhang H.; Jeuken L. J. C.; Sazanovich I. V.; Towrie M.; Blumberger J.; Meech S. R.; Butt J. N. Nanosecond Heme-to-Heme Electron Transfer Rates in a Multiheme Cytochrome Nanowire Reported by a Spectrally Unique His/Met-Ligated Heme. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e210793911810.1073/pnas.2107939118. PubMed DOI PMC
Schuhmann F.; Kattnig D. R.; Solov’yov I. A. Exploring Post-Activation Conformational Changes in Pigeon Cryptochrome 4. J. Phys. Chem. B 2021, 125, 9652–9659. 10.1021/acs.jpcb.1c02795. PubMed DOI
Bondanza M.; Nottoli M.; Cupellini L.; Lipparini F.; Mennucci B. Polarizable Embedding QM/MM: The Future Gold Standard for Complex (Bio)systems?. Phys. Chem. Chem. Phys. 2020, 22, 14433–14448. 10.1039/D0CP02119A. PubMed DOI
Lopata K.; Govind N. Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. J. Chem. Theory Comput. 2011, 7, 1344–1355. 10.1021/ct200137z. PubMed DOI
Provorse M. R.; Isborn C. M. Electron Dynamics with Real-Time Time-Dependent Density Functional Theory. Int. J. Quantum Chem. 2016, 116, 739–749. 10.1002/qua.25096. DOI
Pedron F. N.; Issoglio F.; Estrin D. A.; Scherlis D. A. Electron Transfer Pathways from Quantum Dynamics Simulations. J. Chem. Phys. 2020, 153, 22510210.1063/5.0023577. PubMed DOI
Xu J.; Jarocha L. E.; Zollitsch T.; Konowalczyk M.; Henbest K. B.; Richert S.; Golesworthy M. J.; Schmidt J.; Déjean V.; Sowood D. J. C.; et al. Magnetic Sensitivity of Cryptochrome 4 from a Migratory Songbird. Nature 2021, 594, 535–540. 10.1038/s41586-021-03618-9. PubMed DOI
Barragan A. M.; Soudackov A. V.; Luthey-Schulten Z.; Hammes-Schiffer S.; Schulten K.; Solov’yov I. A. Theoretical Description of the Primary Proton-Coupled Electron Transfer Reaction in the Cytochrome bc 1 Complex. J. Am. Chem. Soc. 2021, 143, 715–723. 10.1021/jacs.0c07799. PubMed DOI PMC
Joshi S. Y.; Deshmukh S. A. A Review of Advancements in Coarse-Grained Molecular Dynamics Simulations. Mol. Simul. 2021, 47, 786–803. 10.1080/08927022.2020.1828583. DOI
Boudaïffa B.; Cloutier P.; Hunting D.; Huels M. A.; Sanche L. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science 2000, 287, 1658–1660. 10.1126/science.287.5458.1658. PubMed DOI
Coupier B.; Farizon B.; Farizon M.; Gaillard M. J.; Gobet F.; de Castro Faria N. V.; Jalbert G.; Ouaskit S.; Carré M.; Gstir B.; et al. Inelastic Interactions of Protons and Electrons with Biologically Relevant Molecules. Eur. Phys. J. D 2002, 20, 459–468. 10.1140/epjd/e2002-00166-3. DOI
de Vries J.; Hoekstra R.; Morgenstern R.; Schlathölter T. Charge Driven Fragmentation of Nucleic Acid Bases. Phys. Rev. Lett. 2003, 91, 05340110.1103/PhysRevLett.91.053401. PubMed DOI
Hanel G.; Gstir B.; Denifl S.; Scheier P.; Probst M.; Farizon B.; Farizon M.; Illenberger E.; Märk T. D. Electron Attachment to Uracil: Effective Destruction at Subexcitation Energies. Phys. Rev. Lett. 2003, 90, 18810410.1103/PhysRevLett.90.188104. PubMed DOI
Liu B.; Nielsen S. B.; Hvelplund P.; Zettergren H.; Cederquist H.; Manil B.; Huber B. A. Collision-Induced Dissociation of Hydrated Adenosine Monophosphate Nucleotide Ions: Protection of the Ion in Water Nanoclusters. Phys. Rev. Lett. 2006, 97, 13340110.1103/PhysRevLett.97.133401. PubMed DOI
Milosavljević A. R.; Nicolas C.; Lemaire J.; Dehon C.; Thissen R.; Bizau J.; Réfrégiers M.; Nahon L.; Giuliani A. Photoionization of a Protein Isolated in Vacuo. Phys. Chem. Chem. Phys. 2011, 13, 15432–15436. 10.1039/c1cp21211g. PubMed DOI
González-Magaña O.; Tiemens M.; Reitsma G.; Boschman L.; Door M.; Bari S.; Hoekstra R.; Lahaie P. O.; Wagner J. R.; Huels M. A.; Schlathölter T. Fragmentation of Protonated Oligonucleotides by Energetic Photons, Protons, and Cq+ Ions. Phys. Rev. A 2013, 87, 03270210.1103/PhysRevA.87.032702. DOI
Lalande M.; Schwob L.; Vizcaino V.; Chirot F.; Dugourd P.; Schlathölter T.; Poully J.-C. Direct Radiation Effects on the Structure and Stability of Collagen and Other Proteins. ChemBioChem. 2019, 20, 2972–2980. 10.1002/cbic.201900202. PubMed DOI
Maclot S.; Delaunay R.; Piekarski D. G.; Domaracka A.; Huber B. A.; Adoui L.; Martín F.; Alcamí M.; Avaldi L.; Bolognesi P.; Díaz-Tendero S.; Rousseau P. Determination of Energy-Transfer Distributions in Ionizing Ion–Molecule Collisions. Phys. Rev. Lett. 2016, 117, 07320110.1103/PhysRevLett.117.073201. PubMed DOI
Wang X.; Rathnachalam S.; Zamudio-Bayer V.; Bijlsma K.; Li W.; Hoekstra R.; Kubin M.; Timm M.; von Issendorff B.; Lau J. T.; Faraji S.; Schlathölter T. Intramolecular Hydrogen Transfer in DNA Induced by Site-Selective Resonant Core Excitation. Phys. Chem. Chem. Phys. 2022, 24, 7815–7825. 10.1039/D1CP05741C. PubMed DOI PMC
Palacios A.; Martín F. The Quantum Chemistry of Attosecond Molecular Science. WIREs Comput. Mol. Sci. 2020, 10, e143010.1002/wcms.1430. DOI
West B. A.; Womick J. M.; Moran A. M. Interplay between Vibrational Energy Transfer and Excited State Deactivation in DNA Components. J. Phys. Chem. A 2013, 117, 5865–5874. 10.1021/jp306799e. PubMed DOI
Li W.; Kavatsyuk O.; Douma W.; Wang X.; Hoekstra R.; Mayer D.; Robinson M.; Gühr M.; Lalande M.; Abdelmouleh M.; Ryszka M.; Poully J. C.; Schlathölter T. Charge Reversing Multiple Electron Detachment Auger Decay of Inner-Shell Vacancies in Gas-Phase Deprotonated DNA. Chem. Sci. 2021, 12, 13177–13186. 10.1039/D1SC02885E. PubMed DOI PMC
Hu Y.; Niemeyer C. M. From DNA Nanotechnology to Material Systems Engineering. Adv. Mater. 2019, 31, 180629410.1002/adma.201806294. PubMed DOI
Rajendran A.; Endo M.; Sugiyama H. Single-Molecule Analysis Using DNA Origami. Angew. Chem., Int. Ed. 2012, 51, 874–890. 10.1002/anie.201102113. PubMed DOI
Keller A.; Rackwitz J.; Cauët E.; Liëvin J.; Körzdörfer T.; Rotaru A.; Gothelf K. V.; Besenbacher F.; Bald I. Sequence Dependence of Electron-Induced DNA Strand Breakage Revealed by DNA Nanoarrays. Sci. Rep. 2014, 4, 7391.10.1038/srep07391. PubMed DOI PMC
Sala L.; Zerolová A.; Rodriguez A.; Reimitz D.; Davídková M.; Ebel K.; Bald I.; Kočišek J. Folding DNA into Origami Nanostructures Enhances Resistance to Ionizing Radiation. Nanoscale 2021, 13, 11197–11203. 10.1039/D1NR02013G. PubMed DOI PMC
Sala L.; Lyshchuk H.; Šáchová J.; Chvátil D.; Kočišek J. Different Mechanisms of DNA Radiosensitization by 8-Bromoadenosine and 2’-Deoxy-2’-Fluorocytidine Observed on DNA Origami Nanoframe Supports. J. Phys. Chem. Lett. 2022, 13, 3922–3928. 10.1021/acs.jpclett.2c00584. PubMed DOI PMC
Fang W.; Xie M.; Hou X.; Liu X.; Zuo X.; Chao J.; Wang L.; Fan C.; Liu H.; Wang L. DNA Origami Radiometers for Measuring Ultraviolet Exposure. J. Am. Chem. Soc. 2020, 142, 8782–8789. 10.1021/jacs.0c01254. PubMed DOI
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem. Rev. 2021, 121, 9407–9449. 10.1021/acs.chemrev.1c00074. PubMed DOI
Martínez-Fernández L.; Francés-Monerris A.. DNA Photostability. In Theoretical and Computational Photochemistry; García-Iriepa C., Marazzi M., Eds.; Elsevier, 2023; pp 311–336.
Westermayr J.; Gastegger M.; Menger M. F. S. J.; Mai S.; González L.; Marquetand P. Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations. Chem. Sci. 2019, 10, 8100–8107. 10.1039/C9SC01742A. PubMed DOI PMC
Poppleton E.; Bohlin J.; Matthies M.; Sharma S.; Zhang F.; Šulc P. Design, Optimization and Analysis of Large DNA and RNA Nanostructures through Interactive Visualization, Editing and Molecular Simulation. Nucleic Acids Res. 2020, 48, e7210.1093/nar/gkaa417. PubMed DOI PMC
Huynh E.; Hosny A.; Guthier C.; Bitterman D. S.; Petit S. F.; Haas-Kogan D. A.; Kann B.; Aerts H. J. W. L.; Mak R. H. Artificial Intelligence in Radiation Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 771–781. 10.1038/s41571-020-0417-8. PubMed DOI
Singh M.; Sharma D.; Garg M.; Kumar A.; Baliyan A.; Rani R.; Kumar V. Current Understanding of Biological Interactions and Processing of DNA Origami Nanostructures: Role of Machine Learning and Implications in Drug Delivery. Biotechnol. Adv. 2022, 61, 10805210.1016/j.biotechadv.2022.108052. PubMed DOI
Rackwitz J.; Bald I. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences–Influence of DNA Sequence and Topology. Chem.-Eur. J. 2018, 24, 4680–4688. 10.1002/chem.201705889. PubMed DOI
Berardinelli F.; Coluzzi E.; Sgura A.; Antoccia A. Targeting Telomerase and Telomeres to Enhance Ionizing Radiation Effects in in Vitro and in Vivo Cancer Models. Mutat. Res. Rev. Mutat. Res. 2017, 773, 204–219. 10.1016/j.mrrev.2017.02.004. PubMed DOI
Keller A.; Linko V. Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angew. Chem., Int. Ed. 2020, 59, 15818–15833. 10.1002/anie.201916390. PubMed DOI PMC
Paul P. M.; Toma E. S.; Breger P.; Mullot G.; Auge F.; Balcou P.; Muller H. G.; Agostini P. Observation of a Train of Attosecond Pulses from High Harmonic Generation. Science 2001, 292, 1689–1692. 10.1126/science.1059413. PubMed DOI
Drescher M.; Hentschel M.; Kienberger R.; Uiberacker M.; Yakovlev V.; Scrinzi A.; Westerwalbesloh T.; Kleineberg U.; Heinzmann U.; Krausz F. Time-Resolved Atomic Inner-Shell Spectroscopy. Nature 2002, 419, 803–807. 10.1038/nature01143. PubMed DOI
Goulielmakis E.; Loh Z.-H.; Wirth A.; Santra R.; Rohringer N.; Yakovlev V. S.; Zherebtsov S.; Pfeifer T.; Azzeer A. M.; Kling M. F.; et al. Real-Time Observation of Valence Electron Motion. Nature 2010, 466, 739–743. 10.1038/nature09212. PubMed DOI
Schultze M.; Fieß M.; Karpowicz N.; Gagnon J.; Korbman M.; Hofstetter M.; Neppl S.; Cavalieri A. L.; Komninos Y.; Mercouris T.; et al. Delay in Photoemission. Science 2010, 328, 1658–1662. 10.1126/science.1189401. PubMed DOI
Lépine F.; Ivanov M. Y.; Vrakking M. J. J. Attosecond Molecular Dynamics: Fact or Fiction?. Nat. Photonics 2014, 8, 195–204. 10.1038/nphoton.2014.25. DOI
Sansone G.; Kelkensberg F.; Pérez-Torres J. F.; Morales F.; Kling M. F.; Siu W.; Ghafur O.; Johnsson P.; Swoboda M.; Benedetti E.; et al. Electron Localization Following Attosecond Molecular Photoionization. Nature 2010, 465, 763–766. 10.1038/nature09084. PubMed DOI
Neidel C.; Klei J.; Yang C. H.; Rouzée A.; Vrakking M. J. J.; Klünder K.; Miranda M.; Arnold C. L.; Fordell T.; L’Huillier A.; et al. Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale. Phys. Rev. Lett. 2013, 111, 03300110.1103/PhysRevLett.111.033001. PubMed DOI
Calegari F.; Ayuso D.; Trabattoni A.; Belshaw L.; De Camillis S.; Anumula S.; Frassetto F.; Poletto L.; Palacios A.; Decleva P.; et al. Ultrafast Electron Dynamics in Phenylalanine Initiated by Attosecond Pulses. Science 2014, 346, 336–339. 10.1126/science.1254061. PubMed DOI
Hervé M.; Boyer A.; Brédy R.; Compagnon I.; Lépine F. Ultrafast Dynamics in Molecular Ions Following UV and XUV Excitation: A Perspective. Adv. Phys. X 2022, 7, 212328310.1080/23746149.2022.2123283. DOI
Hervé M.; Boyer A.; Brédy R.; Allouche A. R.; Compagnon I.; Lépine F. On-the-fly Investigation of XUV Excited Large Molecular Ions Using a High Harmonic Generation Light Source. Sci. Rep. 2022, 12, 1319110.1038/s41598-022-17416-4. PubMed DOI PMC
Vacher M.; Bearpark M. J.; Robb M. A.; Malhado J. P. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence. Phys. Rev. Lett. 2017, 118, 08300110.1103/PhysRevLett.118.083001. PubMed DOI
Despré V.; Golubev N. V.; Kuleff A. I. Charge Migration in Propiolic Acid: A Full Quantum Dynamical Study. Phys. Rev. Lett. 2018, 121, 20300210.1103/PhysRevLett.121.203002. PubMed DOI
Hervé M.; Despré V.; Castellanos Nash P.; Loriot V.; Boyer A.; Scognamiglio A.; Karras G.; Brédy R.; Constant E.; Tielens A. G. G. M.; et al. Ultrafast Dynamics of Correlation Bands Following XUV Molecular Photoionization. Nat. Phys. 2021, 17, 327–331. 10.1038/s41567-020-01073-3. DOI
Berrah N.; Sanchez-Gonzalez A.; Jurek Z.; Obaid R.; Xiong H.; Squibb R. J.; Osipov T.; Lutman A.; Fang L.; Barillot T.; et al. Femtosecond-Resolved Observation of the Fragmentation of Buckminsterfullerene Following X-ray Multiphoton Ionization. Nat. Phys. 2019, 15, 1279–1283. 10.1038/s41567-019-0665-7. DOI
Wabnitz H.; Bittner L.; de Castro A. R. B.; Döhrmann R.; Gürtler P.; Laarmann T.; Laasch W.; Schulz J.; Swiderski A.; von Haeften K.; et al. Multiple Ionization of Atom Clusters by Intense Soft X-rays From a Free-Electron Laser. Nature 2002, 420, 482–485. 10.1038/nature01197. PubMed DOI
Baccarelli I.; Bald I.; Gianturco F. A.; Illenberger E.; Kopyra J. Electron-Induced Damage of DNA and Its Components: Experiments and Theoretical Models. Phys. Rep. 2011, 508, 1–44. 10.1016/j.physrep.2011.06.004. DOI
Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J.. Recent Progress in Dissociative Electron Attachment: From Diatomics to Biomolecules.In Advances In Atomic, Molecular, and Optical Physics; Arimondo E., Lin C. C., Yelin S. F., Eds.; Academic Press: Cambridge, MA, 2017; Vol 66, pp 545–657.
Kočišek J.; Pysanenko A.; Fárník M.; Fedor J. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons. J. Phys. Chem. Lett. 2016, 7, 3401–3405. 10.1021/acs.jpclett.6b01601. PubMed DOI
Allan M. Electron Collisions with Formic Acid Monomer and Dimer. Phys. Rev. Lett. 2007, 98, 12320110.1103/PhysRevLett.98.123201. PubMed DOI
Kočišek J.; Sedmidubská B.; Indrajith S.; Fárník M.; Fedor J. Electron Attachment to Microhydrated Deoxycytidine Monophosphate. J. Phys. Chem. B 2018, 122, 5212–5217. 10.1021/acs.jpcb.8b03033. PubMed DOI
Postler J.; Renzler M.; Kaiser A.; Huber S. E.; Probst M.; Scheier P.; Ellis A. M. Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) in Liquid Helium Nanodroplets. J. Phys. Chem. C 2015, 119, 20917–20922. 10.1021/acs.jpcc.5b05260. PubMed DOI PMC
Lengyel J.; Papp P.; Matejčík Š.; Kočišek J.; Fárník M.; Fedor J. Suppression of Low-Energy Dissociative Electron Attachment in Fe(CO)5 upon Clustering. Beilstein J. Nanotechnol. 2017, 8, 2200–2207. 10.3762/bjnano.8.219. PubMed DOI PMC
Lengyel J.; Kočišek J.; Fárník M.; Fedor J. Self-Scavenging of Electrons in Fe(CO)5 Aggregates Deposited on Argon Nanoparticles. J. Phys. Chem. C 2016, 120, 7397–7402. 10.1021/acs.jpcc.6b00901. DOI
Landheer K.; Rosenberg S. G.; Bernau L.; Swiderek P.; Utke I.; Hagen C. W.; Fairbrother D. H. Low-Energy Electron-Induced Decomposition and Reactions of Adsorbed Tetrakis(trifluorophosphine)platinum [Pt(PF3)4]. J. Phys. Chem. C 2011, 115, 17452–17463. 10.1021/jp204189k. DOI
Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI
Böhler E.; Warneke J.; Swiderek P. Control of Chemical Reactions and Synthesis by Low-Energy Electrons. Chem. Soc. Rev. 2013, 42, 9219–9231. 10.1039/c3cs60180c. PubMed DOI
Arumainayagam C. R.; Garrod R. T.; Boyer M. C.; Hay A. K.; Bao S. T.; Campbell J. S.; Wang J.; Nowak C. M.; Arumainayagam M. R.; Hodge P. J. Extraterrestrial Prebiotic Molecules: Photochemistry vs. Radiation Chemistry of Interstellar Ices. Chem. Soc. Rev. 2019, 48, 2293–2314. 10.1039/C7CS00443E. PubMed DOI
Smyth M.; Kohanoff J.; Fabrikant I. I. Electron-Induced Hydrogen Loss in Uracil in a Water Cluster Environment. J. Chem. Phys. 2014, 140, 18431310.1063/1.4874841. PubMed DOI
Pysanenko A.; Habartová A.; Svrčková P.; Lengyel J.; Poterya V.; Roeselová M.; Fedor J.; Fárník M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. Chem. A 2015, 119, 8991–8999. 10.1021/acs.jpca.5b05368. PubMed DOI
Chesnavich W. J.; Bowers M. T. Statistical Phase Space Theory of Polyatomic Systems. Application to the Unimolecular Reactions C6H5CN ·+ → C6H4 ·+ + HCN and C4H6 ·+ → C3H+3+CH3. J. Am. Chem. Soc. 1977, 99, 1705–1711. 10.1021/ja00448a003. DOI
Kato̅ T. Phase Space Bottlenecks and Rates of No-Barrier Fragmentation Reactions into Polyatomic Molecules. J. Chem. Phys. 1996, 105, 9502–9508. 10.1063/1.472821. DOI
Garrett B. C.; Truhlar D. G. Generalized Transition State Theory. Classical Mechanical Theory and Applications to Collinear Reactions of Hydrogen Molecules. J. Phys. Chem. 1979, 83, 1052–1079. 10.1021/j100471a031. DOI
Ptasinska S.; Denifl S.; Scheier P.; Illenberger E.; Mark T. D. Bond- and Site-Selective Loss of H Atoms from Nucleobases by Very-Low-Energy Electrons (< 3 eV). Angew. Chem., Int. Ed. 2005, 44, 6941–6943. 10.1002/anie.200502040. PubMed DOI
McAllister M.; Kazemigazestane N.; Henry L. T.; Gu B.; Fabrikant I.; Tribello G. A.; Kohanoff J. Solvation Effects on Dissociative Electron Attachment to Thymine. J. Phys. Chem. B 2019, 123, 1537–1544. 10.1021/acs.jpcb.8b11621. PubMed DOI
Suchan J.; Kolafa J.; Slavíček P. Electron-Induced Fragmentation of Water Droplets: Simulation Study. J. Chem. Phys. 2022, 156, 14430310.1063/5.0088591. PubMed DOI
Thorman R. M.; Kumar T. P. R.; Fairbrother D. H.; Ingólfsson O. The Role of Low-Energy Electrons in Focused Electron Beam Induced Deposition: Four Case Studies of Representative Precursors. Beilstein J. Nanotechnol. 2015, 6, 1904–1926. 10.3762/bjnano.6.194. PubMed DOI PMC
Johny M.; Onvlee J.; Kierspel T.; Bieker H.; Trippel S.; Küpper J. Spatial Separation of Pyrrole and Pyrrole-Water Clusters. Chem. Phys. Lett. 2019, 721, 149–152. 10.1016/j.cplett.2019.01.052. DOI
Mauracher A.; Echt O.; Ellis A. M.; Yang S.; Bohme D. K.; Postler J.; Kaiser A.; Denifl S.; Scheier P. Cold Physics and Chemistry: Collisions, Ionization and Reactions Inside Helium Nanodroplets Close to Zero K. Phys. Rep. 2018, 751, 1–90. 10.1016/j.physrep.2018.05.001. DOI
Dvořák J.; Rankovič M.; Houfek K.; Nag P.; Čurík R.; Fedor J.; Čížek M. Vibronic Coupling through the Continuum in the e + CO2 System. Phys. Rev. Lett. 2022, 129, 01340110.1103/PhysRevLett.129.013401. PubMed DOI
Ragesh Kumar T. P.; Nag P.; Rankovič M.; Luxford T. F. M.; Kočišek J.; Mašín Z.; Fedor J. Distant Symmetry Control in Electron-Induced Bond Cleavage. J. Phys. Chem. Lett. 2022, 13, 11136–11142. 10.1021/acs.jpclett.2c03096. PubMed DOI
Poštulka J.; Slavíček P.; Fedor J.; Fárník M.; Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B 2017, 121, 8965–8974. 10.1021/acs.jpcb.7b07390. PubMed DOI
Lin B.; Gao F.; Yang Y.; Wu D.; Zhang Y.; Feng G.; Dai T.; Du X. FLASH Radiotherapy: History and Future. Front. Oncol. 2021, 11, 64440010.3389/fonc.2021.644400. PubMed DOI PMC
Zacheis G. A.; Gray K. A.; Kamat P. V. Radiation-Induced Catalysis on Oxide Surfaces: Degradation of Hexachlorobenzene on γ-Irradiated Alumina Nanoparticles. J. Phys. Chem. B 1999, 103, 2142–2150. 10.1021/jp990211u. DOI
Coekelbergs R.; Crucq A.; Frennet A. Radiation Catalysis. Adv. Catal. 1962, 13, 55–136. 10.1016/S0360-0564(08)60286-2. DOI
Abedini A.; Daud A. R.; Hamid M. A. A.; Othman N. K.; Saion E. A Review on Radiation-Induced Nucleation and Growth of Colloidal Metallic Nanoparticles. Nanoscale Res. Lett. 2013, 8, 474.10.1186/1556-276X-8-474. PubMed DOI PMC
Roy K.; Lahiri S. In Situ γ-Radiation: One-Step Environmentally Benign Method to Produce Gold–Palladium Bimetallic Nanoparticles. Anal. Chem. 2008, 80, 7504–7507. 10.1021/ac800593u. PubMed DOI
Zhang D.; He J.; Zhou M. Radiation-Assisted Strategies Provide New Perspectives to Improve the Nanoparticle Delivery to Tumor. Adv. Drug Delivery Rev. 2023, 193, 11464210.1016/j.addr.2022.114642. PubMed DOI
Gauduel Y. A.; Glinec Y.; Rousseau J.-P.; Burgy F.; Malka V. High Energy Radiation Femtochemistry of Water Molecules: Early Electron-Radical Pairs Processes. Eur. Phys. J. D 2010, 60, 121–135. 10.1140/epjd/e2010-00152-2. DOI
Svoboda V.; Michiels R.; LaForge A. C.; Med J.; Stienkemeier F.; Slavíček P.; Wörner H. J. Real-Time Observation of Water Radiolysis and Hydrated Electron Formation Induced by Extreme-Ultraviolet Pulses. Sci. Adv. 2020, 6, eaaz038510.1126/sciadv.aaz0385. PubMed DOI PMC
Baldacchino G.; Vigneron G.; Renault J.-P.; Pin S.; Abedinzadeh Z.; Deycard S.; Balanzat E.; Bouffard S.; Gardès-Albert M.; Hickel B.; Mialocq J.-C. A Nanosecond Pulse Radiolysis Study of the Hydrated Electron with High Energy Ions with a Narrow Velocity Distribution. Chem. Phys. Lett. 2004, 385, 66–71. 10.1016/j.cplett.2003.12.048. DOI
Dromey B.; Coughlan M.; Senje L.; Taylor M.; Kuschel S.; Villagomez-Bernabe B.; Stefanuik R.; Nersisyan G.; Stella L.; Kohanoff J.; et al. Picosecond Metrology of Laser-Driven Proton Bursts. Nat. Commun. 2016, 7, 1064210.1038/ncomms10642. PubMed DOI PMC
Prasselsperger A.; Coughlan M.; Breslin N.; Yeung M.; Arthur C.; Donnelly H.; White S.; Afshari M.; Speicher M.; Yang R.; et al. Real-Time Electron Solvation Induced by Bursts of Laser-Accelerated Protons in Liquid Water. Phys. Rev. Lett. 2021, 127, 18600110.1103/PhysRevLett.127.186001. PubMed DOI
Coughlan M.; Donnelly H.; Breslin N.; Arthur C.; Nersisyan G.; Yeung M.; Villagomez-Bernabe B.; Afshari M.; Currell F.; Zepf M.; Dromey B. Ultrafast Dynamics and Evolution of Ion-Induced Opacity in Transparent Dielectrics. New J. Phys. 2020, 22, 10302310.1088/1367-2630/abbae8. DOI
Ziegler J. F. Stopping of Energetic Light Ions in Elemental Matter. J. Appl. Phys. 1999, 85, 1249–1272. 10.1063/1.369844. DOI
Macchi A.; Borghesi M.; Passoni M. Ion Acceleration by Superintense Laser-Plasma Interaction. Rev. Mod. Phys. 2013, 85, 751–794. 10.1103/RevModPhys.85.751. DOI
Kar S.; Ahmed H.; Prasad R.; Cerchez M.; Brauckmann S.; Aurand B.; Cantono G.; Hadjisolomou P.; Lewis C. L. S.; Macchi A.; et al. Guided Post-Acceleration of Laser-Driven Ions by a Miniature Modular Structure. Nat. Commun. 2016, 7, 1079210.1038/ncomms10792. PubMed DOI PMC
Dromey B.; Zepf M.; Gopal A.; Lancaster K.; Wei M. S.; Krushelnick K.; Tatarakis M.; Vakakis N.; Moustaizis S.; Kodama R.; et al. High Harmonic Generation in the Relativistic Limit. Nat. Phys. 2006, 2, 456–459. 10.1038/nphys338. DOI
Ackland G. Controlling Radiation Damage. Science 2010, 327, 1587–1588. 10.1126/science.1188088. PubMed DOI
Amaldi U.; Kraft G. Radiotherapy with Beams of Carbon Ions. Rep. Prog. Phys. 2005, 68, 1861–1882. 10.1088/0034-4885/68/8/R04. DOI
Schardt D.; Elsässer T.; Schulz-Ertner D. Heavy-Ion Tumor Therapy: Physical and Radiobiological Benefits. Rev. Mod. Phys. 2010, 82, 383–425. 10.1103/RevModPhys.82.383. DOI
Durante M.; Cucinotta F. A. Physical Basis of Radiation Protection in Space Travel. Rev. Mod. Phys. 2011, 83, 1245–1281. 10.1103/RevModPhys.83.1245. DOI
Kronenberg A.; Cucinotta F. A. Space Radiation Protection Issues. Health Phys. 2012, 103, 556–567. 10.1097/HP.0b013e3182690caf. PubMed DOI
de Vera P.; Surdutovich E.; Solov’yov A. V. The Role of Shock Waves on the Biodamage Induced by Ion Beam Radiation. Cancer Nanotechnol 2019, 10, 5.10.1186/s12645-019-0050-3. DOI
Bottländer D.; Mücksch C.; Urbassek H. M. Effect of Swift-Ion Irradiation on DNA Molecules: A Molecular Dynamics Study Using the REAX Force Field. Nucl. Instrum. Meth. B 2015, 365, 622–625. 10.1016/j.nimb.2015.08.060. DOI
Favaudon V.; Caplier L.; Monceau V.; Pouzoulet F.; Sayarath M.; Fouillade C.; Poupon M. F.; Brito I.; Hupé P.; Bourhis J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93.10.1126/scitranslmed.3008973. PubMed DOI
Malka V.; Faure J.; Gauduel Y. A.; Lefebvre E.; Rousse A.; Phuoc K. T. Principles and Applications of Compact Laser-Plasma Accelerators. Nat. Phys. 2008, 4, 447–453. 10.1038/nphys966. DOI
Fuchs T.; Szymanowski H.; Oelfke U.; Glinec Y.; Rechatin C.; Faure J.; Malka V. Treatment Planning for Laser-Accelerated Very-High Energy Electrons. Phys. Med. Biol. 2009, 54, 3315–3328. 10.1088/0031-9155/54/11/003. PubMed DOI
Malka V.; Faure J.; Gauduel Y. A. Ultra-Short Electron Beams Based Spatio-Temporal Radiation Biology and Radiotherapy. Mutat. Res. Rev. Mutat. Res. 2010, 704, 142–151. 10.1016/j.mrrev.2010.01.006. PubMed DOI
Ogawa Y. Paradigm Shift in Radiation Biology/Radiation Oncology – Exploitation of the “H2O2 Effect” for Radiotherapy Using Low-LET (Linear Energy Transfer) Radiation Such as X-Rays and High-Energy Electrons. Cancers 2016, 8, 28–40. 10.3390/cancers8030028. PubMed DOI PMC
Paganetti H.; Niemierko A.; Ancukiewicz M.; Gerweck L. E.; Goitein M.; Loeffler J. S.; Suit H. D. Relative Biological Effectiveness (RBE) Values for Proton Beam Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 407–421. 10.1016/S0360-3016(02)02754-2. PubMed DOI
Mazal A.; Prezado Y.; Ares C.; de Marzi L.; Patriarca A.; Miralbell R.; Favaudon V. FLASH and Minibeams in Radiation Therapy: The Effect of Microstructures on Time and Space and Their Potential Application to Protontherapy. Br. J. Radiol. 2020, 93, 2019080710.1259/bjr.20190807. PubMed DOI PMC
Horendeck D.; Walsh K. D.; Hirakawa H.; Fujimori A.; Kitamura H.; Kato T. A. High LET-Like Radiation Tracks at the Distal Side of Accelerated Proton Bragg Peak. Front. Oncol. 2021, 11, 69004210.3389/fonc.2021.690042. PubMed DOI PMC
Audouin J.; Hofverberg P.; Ngono-Ravache Y.; Desorgher L.; Baldacchino G. Intermediate LET-like Effect in Distal Part of Proton Bragg Peak Revealed by Track-Ends Imaging During Super-Fricke Radiolysis. Sci. Rep. 2023, 13, 1546010.1038/s41598-023-42639-4. PubMed DOI PMC
Bizzarri M.; Naimark O.; Nieto-Villar J.; Fedeli V.; Giuliani A. Complexity in Biological Organization: Deconstruction (and Subsequent Restating) of Key Concepts. Entropy 2020, 22, 885.10.3390/e22080885. PubMed DOI PMC
Erenpreisa J.; Giuliani A.; Yoshikawa K.; Falk M.; Hildenbrand G.; Salmina K.; Freivalds T.; Vainshelbaum N.; Weidner J.; Sievers A.; Pilarczyk G.; Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int. J. Mol. Sci. 2023, 24, 2658.10.3390/ijms24032658. PubMed DOI PMC
Cremer T.; Cremer M.; Hübner B.; Strickfaden H.; Smeets D.; Popken J.; Sterr M.; Markaki Y.; Rippe K.; Cremer C. The 4D Nucleome: Evidence for a Dynamic Nuclear Landscape Based on Co-Aligned Active and Inactive Nuclear Compartments. FEBS Lett. 2015, 589, 2931–2943. 10.1016/j.febslet.2015.05.037. PubMed DOI
Sievers A.; Sauer L.; Hausmann M.; Hildenbrand G. Eukaryotic Genomes Show Strong Evolutionary Conservation of K-Mer Composition and Correlation Contributions between Introns and Intergenic Regions. Genes 2021, 12, 1571.10.3390/genes12101571. PubMed DOI PMC
Sievers A.; Sauer L.; Bisch M.; Sprengel J.; Hausmann M.; Hildenbrand G. Moderation of Structural DNA Properties by Coupled Dinucleotide Contents in Eukaryotes. Genes 2023, 14, 755.10.3390/genes14030755. PubMed DOI PMC
Krigerts J.; Salmina K.; Freivalds T.; Zayakin P.; Rumnieks F.; Inashkina I.; Giuliani A.; Hausmann M.; Erenpreisa J. Differentiating Cancer Cells Reveal Early Large-Scale Genome Regulation by Pericentric Domains. Biophys. J. 2021, 120, 711–724. 10.1016/j.bpj.2021.01.002. PubMed DOI PMC
Erenpreisa J.; Krigerts J.; Salmina K.; Gerashchenko B. I.; Freivalds T.; Kurg R.; Winter R.; Krufczik M.; Zayakin P.; Hausmann M.; Giuliani A. Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis). Cells 2021, 10, 1582.10.3390/cells10071582. PubMed DOI PMC
Hausmann M.; Hildenbrand G.; Pilarczyk G.. Networks and Islands of Genome Nano-architecture and Their Potential Relevance for Radiation Biology. In Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine; Kloc M., Kubiak J. Z., Eds.; Springer, 2022; pp 3–34. PubMed
Lee J.-H.; Hausmann M.. Super-Resolution Radiation Biology: From Bio-Dosimetry towards Nano-Studies of DNA Repair Mechanisms. In DNA - Damages and Repair Mechanisms; Behzadi P., Ed.; IntechOpen: London, UK, 2021.
Jezkova L.; Zadneprianetc M.; Kulikova E.; Smirnova E.; Bulanova T.; Depes D.; Falkova I.; Boreyko A.; Krasavin E.; Davidkova M.; Kozubek S.; Valentova O.; Falk M. Particles with Similar LET Values Generate DNA Breaks of Different Complexity and Reparability: A High-Resolution Microscopy Analysis of γH2AX/53BP1 Foci. Nanoscale 2018, 10, 1162–1179. 10.1039/C7NR06829H. PubMed DOI
Falk M.; Hausmann M. A Paradigm Revolution or Just Better Resolution – Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation?. Cancers 2021, 13, 18.10.3390/cancers13010018. PubMed DOI PMC
Bobkova E.; Depes D.; Lee J.-H.; Jezkova L.; Falkova I.; Pagacova E.; Kopecna O.; Zadneprianetc M.; Bacikova A.; Kulikova E.; Smirnova E.; Bulanova T.; Boreyko A.; Krasavin E.; Wenz F.; Bestvater F.; Hildenbrand G.; Hausmann M.; Falk M. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018, 19, 3713.10.3390/ijms19123713. PubMed DOI PMC
Scully R.; Panday A.; Elango R.; Willis N. A. DNA Double-Strand Break Repair-Pathway Choice in Somatic Mammalian Cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. 10.1038/s41580-019-0152-0. PubMed DOI PMC
Falk M.; Hausmann M.; Lukasova E.; Biswas A.; Hildenbrand G.; Davidkova M.; Krasavin E.; Kleibl Z.; Falkova I.; Jezkova L.; et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A – Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 205–223. 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI
Falk M.; Hausmann M.; Lukasova E.; Biswas A.; Hildenbrand G.; Davidkova M.; Krasavin E.; Kleibl Z.; Falkova I.; Jezkova L.; et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B – Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 225–247. 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI
Iliakis G.; Mladenov E.; Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers 2019, 11, 1671.10.3390/cancers11111671. PubMed DOI PMC
Falk M.; Lukasova E.; Gabrielova B.; Ondrej V.; Kozubek S. Chromatin Dynamics during DSB Repair. Biochim. Biophys. Acta 2007, 1773, 1534–1545. 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Falk M.; Lukásová E.; Kozubek S. Chromatin Structure Influences the Sensitivity of DNA to Gamma-Radiation. Biochim. Biophys. Acta 2008, 1783, 2398–2414. 10.1016/j.bbamcr.2008.07.010. PubMed DOI
Falk M.; Lukasova E.; Gabrielova B.; Ondrej V.; Kozubek S. Local Changes of Higher-Order Chromatin Structure during DSB-Repair. J. Phys. Conf. Ser. 2008, 101, 01201810.1088/1742-6596/101/1/012018. DOI
Falk M.; Lukasova E.; Kozubek S. Higher-Order Chromatin Structure in DSB Induction, Repair and Misrepair. Mutat. Res. 2010, 704, 88–100. 10.1016/j.mrrev.2010.01.013. PubMed DOI
Sievers A.; Wenz F.; Hausmann M.; Hildenbrand G. Conservation of k-Mer Composition and Correlation Contribution between Introns and Intergenic Regions of Animalia Genomes. Genes 2018, 9, 482.10.3390/genes9100482. PubMed DOI PMC
Weidner J.; Neitzel C.; Gote M.; Deck J.; Küntzelmann K.; Pilarczyk G.; Falk M.; Hausmann M. Advanced Image-Free Analysis of the Nano-Organization of Chromatin and Other Biomolecules by Single Molecule Localization Microscopy (SMLM). Comput. Struct. Biotechnol. J. 2023, 21, 2018–2034. 10.1016/j.csbj.2023.03.009. PubMed DOI PMC
Krufczik M.; Sievers A.; Hausmann A.; Lee J.-H.; Hildenbrand G.; Schaufler W.; Hausmann M. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Int. J. Mol. Sci. 2017, 18, 1005.10.3390/ijms18051005. PubMed DOI PMC
Zhang Y.; Máté G.; Müller P.; Hillebrandt S.; Krufczik M.; Bach M.; Kaufmann R.; Hausmann M.; Heermann D. W. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory. PLoS One 2015, 10, e012855510.1371/journal.pone.0128555. PubMed DOI PMC
Zhang Y.; Heermann D. W. DNA Double-Strand Breaks: Linking Gene Expression to Chromosome Morphology and Mobility. Chromosoma 2014, 123, 103–115. 10.1007/s00412-013-0432-y. PubMed DOI
Hausmann M.; Wagner E.; Lee J.-H.; Schrock G.; Schaufler W.; Krufczik M.; Papenfuß F.; Port M.; Bestvater F.; Scherthan H. Super-Resolution Localization Microscopy of Radiation-Induced Histone H2AX-Phosphorylation in Relation to H3K9-Trimethylation in HeLa Cells. Nanoscale 2018, 10, 4320–4331. 10.1039/C7NR08145F. PubMed DOI
Hausmann M.; Falk M.; Neitzel C.; Hofmann A.; Biswas A.; Gier T.; Falkova I.; Heermann D. W.; Hildenbrand G. Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach. Int. J. Mol. Sci. 2021, 22, 3636.10.3390/ijms22073636. PubMed DOI PMC
Hofmann A.; Krufczik M.; Heermann D.; Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters. Int. J. Mol. Sci. 2018, 19, 2263.10.3390/ijms19082263. PubMed DOI PMC
Hahn H.; Neitzel C.; Kopečná O.; Heermann D. W.; Falk M.; Hausmann M. Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-Ray-Induced DNA Double-Strand Break Repair. Cancers 2021, 13, 5561.10.3390/cancers13215561. PubMed DOI PMC
Scherthan H.; Lee J.-H.; Maus E.; Schumann S.; Muhtadi R.; Chojowski R.; Port M.; Lassmann M.; Bestvater F.; Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers 2019, 11, 1877.10.3390/cancers11121877. PubMed DOI PMC
Morales M. E.; White T. B.; Streva V. A.; DeFreece C. B.; Hedges D. J.; Deininger P. L. The Contribution of ALU Elements to Mutagenic DNA Double-Strand Break Repair. PLoS Genet. 2015, 11, e100501610.1371/journal.pgen.1005016. PubMed DOI PMC
Hausmann M.; Ilić N.; Pilarczyk G.; Lee J.-H.; Logeswaran A.; Borroni A. P.; Krufczik M.; Theda F.; Waltrich N.; Bestvater F.; Hildenbrand G.; Cremer C.; Blank M. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int. J. Mol. Sci. 2017, 18, 2066.10.3390/ijms18102066. PubMed DOI PMC
Vicar T.; Gumulec J.; Kolar R.; Kopecna O.; Pagacova E.; Falkova I.; Falk M. DeepFoci: Deep Learning-Based Algorithm for Fast Automatic Analysis of DNA Double-Strand Break Ionizing Radiation-Induced Foci. Comput. Struct. Biotechnol. J. 2021, 19, 6465–6480. 10.1016/j.csbj.2021.11.019. PubMed DOI PMC
Dobešová L.; Gier T.; Kopečná O.; Pagáčová E.; Vičar T.; Bestvater F.; Toufar J.; Bačíková A.; Kopel P.; Fedr R.; Hildenbrand G.; Falková I.; Falk M.; Hausmann M. Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells. Pharmaceutics 2022, 14, 166.10.3390/pharmaceutics14010166. PubMed DOI PMC
Ahmad R.; Schettino G.; Royle G.; Barry M.; Pankhurst Q. A.; Tillement O.; Russell B.; Ricketts K. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part. Part. Syst. Charact. 2020, 37, 190041110.1002/ppsc.201900411. PubMed DOI PMC
Her S.; Jaffray D. A.; Allen C. Gold Nanoparticles for Applications in Cancer Radiotherapy: Mechanisms and Recent Advancements. Adv. Drug Delivery Rev. 2017, 109, 84–101. 10.1016/j.addr.2015.12.012. PubMed DOI
Ricketts K.; Ahmad R.; Beaton L.; Cousins B.; Critchley K.; Davies M.; Evans S.; Fenuyi I.; Gavriilidis A.; Harmer Q. J.; et al. Recommendations for Clinical Translation of Nanoparticle-Enhanced Radiotherapy. Br. J. Radiol. 2018, 91, 2018032510.1259/bjr.20180325. PubMed DOI PMC
Douglass M.; Bezak E.; Penfold S. Monte Carlo Investigation of the Increased Radiation Deposition due to Gold Nanoparticles Using Kilovoltage and Megavoltage Photons in a 3D Randomized Cell Model. Med. Phys. 2013, 40, 07171010.1118/1.4808150. PubMed DOI
Butterworth K. T.; McMahon S. J.; Currell F. J.; Prise K. M. Physical Basis and Biological Mechanisms of Gold Nanoparticle Radiosensitization. Nanoscale 2012, 4, 4830.10.1039/c2nr31227a. PubMed DOI
Rosa S.; Connolly C.; Schettino G.; Butterworth K. T.; Prise K. M. Biological Mechanisms of Gold Nanoparticle Radiosensitization. Cancer Nanotechnol 2017, 8, 2.10.1186/s12645-017-0026-0. PubMed DOI PMC
Sicard-Roselli C.; Brun E.; Gilles M.; Baldacchino G.; Kelsey C.; McQuaid H.; Polin C.; Wardlow N.; Currell F. A New Mechanism for Hydroxyl Radical Production in Irradiated Nanoparticle Solutions. Small 2014, 10, 3338–3346. 10.1002/smll.201400110. PubMed DOI
Verkhovtsev A. V.; Nichols A.; Mason N. J.; Solov’yov A. V. Molecular Dynamics Characterization of Radiosensitizing Coated Gold Nanoparticles in Aqueous Environment. J. Phys. Chem. A 2022, 126, 2170–2184. 10.1021/acs.jpca.2c00489. PubMed DOI
Kazmierska J.; Sala N. J.; Leech M.; Jereczek-Fossa B. A.; Lievens Y.; Yarnold J.. Radiotherapy: Seizing the Opportunity in Cancer Care; European Society for Radiotherapy and Oncology, 2018. https://www.estro.org/getattachment/Advocacy/ECF/Marie-Curie-Legacy-Campaign/Radiotherapy_seizing_the_opportunity_in_cancer_care.pdf (accessed 2024-02-29).
Zeng C.; Amos R. A.; Winey B.; Beltran C.; Saleh Z.; Tochner Z.; Kooy H.; Both S.. Proton Treatment Planning. In Target Volume Delineation and Treatment Planning for Particle Therapy: A Practical Guide; Lee N. Y., Leeman J. E., Cahlon O., Sine K., Jiang G., Lu J. J., Both S., Eds.; Springer, 2018; pp 45–105.
Wang X.; Zhang X.; Li X.; Amos R. A.; Shaitelman S. F.; Hoffman K.; Howell R.; Salehpour M.; Zhang S. X.; Sun T. L.; et al. Accelerated Partial-Breast Irradiation Using Intensity-Modulated Proton Radiotherapy: Do Uncertainties Outweigh Potential Benefits?. Br. J. Radiol. 2013, 86, 2013017610.1259/bjr.20130176. PubMed DOI PMC
Kim Y.; Kim J.; Cho S. Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy. Prog. Med. Phys. 2020, 31, 1–7. 10.14316/pmp.2020.31.1.1. DOI
Kelleter L.; Zhen-Hong Tham B.; Saakyan R.; Griffiths J.; Amos R.; Jolly S.; Gibson A. Technical Note: Simulation of Dose Buildup in Proton Pencil Beams. Med. Phys. 2019, 46, 3734–3738. 10.1002/mp.13660. PubMed DOI
Ree A. H.; Redalen K. R. Personalized Radiotherapy: Concepts, Biomarkers and Trial Design. Br. J. Radiol. 2015, 88, 2015000910.1259/bjr.20150009. PubMed DOI PMC
Falls K. C.; Sharma R. A.; Lawrence Y. R.; Amos R. A.; Advani S. J.; Ahmed M. M.; Vikram B.; Coleman C. N.; Prasanna P. G. Radiation-Drug Combinations to Improve Clinical Outcomes and Reduce Normal Tissue Toxicities: Current Challenges and New Approaches: Report of the Symposium Held at the 63rd Annual Meeting of the Radiation Research Society, 15–18 October 2017; Cancun, Mexico. Radiat. Res. 2018, 190, 350–360. 10.1667/RR15121.1. PubMed DOI PMC
Cancer Nanotechnology: Principles and Application in Radiation Oncology; Cho S. H., Krishnan S., Eds.; CRC Press: Boca Raton, FL, 2013.
Suzuki M. Boron Neutron Capture Therapy (BNCT): A Unique Role in Radiotherapy with a View to Entering the Accelerator-Based BNCT Era. Int. J. Clin. Oncol. 2020, 25, 43–50. 10.1007/s10147-019-01480-4. PubMed DOI
Porra L.; Seppälä T.; Wendland L.; Revitzer H.; Joensuu H.; Eide P.; Koivunoro H.; Smick N.; Smick T.; Tenhunen M. Accelerator-Based Boron Neutron Capture Therapy Facility at the Helsinki University Hospital. Acta. Oncol. 2022, 61, 269–273. 10.1080/0284186X.2021.1979646. PubMed DOI
Favaudon V.; Caplier L.; Monceau V.; Pouzoulet F.; Sayarath M.; Fouillade C.; Poupon M.-F.; Brito I.; Hupé P.; Bourhis J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response Between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93.10.1126/scitranslmed.3008973. PubMed DOI
Lourenço A.; Subiel A.; Lee N.; Flynn S.; Cotterill J.; Shipley D.; Romano F.; Speth J.; Lee E.; Zhang Y.; et al. Absolute Dosimetry for FLASH Proton Pencil Beam Scanning Radiotherapy. Sci. Rep. 2023, 13, 2054.10.1038/s41598-023-28192-0. PubMed DOI PMC
Mascia A. E.; Daugherty E. C.; Zhang Y.; Lee E.; Xiao Z.; Sertorio M.; Woo J.; Backus L. R.; McDonald J. M.; McCann C.; et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol 2023, 9, 62–69. 10.1001/jamaoncol.2022.5843. PubMed DOI PMC
Prezado Y.; Jouvion G.; Guardiola C.; Gonzalez W.; Juchaux M.; Bergs J.; Nauraye C.; Labiod D.; De Marzi L.; Pouzoulet F.; et al. Tumor Control in RG2 Glioma-Bearing Rats: A Comparison Between Proton Minibeam Therapy and Standard Proton Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 266–271. 10.1016/j.ijrobp.2019.01.080. PubMed DOI
Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius F. Energy Transfer Catalysis Mediated by Visible Light: Principles, Applications, Directions. Chem. Soc. Rev. 2018, 47, 7190–7202. 10.1039/C8CS00054A. PubMed DOI
Marzo L.; Pagire S. K.; Reiser O.; König B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angew. Chem., Int. Ed. 2018, 57, 10034–10072. 10.1002/anie.201709766. PubMed DOI
Zhan C.; Chen X.-J.; Yi J.; Li J.-F.; Wu D.-Y.; Tian Z.-Q. From Plasmon-Enhanced Molecular Spectroscopy to Plasmon-Mediated Chemical Reactions. Nat. Rev. Chem. 2018, 2, 216–230. 10.1038/s41570-018-0031-9. DOI
Liu X.; Atwater M.; Wang J.; Huo Q. Extinction Coefficient of Gold Nanoparticles with Different Sizes and Different Capping Ligands. Colloids Surf., B 2007, 58, 3–7. 10.1016/j.colsurfb.2006.08.005. PubMed DOI
Gellé A.; Jin T.; de La Garza L.; Price G. D.; Besteiro L. V.; Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem. Rev. 2020, 120, 986–1041. 10.1021/acs.chemrev.9b00187. PubMed DOI
Christopher P.; Xin H.; Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011, 3, 467–472. 10.1038/nchem.1032. PubMed DOI
Dutta A.; Schürmann R.; Kogikoski S.; Mueller N. S.; Reich S.; Bald I. Kinetics and Mechanism of Plasmon-Driven Dehalogenation Reaction of Brominated Purine Nucleobases on Ag and Au. ACS Catal. 2021, 11, 8370–8381. 10.1021/acscatal.1c01851. PubMed DOI PMC
Kogikoski S.; Dutta A.; Bald I. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. ACS Nano 2021, 15, 20562–20573. 10.1021/acsnano.1c09176. PubMed DOI PMC
Schürmann R.; Bald I. Real-Time Monitoring of Plasmon Induced Dissociative Electron Transfer to the Potential DNA Radiosensitizer 8-Bromoadenine. Nanoscale 2017, 9, 1951–1955. 10.1039/C6NR08695K. PubMed DOI
Zhou L.; Swearer D. F.; Zhang C.; Robatjazi H.; Zhao H.; Henderson L.; Dong L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science 2018, 362, 69–72. 10.1126/science.aat6967. PubMed DOI
Sivan Y.; Baraban J.; Un I. W.; Dubi Y. Comment on “Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science 2019, 364, eaaw936710.1126/science.aaw9367. PubMed DOI
Robatjazi H.; Bao J. L.; Zhang M.; Zhou L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Plasmon-Driven Carbon–Fluorine (C(sp3)–F) Bond Activation with Mechanistic Insights into Hot-Carrier-Mediated Pathways. Nat. Catal. 2020, 3, 564–573. 10.1038/s41929-020-0466-5. DOI
Dubi Y.; Un I. W.; Baraban J. H.; Sivan Y. Distinguishing Thermal From Non-Thermal Contributions to Plasmonic Hydrodefluorination. Nat. Catal. 2022, 5, 244–246. 10.1038/s41929-022-00767-6. DOI
Swaminathan S.; Rao V. G.; Bera J. K.; Chandra M. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C–N Bond Forming Reaction of Amines. Angew. Chem., Int. Ed. 2021, 60, 12532–12538. 10.1002/anie.202101639. PubMed DOI
Baffou G.; Bordacchini I.; Baldi A.; Quidant R. Simple Experimental Procedures to Distinguish Photothermal From Hot-Carrier Processes in Plasmonics. Light Sci. Appl. 2020, 9, 108.10.1038/s41377-020-00345-0. PubMed DOI PMC
Schürmann R.; Dutta A.; Ebel K.; Tapio K.; Milosavljević A. R.; Bald I. Plasmonic Reactivity of Halogen Thiophenols on Gold Nanoparticles Studied by SERS and XPS. J. Chem. Phys. 2022, 157, 08470810.1063/5.0098110. PubMed DOI
Schürmann R.; Ebel K.; Nicolas C.; Milosavljević A. R.; Bald I. Role of Valence Band States and Plasmonic Enhancement in Electron-Transfer-Induced Transformation of Nitrothiophenol. J. Phys. Chem. Lett. 2019, 10, 3153–3158. 10.1021/acs.jpclett.9b00848. PubMed DOI PMC
Sprague-Klein E. A.; Negru B.; Madison L. R.; Coste S. C.; Rugg B. K.; Felts A. M.; McAnally M. O.; Banik M.; Apkarian V. A.; Wasielewski M. R.; et al. Photoinduced Plasmon-Driven Chemistry in trans-1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. J. Am. Chem. Soc. 2018, 140, 10583–10592. 10.1021/jacs.8b06347. PubMed DOI
Ding T.; Mertens J.; Lombardi A.; Scherman O. A.; Baumberg J. J. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons. ACS Photonics 2017, 4, 1453–1458. 10.1021/acsphotonics.7b00206. PubMed DOI PMC
Koopman W.; Titov E.; Sarhan R. M.; Gaebel T.; Schürmann R.; Mostafa A.; Kogikoski S.; Milosavljević A. R.; Stete F.; Liebig F.; et al. The Role of Structural Flexibility in Plasmon-Driven Coupling Reactions: Kinetic Limitations in the Dimerization of Nitro-Benzenes. Adv. Mater. Interfaces 2021, 8, 210134410.1002/admi.202101344. DOI
Cheruvathoor Poulose A.; Zoppellaro G.; Konidakis I.; Serpetzoglou E.; Stratakis E.; Tomanec O.; Beller M.; Bakandritsos A.; Zbořil R. Fast and Selective Reduction of Nitroarenes Under Visible Light With an Earth-Abundant Plasmonic Photocatalyst. Nature Nanotechnol 2022, 17, 485–492. 10.1038/s41565-022-01087-3. PubMed DOI PMC
Ezendam S.; Herran M.; Nan L.; Gruber C.; Kang Y.; Gröbmeyer F.; Lin R.; Gargiulo J.; Sousa-Castillo A.; Cortés E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS Energy Lett. 2022, 7, 778–815. 10.1021/acsenergylett.1c02241. PubMed DOI PMC
King M. E.; Wang C.; Fonseca Guzman M. V.; Ross M. B. Plasmonics for Environmental Remediation and Pollutant Degradation. Chem. Catal. 2022, 2, 1880–1892. 10.1016/j.checat.2022.06.017. DOI
Takimoto D.; Toma S.; Suda Y.; Shirokura T.; Tokura Y.; Fukuda K.; Matsumoto M.; Imai H.; Sugimoto W. Platinum Nanosheets Synthesized via Topotactic Reduction of Single-Layer Platinum Oxide Nanosheets for Electrocatalysis. Nat. Commun. 2023, 14, 1910.1038/s41467-022-35616-4. PubMed DOI PMC
Kodama K.; Nagai T.; Kuwaki A.; Jinnouchi R.; Morimoto Y. Challenges in Applying Highly Active Pt-Based Nanostructured Catalysts for Oxygen Reduction Reactions to Fuel Cell Vehicles. Nat. Nanotechnol. 2021, 16, 140–147. 10.1038/s41565-020-00824-w. PubMed DOI
Liu Z.; Zhao Z.; Peng B.; Duan X.; Huang Y. Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827. 10.1021/jacs.0c07696. PubMed DOI
Xie C.; Niu Z.; Kim D.; Li M.; Yang P. Surface and Interface Control in Nanoparticle Catalysis. Chem. Rev. 2020, 120, 1184–1249. 10.1021/acs.chemrev.9b00220. PubMed DOI
Jenkinson K. J.; Wagner A.; Kornienko N.; Reisner E.; Wheatley A. E. H. A One-Pot Route to Faceted FePt-Fe3O4 Dumbbells: Probing Morphology–Catalytic Activity Effects in O2 Reduction Catalysis. Adv. Funct. Mater. 2020, 30, 200263310.1002/adfm.202002633. DOI
Zhang J.; Zhang L.; Cui Z. Strategies to Enhance the Electrochemical Performances of Pt-Based Intermetallic Catalysts. Chem. Commun. 2021, 57, 11–26. 10.1039/D0CC05170E. PubMed DOI
Lei W.; Li M.; He L.; Meng X.; Mu Z.; Yu Y.; Ross F. M.; Yang W. A General Strategy for Bimetallic Pt-Based Nano-Branched Structures as Highly Active and Stable Oxygen Reduction and Methanol Oxidation Bifunctional Catalysts. Nano Res. 2020, 13, 638–645. 10.1007/s12274-020-2666-3. DOI
Mao J.; Chen Y.; Pei J.; Wang D.; Li Y. Pt–M M = Cu, Fe, Zn, etc.) Bimetallic Nanomaterials with Abundant Surface Defects and Robust Catalytic Properties. Chem. Commun. 2016, 52, 5985–5988. 10.1039/C6CC02264B. PubMed DOI
Tian X. L.; Xu Y. Y.; Zhang W.; Wu T.; Xia B. Y.; Wang X. Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Lett. 2017, 2, 2035–2043. 10.1021/acsenergylett.7b00593. DOI
Zhang B. W.; Yang H. L.; Wang Y. X.; Dou S. X.; Liu H. K. A Comprehensive Review on Controlling Surface Composition of Pt-Based Bimetallic Electrocatalysts. Adv. Energy Mater. 2018, 8, 170359710.1002/aenm.201703597. DOI
Chaudhari N. K.; Joo J.; Kwon H. B.; Kim B.; Kim H. Y.; Joo S. H.; Lee K. Nanodendrites of Platinum-Group Metals for Electrocatalytic Applications. Nano Res. 2018, 11, 6111–6140. 10.1007/s12274-018-2161-2. DOI
Ming S.; Wheatley A. E. H. Manipulating Morphology and Composition in Colloidal Heterometallic Nanopods and Nanodendrites. Nanoscale 2023, 15, 8814–8824. 10.1039/D3NR00461A. PubMed DOI
Chen R.; Nguyen Q. N.; Xia Y. Oriented Attachment: A Unique Mechanism for the Colloidal Synthesis of Metal Nanostructures. ChemNanoMat 2022, 8, e20210047410.1002/cnma.202100474. DOI
Gao R. T.; Zhang J.; Nakajima T.; He J.; Liu X.; Zhang X.; Wang L.; Wu L. Single-Atomic-Site Platinum Steers Photogenerated Charge Carrier Lifetime of Hematite Nanoflakes for Photoelectrochemical Water Splitting. Nat. Commun. 2023, 14, 264010.1038/s41467-023-38343-6. PubMed DOI PMC
Hughes A. E.; Haque N.; Northey S. A.; Giddey S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 9310.3390/resources10090093. DOI
Sushma; Kumari M.; Saroha A. K. Performance of Various Catalysts on Treatment of Refractory Pollutants in Industrial Wastewater by Catalytic Wet Air Oxidation: A Review. J. Environ. Manage. 2018, 228, 169–188. 10.1016/j.jenvman.2018.09.003. PubMed DOI
Fujiwara K.; Okuyama K.; Pratsinis S. E. Metal–Support Interactions in Catalysts for Environmental Remediation. Environ. Sci. Nano 2017, 4, 2076–2092. 10.1039/C7EN00678K. DOI
Huth M.; Porrati F.; Dobrovolskiy O. V. Focused Electron Beam Induced Deposition Meets Materials Science. Microelectron. Eng. 2018, 185–186, 9–28. 10.1016/j.mee.2017.10.012. DOI
De Teresa J. M.; Fernández-Pacheco A.; Córdoba R.; Serrano-Ramón L.; Sangiao S.; Ibarra M. R. Review of Magnetic Nanostructures Grown by Focused Electron Beam Induced Deposition (FEBID). J. Phys. D: Appl. Phys. 2016, 49, 24300310.1088/0022-3727/49/24/243003. DOI
Huth M.; Porrati F.; Barth S. Living Up to Its Potential – Direct-Write Nanofabrication with Focused Electron Beams. J. Appl. Phys. 2021, 130, 17090110.1063/5.0064764. DOI
Reyntjens S.; Puers R. Focused Ion Beam Induced Deposition: Fabrication of Three-Dimensional Microstructures and Young’s Modulus of the Deposited Material. J. Micromech. Microeng. 2000, 10, 181–188. 10.1088/0960-1317/10/2/314. DOI
Kometani R.; Ishihara S. Nanoelectromechanical Device Fabrications by 3-D Nanotechnology Using Focused-Ion Beams. Sci. Technol. Adv. Mater. 2009, 10, 03450110.1088/1468-6996/10/3/034501. PubMed DOI PMC
Cui A.; Li W.; Luo Q.; Liu Z.; Gu C. Freestanding Nanostructures for Three-Dimensional Superconducting Nanodevices. Appl. Phys. Lett. 2012, 100, 14310610.1063/1.3701283. DOI
Nanda G.; van Veldhoven E.; Maas D.; Sadeghian H.; Alkemade P. F. A. Helium Ion Beam Induced Growth of Hammerhead AFM Probes. J. Vac. Sci. Technol. B 2015, 33, 06F50310.1116/1.4936068. DOI
Córdoba R.; Ibarra A.; Mailly D.; De Teresa J. M. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition. Nano Lett. 2018, 18, 1379–1386. 10.1021/acs.nanolett.7b05103. PubMed DOI
Swiderek P.; Marbach H.; Hagen C. W. Chemistry for Electron-Induced Nanofabrication. Beilstein J. Nanotechnol. 2018, 9, 1317–1320. 10.3762/bjnano.9.124. PubMed DOI PMC
Botman A.; Mulders J. J. L.; Hagen C. W. Creating Pure Nanostructures From Electron-Beam-Induced Deposition Using Purification Techniques: A Technology Perspective. Nanotechnology 2009, 20, 37200110.1088/0957-4484/20/37/372001. PubMed DOI
Geier B.; Gspan C.; Winkler R.; Schmied R.; Fowlkes J. D.; Fitzek H.; Rauch S.; Rattenberger J.; Rack P. D.; Plank H. Rapid and Highly Compact Purification for Focused Electron Beam Induced Deposits: A Low Temperature Approach Using Electron Stimulated H2O Reactions. J. Phys. Chem. C 2014, 118, 14009–14016. 10.1021/jp503442b. DOI
Fowlkes J. D.; Geier B.; Lewis B. B.; Rack P. D.; Stanford M. G.; Winkler R.; Plank H. Electron Nanoprobe Induced Oxidation: A Simulation of Direct-Write Purification. Phys. Chem. Chem. Phys. 2015, 17, 18294–18304. 10.1039/C5CP01196E. PubMed DOI
Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic Modeling of Thermal Effects in Focused Electron Beam-Induced Deposition of Me2Au(tfac). Eur. Phys. J. D 2023, 77, 15.10.1140/epjd/s10053-023-00598-5. DOI
Huth M.; Klingenberger D.; Grimm C.; Porrati F.; Sachser R. Conductance Regimes of W-based Granular Metals Prepared by Electron Beam Induced Deposition. New J. Phys. 2009, 11, 03303210.1088/1367-2630/11/3/033032. DOI
Huth M.; Porrati F.; Gruszka P.; Barth S. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition. Micromachines 2020, 11, 28.10.3390/mi11010028. PubMed DOI PMC
Stanford M. G.; Mahady K.; Lewis B. B.; Fowlkes J. D.; Tan S.; Livengood R.; Magel G. A.; Moore T. M.; Rack P. D. Laser-Assisted Focused He+ Ion Beam Induced Etching with and without XeF2 Gas Assist. ACS Appl. Mater. Interfaces 2016, 8, 29155–29162. 10.1021/acsami.6b09758. PubMed DOI
Seewald L. M.; Winkler R.; Kothleitner G.; Plank H. Expanding 3D Nanoprinting Performance by Blurring the Electron Beam. Micromachines 2021, 12, 115.10.3390/mi12020115. PubMed DOI PMC
Frabboni S.; Gazzadi G. C.; Felisari L.; Spessot A. Fabrication by Electron Beam Induced Deposition and Transmission Electron Microscopic Characterization of Sub-10-nm Freestanding Pt Nanowires. Appl. Phys. Lett. 2006, 88, 21311610.1063/1.2206996. DOI
Keller L.; Al Mamoori M. K. I.; Pieper J.; Gspan C.; Stockem I.; Schröder C.; Barth S.; Winkler R.; Plank H.; Pohlit M.; Müller J.; Huth M. Direct-Write of Free-Form Building Blocks for Artificial Magnetic 3D Lattices. Sci. Rep. 2018, 8, 6160.10.1038/s41598-018-24431-x. PubMed DOI PMC
Sanz-Hernández D.; Hierro-Rodriguez A.; Donnelly C.; Pablo-Navarro J.; Sorrentino A.; Pereiro E.; Magén C.; McVitie S.; de Teresa J. M.; Ferrer S.; Fischer P.; Fernández-Pacheco A. Artificial Double-Helix for Geometrical Control of Magnetic Chirality. ACS Nano 2020, 14, 8084–8092. 10.1021/acsnano.0c00720. PubMed DOI PMC
Passaseo A.; Esposito M.; Cuscunà M.; Tasco V. Materials and 3D Designs of Helix Nanostructures for Chirality at Optical Frequencies. Adv. Opt. Mater. 2017, 5, 160107910.1002/adom.201601079. DOI
Winkler R.; Schmidt F.-P.; Haselmann U.; Fowlkes J. D.; Lewis B. B.; Kothleitner G.; Rack P. D.; Plank H. Direct-Write 3D Nanoprinting of Plasmonic Structures. ACS Appl. Mater. Interfaces 2017, 9, 8233–8240. 10.1021/acsami.6b13062. PubMed DOI
Esposito M.; Tasco V.; Cuscunà M.; Todisco F.; Benedetti A.; Tarantini I.; De Giorgi M.; Sanvitto D.; Passaseo A. Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics 2015, 2, 105–114. 10.1021/ph500318p. DOI
Beard J. D.; Gordeev S. N. Large Flexibility of High Aspect Ratio Carbon Nanostructures Fabricated by Electron-Beam-Induced Deposition. Nanotechnology 2010, 21, 47570210.1088/0957-4484/21/47/475702. PubMed DOI
Burbridge D. J.; Gordeev S. N. Proximity Effects in Free-Standing EBID Structures. Nanotechnology 2009, 20, 28530810.1088/0957-4484/20/28/285308. PubMed DOI
Mutunga E.; Winkler R.; Sattelkow J.; Rack P. D.; Plank H.; Fowlkes J. D. Impact of Electron-Beam Heating during 3D Nanoprinting. ACS Nano 2019, 13, 5198–5213. 10.1021/acsnano.8b09341. PubMed DOI
Fowlkes J. D.; Winkler R.; Mutunga E.; Rack P. D.; Plank H. Simulation Informed CAD for 3D Nanoprinting. Micromachines 2020, 11, 8.10.3390/mi11010008. PubMed DOI PMC
Bret T.; Utke I.; Gaillard C.; Hoffmann P. Periodic Structure Formation by Focused Electron-Beam-Induced Deposition. J. Vac. Sci. Technol. B 2004, 22, 2504–2510. 10.1116/1.1800356. DOI
Mølhave K.; Madsen D. N.; Dohn S.; Bøggild P. Constructing, Connecting and Soldering Nanostructures by Environmental Electron Beam Deposition. Nanotechnology 2004, 15, 1047–1053. 10.1088/0957-4484/15/8/033. DOI
Fowlkes J. D.; Winkler R.; Lewis B. B.; Stanford M. G.; Plank H.; Rack P. D. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition. ACS Nano 2016, 10, 6163–6172. 10.1021/acsnano.6b02108. PubMed DOI
Hirt L.; Reiser A.; Spolenak R.; Zambelli T. Additive Manufacturing of Metal Structures at the Micrometer Scale. Adv. Mater. 2017, 29, 160421110.1002/adma.201604211. PubMed DOI
Sanz-Hernández D.; Fernández-Pacheco A. Modelling Focused Electron Beam Induced Deposition Beyond Langmuir Adsorption. Beilstein J. Nanotechnol. 2017, 8, 2151–2161. 10.3762/bjnano.8.214. PubMed DOI PMC
Plank H.; Gspan C.; Dienstleder M.; Kothleitner G.; Hofer F. The Influence of Beam Defocus on Volume Growth Rates for Electron Beam Induced Platinum Deposition. Nanotechnology 2008, 19, 48530210.1088/0957-4484/19/48/485302. PubMed DOI
Kuhness D.; Gruber A.; Winkler R.; Sattelkow J.; Fitzek H.; Letofsky-Papst I.; Kothleitner G.; Plank H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS Appl. Mater. Interfaces 2021, 13, 1178–1191. 10.1021/acsami.0c17030. PubMed DOI
Pablo-Navarro J.; Sangiao S.; Magén C.; María de Teresa J. Diameter Modulation of 3D Nanostructures in Focused Electron Beam Induced Deposition Using Local Electric Fields and Beam Defocus. Nanotechnology 2019, 30, 50530210.1088/1361-6528/ab423c. PubMed DOI
Winkler R.; Lewis B. B.; Fowlkes J. D.; Rack P. D.; Plank H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals. ACS Appl. Nano Mater. 2018, 1, 1014–1027. 10.1021/acsanm.8b00158. DOI
Fowlkes J. D.; Winkler R.; Lewis B. B.; Fernández-Pacheco A.; Skoric L.; Sanz-Hernández D.; Stanford M. G.; Mutunga E.; Rack P. D.; Plank H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). ACS Appl. Nano Mater. 2018, 1, 1028–1041. 10.1021/acsanm.7b00342. DOI
Toth M.; Lobo C.; Friedli V.; Szkudlarek A.; Utke I. Continuum Models of Focused Electron Beam Induced Processing. Beilstein J. Nanotechnol. 2015, 6, 1518–1540. 10.3762/bjnano.6.157. PubMed DOI PMC
Guo D.; Kometani R.; Warisawa S.; Ishihara S. Three-Dimensional Nanostructure Fabrication by Controlling Downward Growth on Focused-Ion-Beam Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2012, 51, 06500110.1143/JJAP.51.065001. DOI
Guo D.; Kometani R.; Warisawa S.; Ishihara S. Growth of Ultra-Long Free-Space-Nanowire by the Real-Time Feedback Control of the Scanning Speed on Focused-Ion-Beam Chemical Vapor Deposition. J. Vac. Sci. Technol. B 2013, 31, 06160110.1116/1.4824170. DOI
Winkler R.; Fowlkes J.; Szkudlarek A.; Utke I.; Rack P. D.; Plank H. The Nanoscale Implications of a Molecular Gas Beam during Electron Beam Induced Deposition. ACS Appl. Mater. Interfaces 2014, 6, 2987–2995. 10.1021/am405591d. PubMed DOI
Olsen K.; Bohr J. The Generic Geometry of Helices and Their Close-Packed Structures. Theor. Chem. Acc. 2010, 125, 207–215. 10.1007/s00214-009-0639-4. DOI
Keller L.; Huth M. Pattern Generation for Direct-Write Three-Dimensional Nanoscale Structures via Focused Electron Beam Induced Deposition. Beilstein J. Nanotechnol. 2018, 9, 2581–2598. 10.3762/bjnano.9.240. PubMed DOI PMC
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Meth. 2012, 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Engmann S.; Stano M.; Matejčík Š.; Ingólfsson O. Gas Phase Low Energy Electron Induced Decomposition of the Focused Electron Beam Induced Deposition (FEBID) Precursor Trimethyl (Methylcyclopentadienyl) Platinum(iv) (MeCpPtMe3). Phys. Chem. Chem. Phys. 2012, 14, 14611–14618. 10.1039/c2cp42637d. PubMed DOI
Wnuk J. D.; Gorham J. M.; Rosenberg S. G.; van Dorp W. F.; Madey T. E.; Hagen C. W.; Fairbrother D. H. Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem. C 2009, 113, 2487–2496. 10.1021/jp807824c. DOI
Athanasopoulos H. K. The Moon Village and Space 4.0: The ‘Open Concept’ as a New Way of Doing Space?. Space Policy 2019, 49, 10132310.1016/j.spacepol.2019.05.001. DOI
van Dishoeck E. F. Astrochemistry of Dust, Ice and Gas: Introduction and Overview. Faraday Discus 2014, 168, 9–47. 10.1039/C4FD00140K. PubMed DOI
Ghosh M.; Hendy M.; Raush J.; Momeni K. A Phase-Field Model for In-Space Manufacturing of Binary Alloys. Materials 2023, 16, 383.10.3390/ma16010383. PubMed DOI PMC
Dohnálek Z.; Kimmel G. A.; Ayotte P.; Smith R. S.; Kay B. D. The Deposition Angle-Dependent Density of Amorphous Solid Water Films. J. Chem. Phys. 2003, 118, 364–372. 10.1063/1.1525805. DOI
Kimmel G. A.; Stevenson K. P.; Dohnálek Z.; Smith R. S.; Kay B. D. Control of Amorphous Solid Water Morphology Using Molecular Beams. I. Experimental Results. J. Chem. Phys. 2001, 114, 5284–5294. 10.1063/1.1350580. DOI
Stevenson K. P.; Kimmel G. A.; Dohnálek Z.; Smith R. S.; Kay K. Controlling the Morphology of Amorphous Solid Water. Science 1999, 283, 1505–1507. 10.1126/science.283.5407.1505. PubMed DOI
Holtom P. D.; Dawes A.; Mukerji R. J.; Davis M. P.; Webb S. M.; Hoffman S. V.; Mason N. J. VUV Photoabsorption Spectroscopy of Sulfur Dioxide Ice. Phys. Chem. Chem. Phys. 2006, 8, 714–718. 10.1039/B513182K. PubMed DOI
Bacon D. J.; Osetsky Y. N. Modelling Atomic Scale Radiation Damage Processes and Effects in Metals. Int. Mater. Rev. 2002, 47, 233–241. 10.1179/095066002225006575. DOI
Shingledecker C. N.; Herbst E. A General Method for the Inclusion of Radiation Chemistry in Astrochemical Models. Phys. Chem. Chem. Phys. 2018, 20, 5359–5367. 10.1039/C7CP05901A. PubMed DOI
Shingledecker C. N.; Tennis J.; Le Gal R.; Herbst E. On Cosmic-Ray-Driven Grain Chemistry in Cold Core Models. Astrophys. J. 2018, 861, 20.10.3847/1538-4357/aac5ee. DOI
Sherwood B. Principles for a Practical Moon Base. Acta Astronautica 2019, 160, 116–124. 10.1016/j.actaastro.2019.04.018. DOI
Strigari L.; Strolin S.; Morganti A. G.; Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front. Public Health 2021, 9, 73333710.3389/fpubh.2021.733337. PubMed DOI PMC
Mertens C. J.; Slaba T. C.; Hu S. Active Dosimeter-Based Estimate of Astronaut Acute Radiation Risk for Real-Time Solar Energetic Particle Events. Space Weather 2018, 16, 1291–1316. 10.1029/2018SW001971. DOI
Zhu X.-L.; Chen M.; Weng S.-M.; Yu T.-P.; Wang W.-M.; He F.; Sheng Z.-M.; McKenna P.; Jaroszynski D. A.; Zhang J. Extremely Brilliant GeV γ-Rays from a Two-Stage Laser-Plasma Accelerator. Sci. Adv. 2020, 6, eaaz724010.1126/sciadv.aaz7240. PubMed DOI PMC
Howell C. R.; Ahmed M. W.; Afanasev A.; Alesini D.; Annand J. R. M.; Aprahamian A.; Balabanski D. L.; Benson S. V.; Bernstein A.; Brune C. R.; et al. International Workshop on Next Generation Gamma-Ray Source. J. Phys. G: Nucl. Part. Phys. 2022, 49, 01050210.1088/1361-6471/ac2827. DOI
Wu Y. K.; Vinokurov N. A.; Mikhailov S.; Li J.; Popov V. High-Gain Lasing and Polarization Switch with a Distributed Optical-Klystron Free-Electron Laser. Phys. Rev. Lett. 2006, 96, 22480110.1103/PhysRevLett.96.224801. PubMed DOI
Doerr A. The New XFELs. Nat. Meth. 2018, 15, 33.10.1038/nmeth.4548. DOI
Seddon E. A.; Clarke J. A.; Dunning D. J.; Masciovecchio C.; Milne C. J.; Parmigiani F.; Rugg D.; Spence J. C. H.; Thompson N. R.; Ueda K.; et al. Short-Wavelength Free-Electron Laser Sources and Science: A Review. Rep. Prog. Phys. 2017, 80, 11590110.1088/1361-6633/aa7cca. PubMed DOI
Milne C. J.; Schietinger T.; Aiba M.; Alarcon A.; Alex J.; Anghel A.; Arsov V.; Beard C.; Beaud P.; Bettoni S.; et al. SwissFEL: The Swiss X-ray Free Electron Laser. Appl. Sci. 2017, 7, 720.10.3390/app7070720. DOI
Bostedt C.; Boutet S.; Fritz D. M.; Huang Z.; Lee H. J.; Lemke H. T.; Robert A.; Schlotter W. F.; Turner J. J.; Williams G. J. Linac Coherent Light Source: The First Five Years. Rev. Mod. Phys. 2016, 88, 01500710.1103/RevModPhys.88.015007. DOI
Couprie M. E. New Generation of Light Sources: Present and Future. J. Electr. Spectrosc. Rel. Phenom. 2014, 196, 3–13. 10.1016/j.elspec.2013.12.007. DOI
Tavares P. F.; Leemann S. C.; Sjöström M.; Andersson Å. The MAX IV Storage Ring Project. J. Synchrotron Rad. 2014, 21, 862–877. 10.1107/S1600577514011503. PubMed DOI PMC
Yabashi M.; Tanaka H. The Next Ten Years of X-Ray Science. Nat. Photonics 2017, 11, 12–14. 10.1038/nphoton.2016.251. DOI
Emma P.; Akre R.; Arthur J.; Bionta R.; Bostedt C.; Bozek J.; Brachmann A.; Bucksbaum P.; Coffee R.; Decker F.-J.; et al. First Lasing and Operation of an Ångstrom-Wavelength Free-Electron Laser. Nat. Photonics 2010, 4, 641–647. 10.1038/nphoton.2010.176. DOI
Korol A. V.; Solov’yov A. V.; Greiner W. Coherent Radiation of an Ultrarelativistic Charged Particle Channelled in a Periodically Bent Crystal. J. Phys. G: Nucl. Part. Phys. 1998, 24, L45–L53. 10.1088/0954-3899/24/5/001. DOI
Ayvazyan V.; Baboi N.; Bohnet I.; Brinkmann R.; Castellano M.; Castro P.; Catani L.; Choroba S.; Cianchi A.; Dohlus M.; et al. A New Powerful Source for Coherent VUV Radiation: Demonstration of Exponential Growth and Saturation at the TTF Free-Electron Laser. Eur. Phys. J. D 2002, 20, 149–156. 10.1140/epjd/e2002-00121-4. DOI
Schmüser P.; Dohlus M.; Rossbach J.. Ultraviolet and Soft X-Ray Free-Electron Lasers; Springer, 2009.
Bessonov E. G. Theory of Parametric Free-Electron Lasers. Sov. J. Quantum Electron. 1986, 16, 1056–1063. 10.1070/QE1986v016n08ABEH007238. DOI
McNeil B. W. J.; Thompson N. R. X-Ray Free-Electron Lasers. Nat. Photonics 2010, 4, 814–821. 10.1038/nphoton.2010.239. DOI
Gover A.; Ianconescu R.; Friedman A.; Emma C.; Sudar N.; Musumeci P.; Pellegrini C. Superradiant and Stimulated-Superradiant Emission of Bunched Electron Beams. Rev. Mod. Phys. 2019, 91, 03500310.1103/RevModPhys.91.035003. DOI
Greiner W.; Korol A. V.; Kostyuk A.; Solov’yov A. V.. Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung. DE 102010023632 A1, 2011.
Kostyuk A.; Korol A. V.; Solov’yov A. V.; Greiner W. Stable Propagation of a Modulated Positron Beam in a Bent Crystal Channel. J. Phys. B: At. Mol. Opt. Phys. 2010, 43, 15100110.1088/0953-4075/43/15/151001. DOI
Ledingham K. W. D.; McKenna P.; Singhal R. P. Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers. Science 2003, 300, 1107–1111. 10.1126/science.1080552. PubMed DOI
ur Rehman H.; Lee J.; Kim Y. Optimization of the Laser-Compton Scattering Spectrum for the Transmutation of High-Toxicity and Long-Living Nuclear Waste. Ann. Nucl. Energy 2017, 105, 150–160. 10.1016/j.anucene.2017.03.014. DOI
ur Rehman H.; Lee J.; Kim Y. Comparison of the Laser-Compton Scattering and the Conventional Bremsstrahlung X-Rays for Photonuclear Transmutation. Int. J. Energy Res. 2018, 42, 236–244. 10.1002/er.3904. DOI
Weon B. M.; Je J. H.; Hwu Y.; Margaritondo G. Decreased Surface Tension of Water by Hard-X-Ray Irradiation. Phys. Rev. Lett. 2008, 100, 21740310.1103/PhysRevLett.100.217403. PubMed DOI
Vanraes P.; Venugopalan S. P.; Bogaerts A. Multiscale Modeling of Plasma–Surface Interaction – General Picture and a Case Study of Si and SiO2 Etching by Fluorocarbon-Based Plasmas. Appl. Phys. Rev. 2021, 8, 04130510.1063/5.0058904. DOI
Bonitz M.; Filinov A.; Abraham J.-W.; Balzer K.; Kählert H.; Pehlke E.; Bronold F. X.; Pamperin M.; Becker M.; Loffhagen D.; Fehske H. Towards an Integrated Modeling of the Plasma-Solid Interface. Front. Chem. Sci. Eng. 2019, 13, 201–237. 10.1007/s11705-019-1793-4. DOI
Ebert U.; Montijn C.; Briels T. M. P.; Hundsdorfer W.; Meulenbroek B.; Rocco A.; van Veldhuizen E. M. The Multiscale Nature of Streamers. Plasma Sources Sci. Technol. 2006, 15, S118–S129. 10.1088/0963-0252/15/2/S14. DOI
Brault P. Multiscale Molecular Dynamics Simulation of Plasma Processing: Application to Plasma Sputtering. Front. Phys. 2018, 6, 59.10.3389/fphy.2018.00059. DOI
Crose M.; Zhang W.; Tran A.; Christofides P. D. Multiscale Three-Dimensional CFD Modeling for PECVD of Amorphous Silicon Thin Films. Comput. Chem. Eng. 2018, 113, 184–195. 10.1016/j.compchemeng.2018.03.011. DOI
Zhu G.; Han M.; Xiao B.; Gan Z. Influence of Sputtering Pressure on the Micro-Topography of Sputtered Cu/Si Films: Integrated Multiscale Simulation. Processes 2023, 11, 1649.10.3390/pr11061649. DOI
Adamovich I.; Agarwal S.; Ahedo E.; Alves L. L.; Baalrud S.; Babaeva N.; Bogaerts A.; Bourdon A.; Bruggeman P. J.; Canal C.; et al. The 2022 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. D: Appl. Phys. 2022, 55, 37300110.1088/1361-6463/ac5e1c. DOI
Dollet A. Multiscale Modeling of CVD Film Growth – A Review of Recent Works. Surf. Coat. Technol. 2004, 177–178, 245–251. 10.1016/j.surfcoat.2003.09.040. DOI
Schleder G. R.; Padilha A. C. M.; Acosta C. M.; Costa M.; Fazzio A. From DFT to Machine Learning: Recent Approaches to Materials Science – A Review. J. Phys.: Materials 2019, 2, 03200110.1088/2515-7639/ab084b. DOI
Neyts E. C.; Brault P. Molecular Dynamics Simulations for Plasma-Surface Interactions. Plasma Proc. Polym. 2017, 14, 160014510.1002/ppap.201600145. DOI
Brault P.; Thomann A.-L.; Cavarroc M. Theory and Molecular Simulations of Plasma Sputtering, Transport and Deposition Processes. Eur. Phys. J. D 2023, 77, 19.10.1140/epjd/s10053-023-00592-x. DOI
Yang Z.; Lively M. A.; Allain J. P. Kinetic Monte Carlo Simulation of Self-Organized Pattern Formation Induced by Ion Beam Sputtering Using Crater Functions. Phys. Rev. B 2015, 91, 07542710.1103/PhysRevB.91.075427. DOI
Verboncoeur J. P. Particle Simulation of Plasmas: Review and Advances. Plasma Phys. Controlled Fusion 2005, 47, A231–A260. 10.1088/0741-3335/47/5A/017. DOI
Benilov M. S. Modeling the Physics of Interaction of High-Pressure Arcs with Their Electrodes: Advances and Challenges. J. Phys. D: Appl. Phys. 2020, 53, 01300210.1088/1361-6463/ab47be. DOI
Murphy A. B.; Park H. Modeling of Thermal Plasma Processes: The Importance of Two-Way Plasma-Surface Interactions. Plasma Proc. Polym. 2017, 14, 160017710.1002/ppap.201600177. DOI
Murphy A. B.; Boulos M. I.; Colombo V.; Fauchais P.; Ghedini E.; Gleizes A.; Proulx P.; Schram D. C. Avanced Thermal Plasma Modelling. High Temp. Mater. Proc. 2008, 12, 255–336. 10.1615/HighTempMatProc.v12.i3-4.30. DOI
Trelles J. P. Advances and Challenges in Computational Fluid Dynamics of Atmospheric Pressure Plasmas. Plasma Sources Sci. Technol. 2018, 27, 09300110.1088/1361-6595/aac9fa. DOI
Kadlec S. Simulation of Neutral Particle Flow During High Power Magnetron Impulse. Plasma Proc. Polym. 2007, 4, S419–S423. 10.1002/ppap.200731101. DOI
Kushner M. J. Hybrid Modelling of Low Temperature Plasmas for Fundamental Investigations and Equipment Design. J. Phys. D: Appl. Phys. 2009, 42, 19401310.1088/0022-3727/42/19/194013. DOI
Kim H. C.; Iza F.; Yang S. S.; Radmilović-Radjenović M.; Lee J. K. Particle and Fluid Simulations of Low-Temperature Plasma Discharges: Benchmarks and Kinetic Effects. J. Phys. D: Appl. Phys. 2005, 38, R283–R301. 10.1088/0022-3727/38/19/R01. DOI
Economou D. J. Hybrid Simulation of Low Temperature Plasmas: A Brief Tutorial. Plasma Proc. Polym. 2017, 14, 160015210.1002/ppap.201600152. DOI
Nijdam S.; Teunissen J.; Ebert U. The Physics of Streamer Discharge Phenomena. Plasma Sources Sci. Technol. 2020, 29, 10300110.1088/1361-6595/abaa05. DOI
Ebert U.; Sentman D. D. Streamers, Sprites, Leaders, Lightning: From Micro- to Macroscales. J. Phys. D: Appl. Phys. 2008, 41, 23030110.1088/0022-3727/41/23/230301. DOI
Ebert U.; Nijdam S.; Li C.; Luque A.; Briels T.; van Veldhuizen E. Review of Recent Results on Streamer Discharges and Discussion of Their Relevance for Sprites and Lightning. J. Geophys. Res. Space Phys. 2010, 115, A00E4310.1029/2009JA014867. DOI
Jimenez F. J.; Dew S. K. Comprehensive Computer Model for Magnetron Sputtering. I. Gas Heating and Rarefaction. J. Vac. Sci. Technol. A 2012, 30, 04130210.1116/1.4712534. DOI
Gudmundsson J. T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29, 11300110.1088/1361-6595/abb7bd. DOI
Anders A. A Review Comparing Cathodic Arcs and High Power Impulse Magnetron Sputtering (HiPIMS). Surf. Coat. Technol. 2014, 257, 308–325. 10.1016/j.surfcoat.2014.08.043. DOI
Brenning N.; Lundin D.; Minea T.; Costin C.; Vitelaru C. Spokes and Charged Particle Transport in HiPIMS Magnetrons. J. Phys. D: Appl. Phys. 2013, 46, 08400510.1088/0022-3727/46/8/084005. DOI
Kadlec S.; Čapek J. Return of Target Material Ions Leads to a Reduced Hysteresis in Reactive High Power Impulse Magnetron Sputtering: Model. J. Appl. Phys. 2017, 121, 17191010.1063/1.4977815. DOI
Anders A.Cathodic Arcs From Fractal Spots to Energetic Condensation; Springer, 2008.
Schneider R. Plasma–Wall Interaction: A Multiscale Problem. Phys. Scr. 2006, T124, 76–79. 10.1088/0031-8949/2006/T124/015. DOI
Cheimarios N.; Kokkoris G.; Boudouvis A. G. Multiscale Modeling in Chemical Vapor Deposition Processes: Models and Methodologies. Arch. Comput. Methods Eng. 2021, 28, 637–672. 10.1007/s11831-019-09398-w. DOI
Kambara M.; Kawaguchi S.; Lee H. J.; Ikuse K.; Hamaguchi S.; Ohmori T.; Ishikawa K. Science-Based, Data-Driven Developments in Plasma Processing for Material Synthesis and Device-Integration Technologies. Jpn. J. Appl. Phys. 2023, 62, SA080310.35848/1347-4065/ac9189. DOI
Gunasegaram D. R.; Murphy A. B.; Barnard A.; DebRoy T.; Matthews M. J.; Ladani L.; Gu D. Towards Developing Multiscale-Multiphysics Models and Their Surrogates for Digital Twins of Metal Additive Manufacturing. Addit. Manuf. 2021, 46, 10208910.1016/j.addma.2021.102089. DOI
Jetly V.; Chaudhury B. Extracting Electron Scattering Cross Sections from Swarm Data using Deep Neural Networks. Mach. Learn.: Sci. Technol. 2021, 2, 03502510.1088/2632-2153/abf15a. DOI
Nam J.; Yong H.; Hwang J.; Choi J. Training an Artificial Neural Network for Recognizing Electron Collision Patterns. Phys. Lett. A 2021, 387, 12700510.1016/j.physleta.2020.127005. DOI
Krüger F.; Gergs T.; Trieschmann J. Machine Learning Plasma-Surface Interface for Coupling Sputtering and Gas-Phase Transport Simulations. Plasma Sources Sci. Technol. 2019, 28, 03500210.1088/1361-6595/ab0246. DOI
Raissi M.; Perdikaris P.; Karniadakis G. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. 10.1016/j.jcp.2018.10.045. DOI
Karniadakis G. E.; Kevrekidis I. G.; Lu L.; Perdikaris P.; Wang S.; Yang L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. 10.1038/s42254-021-00314-5. DOI
Spears B. K.; Brase J.; Bremer P.-T.; Chen B.; Field J.; Gaffney J.; Kruse M.; Langer S.; Lewis K.; Nora R.; Peterson J. L.; Thiagarajan J. J.; Van Essen B.; Humbird K. Deep Learning: A Guide for Practitioners in the Physical Sciences. Phys. Plasmas 2018, 25, 08090110.1063/1.5020791. DOI
Cuomo S.; Di Cola V. S.; Giampaolo F.; Rozza G.; Raissi M.; Piccialli F. Scientific Machine Learning Through Physics – Informed Neural Networks: Where We Are and What’s Next. J. Sci. Comput. 2022, 92, 88.10.1007/s10915-022-01939-z. DOI
Markidis S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?. Front. Big Data 2021, 4, 66909710.3389/fdata.2021.669097. PubMed DOI PMC
Park S.; Jang Y.; Cha T.; Noh Y.; Choi Y.; Lee J.; Seong J.; Kim B.; Cho T.; Park Y.; Seo R.; Yang J.-H.; Kim G.-H. Predictive Control of the Plasma Processes in the OLED Display Mass Production Referring to the Discontinuity Qualifying PI-VM. Phys. Plasmas 2020, 27, 08350710.1063/1.5135312. DOI
Bonzanini A. D.; Shao K.; Graves D. B.; Hamaguchi S.; Mesbah A. Foundations of Machine Learning for Low-Temperature Plasmas: Methods and Case Studies. Plasma Sources Sci. Technol. 2023, 32, 02400310.1088/1361-6595/acb28c. DOI
Kawaguchi S.; Murakami T. Physics-Informed Neural Networks for Solving the Boltzmann Equation of the Electron Velocity Distribution Function in Weakly Ionized Plasmas. Jpn. J. Appl. Phys. 2022, 61, 08600210.35848/1347-4065/ac7afb. DOI
Cai S.; Wang Z.; Wang S.; Perdikaris P.; Karniadakis G. E. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transfer 2021, 143, 06080110.1115/1.4050542. DOI
Zeng X.; Zhang S.; Ren C.; Shao T. Physics Informed Neural Networks for Electric Field Distribution Characteristics Analysis. J. Phys. D: Appl. Phys. 2023, 56, 16520210.1088/1361-6463/acbec3. DOI
Zhong L.; Wu B.; Wang Y. Accelerating Physics-Informed Neural Network Based 1D Arc Simulation by Meta Learning. J. Phys. D: Appl. Phys. 2023, 56, 07400610.1088/1361-6463/acb604. DOI
Carbone E.; Graef W.; Hagelaar G.; Boer D.; Hopkins M. M.; Stephens J. C.; Yee B. T.; Pancheshnyi S.; van Dijk J.; Pitchford L. Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial. Atoms 2021, 9, 16.10.3390/atoms9010016. DOI
The HITRAN Database. https://hitran.org/ (accessed 2023-10-18).
Buehler S. A.; Brath M.; Lemke O.; Hodnebrog Øi.; Pincus R.; Eriksson P.; Gordon I.; Larsson R. A New Halocarbon Absorption Model Based on HITRAN Cross-Section Data and New Estimates of Halocarbon Instantaneous Clear-Sky Radiative Forcing. J. Adv. Model. Earth Syst. 2022, 14, e2022MS00323910.1029/2022MS003239. DOI
ALADDIN. International Atomic Energy Agency: Vienna, Austria. https://www.iaea.org/resources/databases/aladdin (accessed 2023-10-18).
Celiberto R.; Armenise I.; Cacciatore M.; Capitelli M.; Esposito F.; Gamallo P.; Janev R. K.; Laganà A.; Laporta V.; Laricchiuta A.; et al. Atomic and Molecular Data for Spacecraft Re-entry Plasmas. Plasma Sources Sci. Technol. 2016, 25, 03300410.1088/0963-0252/25/3/033004. DOI
Song M.-Y.; Kwon D.-C.; Jhang W.-S.; Kwang S.-H.; Park J.-H.; Kang Y.-K.; Yoon J.-S.. Atomic and Molecular Data for Industrial Application Plasmas. In Atomic Processes in Basic and Applied Physics; Shevelko V., Tawara H., Eds.; Springer Series on Atomic, Optical, and Plasma Physics, Vol. 68; Springer, 2012; pp 357–391.
Samukawa S.; Hori M.; Rauf S.; Tachibana K.; Bruggeman P.; Kroesen G.; Whitehead J. C.; Murphy A. B.; Gutsol A. F.; Starikovskaia S.; et al. The 2012 Plasma Roadmap. J. Phys. D: Appl. Phys. 2012, 45, 25300110.1088/0022-3727/45/25/253001. DOI
Adamovich I.; Baalrud S. D.; Bogaerts A.; Bruggeman P. J.; Cappelli M.; Colombo V.; Czarnetzki U.; Ebert U.; Eden J. G.; Favia P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D: Appl. Phys. 2017, 50, 32300110.1088/1361-6463/aa76f5. DOI
Anirudh R.; Archibald R.; Asif M. S.; Becker M. M.; Benkadda S.; Bremer P.-T.; Budé R. H. S.; Chang C. S.; Chen L.; Churchill R. M.; et al. 2022 Review of Data-Driven Plasma Science. IEEE Trans. Plasma Sci. 2023, 51, 1750–1838. 10.1109/TPS.2023.3268170. DOI
Databases for Atomic and Plasma Physics. Plasma Laboratory - Weizmann Institute of Science. https://plasma-gate.weizmann.ac.il/directories/databases (accessed 2023-10-18).
ExoMol Homepage. https://www.exomol.com/ (accessed 2023-10-18).
RADAM (RAdiation DAMage) Database Portal. https://radamdb.mbnresearch.com/ (accessed 2023-10-18).
Denifl S.; Garcia G.; Huber B. A.; Marinković B. P.; Mason N. J.; Postler J.; Rabus H.; Rixon G.; Solov’yov A. V.; Suraud E.; Yakubovich A. V. Radiation Damage of Biomolecules (RADAM) Database Development: Current Status. J. Phys.: Conf. Ser. 2013, 438, 01201610.1088/1742-6596/438/1/012016. DOI
Channeling Database. MBN Research Center. https://mbnresearch.com/databases (accessed 2023-10-18).
Quantemol Homepage. http://www.quantemol.com/ (accessed 2023-10-18).
Joshipura K. N.; Mason N. J.. Atomic–Molecular Ionization by Electron Scattering: Theory and Applications; Cambridge University Press: Cambridge, UK, 2018.
Del Zanna G.; Fernández-Menchero L.; Badnell N. R. Uncertainties on Atomic data. A case study: N IV. Mon. Not. R. Astron. Soc. 2019, 484, 4754–4759. 10.1093/mnras/stz206. DOI
Chung H.-K.; Braams B. J.; Bartschat K.; Császár A. G.; Drake G. W. F.; Kirchner T.; Kokoouline V.; Tennyson J. Uncertainty Estimates for Theoretical Atomic and Molecular Data. J. Phys. D: Appl. Phys. 2016, 49, 36300210.1088/0022-3727/49/36/363002. DOI
Liu J.; Byggmästar J.; Fan Z.; Qian P.; Su Y. Large-scale Machine-learning Molecular Dynamics Simulation of Primary Radiation Damage in Tungsten. Phys. Rev. B 2023, 108, 05431210.1103/PhysRevB.108.054312. DOI
Alber M.; Buganza Tepole A.; Cannon W. R.; De S.; Dura-Bernal S.; Garikipati K.; Karniadakis G.; Lytton W. W.; Perdikaris P.; Petzold L.; Kuhl E. Integrating Machine Learning and Multiscale Modelling – Perspectives, Challenges, and Opportunities in the Biological, Biomedical, and Behavioral Sciences. NPJ. Digit. Med. 2019, 2, 115.10.1038/s41746-019-0193-y. PubMed DOI PMC
Morgan D.; Pilania G.; Couet A.; Uberuaga B. P.; Sun C.; Li J. Machine Learning in Nuclear Materials Research. Curr. Opin. Solid State Mater. Sci. 2022, 26, 10097510.1016/j.cossms.2021.100975. DOI
Castin N.; Pascuet M. I.; Messina L.; Domain C.; Olsson P.; Pasianot R. C.; Malerba L. Advanced Atomistic Models for Radiation Damage in Fe-based Alloys: Contributions and Future Perspectives from Artificial Neural Networks. Comput. Mater. Sci. 2018, 148, 116–130. 10.1016/j.commatsci.2018.02.025. DOI
Kløve M.; Sommer S.; Iversen B. B.; Hammer B.; Dononelli W. A. Machine-Learning-Based Approach for Solving Atomic Structures of Nanomaterials Combining Pair Distribution Functions with Density Functional Theory. Adv. Mater. 2023, 35, 220822010.1002/adma.202208220. PubMed DOI
Acharya A.; Prajapati J. D.; Kleinekathöfer U. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. J. Phys. Chem. B 2022, 126, 3995–4008. 10.1021/acs.jpcb.2c01173. PubMed DOI
Maity S.; Kleinekathöfer U. Recent Progress in Atomistic Modelling of Light-Harvesting Complexes: A Mini Review. Photosynth. Res. 2023, 156, 147–162. 10.1007/s11120-022-00969-w. PubMed DOI PMC
Bishara D.; Xie Y.; Liu W. K.; Li S. A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials. Arch. Comput. Methods Eng. 2023, 30, 191–222. 10.1007/s11831-022-09795-8. DOI
Alshehri A. S.; You F. Machine Learning for Multiscale Modelling in Computational Molecular Design. Curr. Opin. Chem. Eng. 2022, 36, 10075210.1016/j.coche.2021.100752. DOI
Nguyen P. C.; Choi J. B.; Udaykumar H. S.; Baek S. Challenges and Opportunities for Machine Learning in Multiscale Computational Modeling. J. Comput. Inf. Sci. Eng. 2023, 23, 06080810.1115/1.4062495. DOI
Gilbert M. R.; Arakawa K.; Bergstrom Z.; Caturla M. J.; Dudarev S. L.; Gao F.; Goryaeva A. M.; Hu S. Y.; Hu X.; Kurtz R. J.; et al. Perspectives on Multiscale Modelling and Experiments to Accelerate Materials Development for Fusion. J. Nucl. Mater. 2021, 554, 15311310.1016/j.jnucmat.2021.153113. DOI
Balabin R. M.; Lomakina E. I. Support Vector Machine Regression (LS-SVM) – An Alternative to Artificial Neural Networks (ANNs) for the Analysis of Quantum Chemistry Data?. Phys. Chem. Chem. Phys. 2011, 13, 11710–11718. 10.1039/c1cp00051a. PubMed DOI
Fárník M. Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters. J. Phys. Chem. Lett. 2023, 14, 287–294. 10.1021/acs.jpclett.2c03417. PubMed DOI PMC
Mason N. J.; Drage E. A.; Webb S. M.; Dawes A.; McPheat R.; Hayes G. The Spectroscopy and Chemical Dynamics of Microparticles Explored Using an Ultrasonic Trap. Faraday Discuss. 2008, 137, 367–376. 10.1039/B702726P. PubMed DOI
Dangi B. B.; Dickerson D. J. Design and Performance of an Acoustic Levitator System Coupled with a Tunable Monochromatic Light Source and a Raman Spectrometer for In Situ Reaction Monitoring. ACS Omega 2021, 6, 10447–10453. 10.1021/acsomega.1c00921. PubMed DOI PMC
Rafferty A.; Vennes B.; Bain A.; Preston T. C. Optical Trapping and Light Scattering in Atmospheric Aerosol Science. Phys. Chem. Chem. Phys. 2023, 25, 7066–7089. 10.1039/D2CP05301B. PubMed DOI
Nomura S.; Tsuchida H.; Kajiwara A.; Yoshida S.; Majima T.; Saito M. Dissociation of Biomolecules in Liquid Environments During Fast Heavy-Ion Irradiation. J. Chem. Phys. 2017, 147, 22510310.1063/1.5009367. PubMed DOI
Haume K.; Rosa S.; Grellet S.; Śmiałek M. A.; Butterworth K. T.; Solov’yov A. V.; Prise K. M.; Golding J.; Mason N. J. Gold Nanoparticles for Cancer Radiotherapy: A Review. Cancer Nanotechnol 2016, 7, 8.10.1186/s12645-016-0021-x. PubMed DOI PMC
COST Action “Multiscale Irradiation and Chemistry Driven Processes and Related Technologies” (MultIChem). MBN Research Center. http://mbnresearch.com/ca20129-multichem/main (accessed 2023-11-15).
Horizon 2020 RISE-RADON Project. MBN Research Center. http://mbnresearch.com/radon/main (accessed 2023-11-15).
H2020 RISE-N-LIGHT Project. MBN Research Center. http://mbnresearch.com/N-Light/main (accessed 2023-11-15).
Graphene Flagship Homepage. https://graphene-flagship.eu/ (accessed 2023-11-15).
Human Brain Project Homepage. https://www.humanbrainproject.eu/en/ (accessed 2023-11-15).
Quantum Technologies Flagship. European Commission. https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship (accessed 2023-11-15).
Quantum Flagship Homepage. https://qt.eu/ (accessed 2023-11-15).
Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment