Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment

. 2024 Jul 10 ; 124 (13) : 8014-8129. [epub] 20240606

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38842266

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

Centre for Light Matter Interactions School of Mathematics and Physics Queen's University Belfast Belfast BT7 1NN United Kingdom

CY Cergy Paris Université CEA LIDYL 91191 Gif sur Yvette France

Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT U K

Department of Targeted Intervention University College London Gower Street London WC1E 6BT United Kingdom

Eaton European Innovation Center Bořivojova 2380 25263 Roztoky Czech Republic

Faculty of Engineering University of Applied Sciences Aschaffenburg Würzburger Str 45 63743 Aschaffenburg Germany

Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic

Institute of Chemistry University of Potsdam Karl Liebknecht Str 24 25 14476 Potsdam Germany

Institute of Physics Carl von Ossietzky University Carl von Ossietzky Str 9 11 26129 Oldenburg Germany

J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic

Kirchhoff Institute for Physics Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany

MBN Research Center Altenhöferallee 3 60438 Frankfurt am Main Germany

School of Physics and Astronomy University of Kent Canterbury CT2 7NH United Kingdom

TESCAN GROUP 62300 Brno Czech Republic

Université Claude Bernard Lyon 1 CNRS Institut Lumière Matière F 69622 Villeurbanne France

Université Paris Saclay CEA LIDYL 91191 Gif sur Yvette France

University College Groningen University of Groningen Hoendiepskade 23 24 9718 BG Groningen The Netherlands

Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW United Kingdom

Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands

Zobrazit více v PubMed

Landau L. D.; Lifshitz E. M.. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1981.

Landau L. D.; Lifshitz E. M.. Statistical Physics, 3rd ed.; Pergamon Press: Oxford, UK, 1980.

Landau L. D.; Lifshitz E. M.. Statistical Physics: Theory of the Condensed State; Butterworth-Heinemann: Oxford, UK, 1980.

Lifshitz E. M.; Pitaevskii L. P.. Physical Kinetics; Butterworth-Heinemann, Oxford, 1981.

Solov’yov I. A.; Korol A. V.; Solov’yov A. V.. Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer; Springer, 2017.

Solov’yov I. A., Verkhovtsev A. V., Korol A. V., Solov’yov A. V., Eds. Dynamics of Systems on the Nanoscale; Springer, 2022.

Workman R. L.; Burkert V. D.; Crede V.; Klempt E.; Thoma U.; Tiator L.; Agashe K.; Aielli G.; Allanach B. C.; Amsler C.; et al. (Particle Data Group). Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01.10.1093/ptep/ptac097. DOI

Landau L. D.; Lifshitz E. M.. Electrodynamics of Continuous Media, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1984.

Berestetskii V. B.; Lifshitz E. M.; Pitaevskii L. P.. Quantum Electrodynamics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1982.

Nanoscale Insights into Ion-Beam Cancer Therapy; Solov’yov A. V., Ed.; Springer, 2017.

Surdutovich E.; Solov’yov A. V. Multiscale Approach to the Physics of Radiation Damage with Ions. Eur. Phys. J. D 2014, 68, 353.10.1140/epjd/e2014-50004-0. DOI

Surdutovich E.; Solov’yov A. V. Multiscale Modeling for Cancer Radiotherapies. Cancer Nanotechnol. 2019, 10, 6.10.1186/s12645-019-0051-2. DOI

Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Molecular Dynamics for Irradiation Driven Chemistry: Application to the FEBID Process. Eur. Phys. J. D 2016, 70, 217.10.1140/epjd/e2016-70283-5. DOI

de Vera P.; Azzolini M.; Sushko G.; Abril I.; Garcia-Molina R.; Dapor M.; Solov’yov I. A.; Solov’yov A. V. Multiscale Simulation of the Focused Electron Beam Induced Deposition Process. Sci. Rep. 2020, 10, 2082710.1038/s41598-020-77120-z. PubMed DOI PMC

Solov’yov I. A.; Solov’yov A. V.; Kébaili N.; Masson A.; Bréchignac C. Thermally Induced Morphological Transition of Silver Fractals. Phys. Stat. Sol. B 2014, 251, 609–622. 10.1002/pssb.201349254. DOI

Solov’yov I. A.; Sushko G.; Friis I.; Solov’yov A. V. Multiscale Modeling of Stochastic Dynamics Processes With MBN Explorer. J. Comput. Chem. 2022, 43, 1442–1458. 10.1002/jcc.26948. PubMed DOI

Korol A. V.; Solov’yov A. V.. Novel Lights Sources Beyond Free Electron Lasers; Particle Acceleration and Detection; Springer, 2022.

Korol A. V.; Solov’yov A. V. Crystal-Based Intensive Gamma-Ray Light Sources. Eur. Phys. J. D 2020, 74, 201.10.1140/epjd/e2020-10239-8. DOI

Korol A. V.; Solov’yov A. V.; Greiner W.. Channeling and Radiation in Periodically Bent Crystals, 2nd ed.; Springer Series on Atomic, Optical, and Plasma Physics, Vol. 69. Springer, 2014.

Connerade J.-P.; Solov'yov A. V.; Greiner W. The Science of Clusters: An Emerging Field. Europhys. News 2002, 33, 200–202. 10.1051/epn:2002604. DOI

Kim B.; Tripp S. L.; Wei A. Self-Organization of Large Gold Nanoparticle Arrays. J. Am. Chem. Soc. 2001, 123, 7955–7956. 10.1021/ja0160344. PubMed DOI

Eichhorn S. H.; Yu J. K.. Directed Assembly and Self-organization of Metal Nanoparticles in Two and Three Dimensions. In Anisotropic Nanomaterials: Preparation, Properties, and Applications; Li Q., Ed.; NanoScience and Technology; Springer, 2015; pp 289–336.

Kim J.-Y.; Kwon M.-H.; Kim J.-T.; Kwon S.; Ihm D.-W.; Min Y.-K. Crystallization Growth and Micropatterning on Self-Assembled Conductive Polymer Nanofilms. J. Phys. Chem. C 2007, 111, 11252–11258. 10.1021/jp0683622. DOI

Zhang S.; Xing M.; Li B. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering. Int. J. Mol. Sci. 2018, 19, 1641.10.3390/ijms19061641. PubMed DOI PMC

Mae K.; Toyama H.; Nawa-Okita E.; Yamamoto D.; Chen Y.-J.; Yoshikawa K.; Toshimitsu F.; Nakashima N.; Matsuda K.; Shioi A. Self-Organized Micro-Spiral of Single-Walled Carbon Nanotubes. Sci. Rep. 2017, 7, 5267.10.1038/s41598-017-05558-9. PubMed DOI PMC

Macak J. M.; Tsuchiya H.; Ghicov A.; Yasuda K.; Hahn R.; Bauer S.; Schmuki P. TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. 10.1016/j.cossms.2007.08.004. DOI

Shimizu T.; Minamikawa H.; Kogiso M.; Aoyagi M.; Kameta N.; Ding W.; Masuda M. Self-Organized Nanotube Materials and Their Application in Bioengineering. Polym. J. 2014, 46, 831–858. 10.1038/pj.2014.72. DOI

Fan H. J.; Werner P.; Zacharias M. Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small 2006, 2, 700–717. 10.1002/smll.200500495. PubMed DOI

Yi D.; Peres L.; Pierrot A.; Cayez S.; Cours R.; Warot-Fonrose B.; Marcelot C.; Roblin P.; Soulantica K.; Blon T. Self-Organization and Tunable Characteristic Lengths of Two-Dimensional Hexagonal Superlattices of Nanowires Directly Grown on Substrates. Nano Res. 2023, 16, 1606–1613. 10.1007/s12274-022-4804-6. DOI

Zhang X.; Park T.-Y.; Jia Y.; Chang H.; Ng T. K.; Ooi B. S. Self-Organized Growth of Nanowires on a Graphene Film. Cryst. Growth Des. 2023, 23, 3813–3819. 10.1021/acs.cgd.3c00213. DOI

Jensen P. Growth of Nanostructures by Cluster Deposition: Experiments and Simple Models. Rev. Mod. Phys. 1999, 71, 1695–1735. 10.1103/RevModPhys.71.1695. DOI

Lando A.; Kébaïli N.; Cahuzac P.; Masson A.; Bréchignac C. Coarsening and Pearling Instabilities in Silver Nanofractal Aggregates. Phys. Rev. Lett. 2006, 97, 13340210.1103/PhysRevLett.97.133402. PubMed DOI

Dick V. V.; Solov’yov I. A.; Solov’yov A. V. Nanoparticles Dynamics on a Surface: Fractal Pattern Formation and Fragmentation. J. Phys.: Conf. Ser. 2010, 248, 01202510.1088/1742-6596/248/1/012025. DOI

Dick V. V.; Solov’yov I. A.; Solov’yov A. V. Fragmentation Pathways of Nanofractal Structures on Surface. Phys. Rev. B 2011, 84, 11540810.1103/PhysRevB.84.115408. DOI

Panshenskov M.; Solov’yov I. A.; Solov’yov A. V. Efficient 3D Kinetic Monte Carlo Method for Modeling of Molecular Structure and Dynamics. J. Comput. Chem. 2014, 35, 1317–1329. 10.1002/jcc.23613. PubMed DOI

Nanometerials and Nanochemistry; Bréchignac C., Houdy P., Lahmani M., Eds. Springer, 2007.

Yu H.-D.; Regulacio M. D.; Ye E.; Han M.-Y. Chemical Routes to Top-Down Nanofabrication. Chem. Soc. Rev. 2013, 42, 6006–6018. 10.1039/c3cs60113g. PubMed DOI

Biswas A.; Bayer I. S.; Biris A. S.; Wang T.; Dervishi E.; Faupel F. Advances in Top–Down and Bottom–Up Surface Nanofabrication: Techniques, Applications & Future Prospects. Adv. Colloid Interface Sci. 2012, 170, 2–27. 10.1016/j.cis.2011.11.001. PubMed DOI

Shimomura M.; Sawadaishi T. Bottom-Up Strategy of Materials Fabrication: A New Trend in Nanotechnology of Soft Materials. Curr. Opin. Colloid Interface Sci. 2001, 6, 11–16. 10.1016/S1359-0294(00)00081-9. DOI

Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry; Meiwes-Broer K.-H., Ed.; Springer-Verlag, 2000.

Lando A.; Kébaïli N.; Cahuzac P.; Colliex C.; Couillard M.; Masson A.; Schmidt M.; Bréchignac C. Chemically Induced Morphology Change in Cluster-Based Nanostructures. Eur. Phys. J. D 2007, 43, 151–154. 10.1140/epjd/e2007-00063-3. DOI

Bréchignac C.; Cahuzac P.; Carlier F.; Colliex C.; de Frutos M.; Kébaïli N.; Le Roux J.; Masson A.; Yoon B. Thermal and Chemical Nanofractal Relaxation. Eur. Phys. J. D 2003, 24, 265–268. 10.1140/epjd/e2003-00159-8. DOI

Liu H.; Reinke P. C60 Thin Film Growth on Graphite: Coexistence of Spherical and Fractal-Dendritic Islands. J. Chem. Phys. 2006, 124, 16470710.1063/1.2186310. PubMed DOI

Nanofabrication: Nanolithography Techniques and Their Applications; De Teresa J. M., Ed.; IOP Publishing Ltd: Bristol, UK, 2020.

Utke I.; Hoffmann P.; Melngailis J. Gas-Assisted Focused Electron Beam and Ion Beam Processing and Fabrication. J. Vac. Sci. Technol. B 2008, 26, 1197–1276. 10.1116/1.2955728. DOI

Plant S. R.; Cao L.; Palmer R. E. Atomic Structure Control of Size-Selected Gold Nanoclusters During Formation. J. Am. Chem. Soc. 2014, 136, 7559–7562. 10.1021/ja502769v. PubMed DOI

Huth M.; Porrati F.; Schwalb C.; Winhold M.; Sachser R.; Dukic M.; Adams J.; Fantner G. Focused Electron Beam Induced Deposition: A Perspective. Beilstein J. Nanotechnol. 2012, 3, 597–619. 10.3762/bjnano.3.70. PubMed DOI PMC

Nanofabrication Using Focused Ion and Electron Beams; Utke I., Moshkalev S., Russell P., Eds.; Oxford University Press: New York, NY, 2012.

Cui Z.Nanofabrication: Principles, Capabilities and Limits, 2nd ed.; Springer, 2017.

Xu W.; Kong J. S.; Yeh Y. T. E.; Chen P. Single-Molecule Nanocatalysis Reveals Heterogeneous Reaction Pathways and Catalytic Dynamics. Nat. Mater. 2008, 7, 992–996. 10.1038/nmat2319. PubMed DOI

Murray R. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 2008, 108, 2688–2720. 10.1021/cr068077e. PubMed DOI

Barth S.; Huth M.; Jungwirth F. Precursors for Direct-Write Nanofabrication with Electrons. J. Mater. Chem. C 2020, 8, 15884–15919. 10.1039/D0TC03689G. DOI

Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics Simulation of the FEBID Process for Pt(PF3)4. Beilstein J. Nanotechnol. 2021, 12, 1151–1172. 10.3762/bjnano.12.86. PubMed DOI PMC

Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic Simulation of the FEBID-Driven Growth of Iron-Based Nanostructures. Phys. Chem. Chem. Phys. 2022, 24, 10807–10819. 10.1039/D2CP00809B. PubMed DOI

Kumar T. P. R.; Weirich P.; Hrachowina L.; Hanefeld M.; Bjornsson R.; Hrodmarsson H. R.; Barth S.; Fairbrother D. H.; Huth M.; Ingólfsson O. Electron Interactions with the Heteronuclear Carbonyl Precursor H2FeRu3(CO)13 and Comparison with HFeCo3(CO)12: From Fundamental Gas Phase and Surface Science Studies to Focused Electron Beam Induced Deposition. Beilstein J. Nanotechnol. 2018, 9, 555–579. 10.3762/bjnano.9.53. PubMed DOI PMC

Wysocki V. H.; Kenttämaa H. I.; Cooks R. G. Internal Energy Distributions of Isolated Ions After Activation by Various Methods. Int. J. Mass Spectrom. Ion Proc. 1987, 75, 181–208. 10.1016/0168-1176(87)83054-9. DOI

Beranová S.; Wesdemiotis C. Internal Energy Distributions of Tungsten Hexacarbonyl Ions After Neutralization–Reionization. J. Am. Soc. Mass Spectrom. 1994, 5, 1093–1101. 10.1016/1044-0305(94)85070-4. PubMed DOI

Cooks R. G.; Ast T.; Kralj B.; Kramer V.; Žigon D. Internal Energy Distributions Deposited in Doubly and Singly Charged Tungsten Hexacarbonyl Ions Generated by Charge Stripping, Electron Impact, and Charge Exchange. J. Am. Soc. Mass Spectrom. 1990, 1, 16–27. 10.1016/1044-0305(90)80003-6. PubMed DOI

Wnorowski K.; Stano M.; Barszczewska W.; Jówko A.; Matejčík Š. Electron Ionization of W(CO)6: Appearance Energies. Int. J. Mass Spectrom. 2012, 314, 42–48. 10.1016/j.ijms.2012.02.002. DOI

Wnorowski K.; Stano M.; Matias C.; Denifl S.; Barszczewska W.; Matejčík Š. Low-Energy Electron Interactions with Tungsten Hexacarbonyl – W(CO)6. Rapid Commun. Mass Spectrom. 2012, 26, 2093–2098. 10.1002/rcm.6324. PubMed DOI

Neustetter M.; Jabbour Al Maalouf E.; Limão Vieira P.; Denifl S. Fragmentation Pathways of Tungsten Hexacarbonyl Clusters Upon Electron Ionization. J. Chem. Phys. 2016, 145, 05430110.1063/1.4959278. PubMed DOI

Lacko M.; Papp P.; Wnorowski K.; Matejčík Š. Electron-Induced Ionization and Dissociative Ionization of Iron Pentacarbonyl Molecules. Eur. Phys. J. D 2015, 69, 84.10.1140/epjd/e2015-50721-8. DOI

Lengyel J.; Fedor J.; Fárník M. Ligand Stabilization and Charge Transfer in Dissociative Ionization of Fe(CO)5 Aggregates. J. Phys. Chem. C 2016, 120, 17810–17816. 10.1021/acs.jpcc.6b05852. DOI

Lengyel J.; Pysanenko A.; Swiderek P.; Heiz U.; Fárník M.; Fedor J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. J. Phys. Chem. A 2021, 125, 1919–1926. 10.1021/acs.jpca.1c00135. PubMed DOI

Massey S.; Bass A. D.; Sanche L. Role of Low-Energy Electrons (< 35 eV) in the Degradation of Fe(CO)5 for Focused Electron Beam Induced Deposition Applications: Study by Electron Stimulated Desorption of Negative and Positive Ions. J. Phys. Chem. C 2015, 119, 12708–12719. 10.1021/acs.jpcc.5b02684. DOI

Bilgilisoy E.; Thorman R. M.; Barclay M. S.; Marbach H.; Fairbrother D. H. Low Energy Electron- and Ion-Induced Surface Reactions of Fe(CO)5 Thin Films. J. Phys. Chem. C 2021, 125, 17749–17760. 10.1021/acs.jpcc.1c05826. DOI

Sushko G. B.; Solov’yov I. A.; Verkhovtsev A. V.; Volkov S. N.; Solov’yov A. V. Studying Chemical Reactions in Biological Systems with MBN Explorer: Implementation of Molecular Mechanics with Dynamical Topology. Eur. Phys. J. D 2016, 70, 12.10.1140/epjd/e2015-60424-9. DOI

Solov’yov I. A.; Yakubovich A. V.; Nikolaev P. V.; Volkovets I.; Solov’yov A. V. MesoBioNano Explorer – A Universal Program for Multiscale Computer Simulations of Complex Molecular Structure and Dynamics. J. Comput. Chem. 2012, 33, 2412–2439. 10.1002/jcc.23086. PubMed DOI

Fowlkes J. D.; Rack P. D. Fundamental Electron-Precursor-Solid Interactions Derived From Time-Dependent Electron-Beam-Induced Deposition Simulations and Experiments. ACS Nano 2010, 4, 1619–1629. 10.1021/nn901363a. PubMed DOI

Solov’yov A. V.; Surdutovich E.; Scifoni E.; Mishustin I.; Greiner W. Physics of Ion Beam Cancer Therapy: A Multiscale Approach. Phys. Rev. E 2009, 79, 01190910.1103/PhysRevE.79.011909. PubMed DOI

Surdutovich E.; Obolensky O. I.; Scifoni E.; Pshenichnov I.; Mishustin I.; Solov’yov A. V.; Greiner W. Ion-Induced Electron Production in Tissue-Like Media and DNA Damage Mechanisms. Eur. Phys. J. D 2009, 51, 63–71. 10.1140/epjd/e2008-00207-y. DOI

Scifoni E.; Surdutovich E.; Solov’yov A. V. Spectra of Secondary Electrons Generated in Water by Energetic Ions. Phys. Rev. E 2010, 81, 02190310.1103/PhysRevE.81.021903. PubMed DOI

Pshenichnov I.; Mishustin I.; Greiner W. Comparative Study of Depth–Dose Distributions for Beams of Light and Heavy Nuclei in Tissue-Like Media. Nucl. Instrum. Meth. B 2008, 266, 1094–1098. 10.1016/j.nimb.2008.02.025. DOI

de Vera P.; Garcia-Molina R.; Abril I.; Solov’yov A. V. Semiempirical Model for the Ion Impact Ionization of Complex Biological Media. Phys. Rev. Lett. 2013, 110, 14810410.1103/PhysRevLett.110.148104. PubMed DOI

Nikjoo H.; Uehara S.; Emfietzoglou D.; Cucinotta F. A. Track-Structure Codes in Radiation Research. Radiat. Meas. 2006, 41, 1052–1074. 10.1016/j.radmeas.2006.02.001. DOI

Surdutovich E.; Solov’yov A. V. Double Strand Breaks in DNA Resulting from Double Ionization Events. Eur. Phys. J. D 2012, 66, 206.10.1140/epjd/e2012-30180-7. DOI

Surdutovich E.; Solov’yov A. V. Transport of Secondary Electrons and Reactive Species in Ion Tracks. Eur. Phys. J. D 2015, 69, 193.10.1140/epjd/e2015-60242-1. DOI

Bug M. U.; Surdutovich E.; Rabus H.; Rosenfeld A. B.; Solov’yov A. V. Nanoscale Characterization of Ion Tracks: MC Simulations Versus Analytical Approach. Eur. Phys. J. D 2012, 66, 291.10.1140/epjd/e2012-30183-4. DOI

Surdutovich E.; Solov’yov A. V. Shock Wave Initiated by an Ion Passing Through Liquid Water. Phys. Rev. E 2010, 82, 05191510.1103/PhysRevE.82.051915. PubMed DOI

Surdutovich E.; Yakubovich A. V.; Solov’yov A. V. Biodamage via Shock Waves Initiated by Irradiation with Ions. Sci. Rep. 2013, 3, 1289.10.1038/srep01289. PubMed DOI PMC

Yakubovich A. V.; Surdutovich E.; Solov’yov A. V. Thermomechanical Damage of Nucleosome by the Shock Wave Initiated by Ion Passing Through Liquid Water. Nucl. Instrum. Meth. B 2012, 279, 135–139. 10.1016/j.nimb.2011.10.069. DOI

Yakubovich A. V.; Surdutovich E.; Solov’yov A. V. Atomic and Molecular Data Needs for Radiation Damage Modeling: Multiscale Approach. AIP Conf. Proc. 2011, 1344, 230–238. 10.1063/1.3585822. DOI

de Vera P.; Mason N. J.; Currell F. J.; Solov’yov A. V. Molecular Dynamics Study of Accelerated Ion-Induced Shock Waves in Biological Media. Eur. Phys. J. D 2016, 70, 183.10.1140/epjd/e2016-70281-7. DOI

de Vera P.; Surdutovich E.; Mason N. J.; Solov’yov A. V. Radial Doses Around Energetic Ion Tracks and the Onset of Shock Waves on the Nanoscale. Eur. Phys. J. D 2017, 71, 281.10.1140/epjd/e2017-80176-8. DOI

de Vera P.; Surdutovich E.; Mason N. J.; Currell F. J.; Solov’yov A. V. Simulation of the Ion-Induced Shock Waves Effects on the Transport of Chemically Reactive Species in Ion Tracks. Eur. Phys. J. D 2018, 72, 147.10.1140/epjd/e2018-90167-x. DOI

Friis I.; Verkhovtsev A.; Solov’yov I. A.; Solov’yov A. V. Modeling the Effect of Ion-Induced Shock Waves and DNA Breakage with the Reactive CHARMM Force Field. J. Comput. Chem. 2020, 41, 2429–2439. 10.1002/jcc.26399. PubMed DOI

Friis I.; Verkhovtsev A.; Solov’yov I. A.; Solov’yov A. V. Lethal DNA Damage Caused by Ion-Induced Shock Waves in Cells. Phys. Rev. E 2021, 104, 05440810.1103/PhysRevE.104.054408. PubMed DOI

Ward J. F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation and Repairability. Prog. Nucleic Acid Res. Mol. Biol. 1988, 35, 95–125. 10.1016/S0079-6603(08)60611-X. PubMed DOI

Ward J. F. Radiation Mutagenesis: The Initial DNA Lesions Responsible. Radiat. Res. 1995, 142, 362–368. 10.2307/3579145. PubMed DOI

Malyarchuk S.; Castore R.; Harrison L. DNA Repair of Clustered Lesions in Mammalian Cells: Involvement of Non-Homologous End-Joining. Nucleic Acids Res. 2008, 36, 4872–4882. 10.1093/nar/gkn450. PubMed DOI PMC

Malyarchuk S.; Castore R.; Harrison L. Apex1 Can Cleave Complex Clustered DNA Lesions in Cells. DNA Repair 2009, 8, 1343–1354. 10.1016/j.dnarep.2009.08.008. PubMed DOI PMC

Sage E.; Harrison L. Clustered DNA Lesion Repair in Eukaryotes: Relevance to Mutagenesis and Cell Survival. Mutat. Res. 2011, 711, 123–133. 10.1016/j.mrfmmm.2010.12.010. PubMed DOI PMC

Verkhovtsev A.; Surdutovich E.; Solov’yov A. V. Multiscale Approach Predictions for Biological Outcomes in Ion-Beam Cancer Therapy. Sci. Rep. 2016, 6, 2765410.1038/srep27654. PubMed DOI PMC

Ion Beam Therapy: Fundamentals, Technology, Clinical Applications; Linz U., Ed.; Springer-Verlag, 2012.

Solov’yov A. V.; Verkhovtsev A. V.; Mason N. J.; Amos R. A.; Bald I.; Baldacchino G.; Dromey B.; Falk M.; Fedor J.; Gerhards L.; et al. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. arXiv 2024, 2311.1340210.48550/arXiv.2311.13402. PubMed DOI PMC

Taylor J. R.Scattering Theory: The Quantum Theory of Nonrelativistic Collisions; Dover Publications Inc.: Garden City, NY, 2006.

Newton R. G.Scattering Theory of Waves and Particles, 2nd ed.; Springer, 1982.

Sushko G. B.; Bezchastnov V. G.; Solov’yov I. A.; Korol A. V.; Greiner W.; Solov’yov A. V. Simulation of Ultra-Relativistic Electrons and Positrons Channeling in Crystals with MBN Explorer. J. Comput. Phys. 2013, 252, 404–418. 10.1016/j.jcp.2013.06.028. DOI

Froese Fischer C.The Hartree-Fock Method for Atoms: A Numerical Approach; John Wiley & Sons Inc., 1977.

Kohn W.; Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. 10.1103/PhysRev.140.A1133. DOI

Parr R. G.; Yang W.. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, 1989.

Metal Clusters; Ekardt W., Ed.; Wiley, 1999.

Latest Advances in Atomic Clusters Collision: Fission, Fusion, Electron, Ion and Photon Impact; Connerade J.-P., Solov’yov A. V., Eds.; Imperial College Press: London, UK, 2004.

Metal Clusters and Nanoalloys: From Modeling to Applications; Mariscal M. M., Oviedo O. A., Leiva E. P. M., Eds.; Springer, 2013.

Jalkanen K. J.; Suhai S.; Bohr H.. Quantum Molecular Biological Methods Using Density Functional Theory. In Handbook of Molecular Biophysics: Methods and Applications; Bohr H. G., Ed.; Wiley-VCH Verlag, Weinheim, 2009; pp 7–66.

Becke A. D. Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A30110.1063/1.4869598. PubMed DOI

Scuseria G. E.; Staroverov V. N.. Development of Approximate Exchange-Correlation Functionals. In Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra C., Frenking G., Kim K., Scuseria G., Eds.; Elsevier, 2005; pp 669–724.

Jones R. O. Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys. 2015, 87, 897–923. 10.1103/RevModPhys.87.897. DOI

Handbook of Computational Chemistry, 2nd ed.; Leszczynski J., Kaczmarek-Kedziera A., Puzyn T., Papadopoulos M. G., Reis H., Shukla M. K., Eds. Springer, 2017.

Kaplan A. D.; Levy M.; Perdew J. P. The Predictive Power of Exact Constraints and Appropriate Norms in Density Functional Theory. Annu. Rev. Phys. Chem. 2023, 74, 193–218. 10.1146/annurev-physchem-062422-013259. PubMed DOI

Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications; Cancès E., Friesecke G., Eds.; Springer, 2023.

Grant I. P. Relativistic Calculation of Atomic Structures. Adv. Phys. 1970, 19, 747–811. 10.1080/00018737000101191. DOI

Mohanty A.; Clementi E. Dirac-Fock Self-Consistent Field Method for Closed-Shell Molecules with Kinetic Balance and Finite Nuclear Size. Int. J. Quantum Chem. 1991, 39, 487–517. 10.1002/qua.560390322. DOI

Pyykkö P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563–594. 10.1021/cr00085a006. DOI

Shavitt I.; Bartlett R.-J.. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory; Cambridge University Press: Cambridge, UK, 2010.

Cizek J.; Paldus J. Coupled Cluster Approach. Phys. Scr. 1980, 21, 251–254. 10.1088/0031-8949/21/3-4/006. DOI

Bartlett R. J.; Musiał M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI

Zhang I. Y.; Grüneis A. Coupled Cluster Theory in Materials Science. Front. Mater. 2019, 6, 123.10.3389/fmats.2019.00123. DOI

Szalay P. G.; Müller T.; Gidofalvi G.; Lischka H.; Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012, 112, 108–181. 10.1021/cr200137a. PubMed DOI

Knowles P. J.; Handy N. C. A Determinant Based Full Configuration Interaction Program. Comput. Phys. Commun. 1989, 54, 75–83. 10.1016/0010-4655(89)90033-7. DOI

Rontani M.; Cavazzoni C.; Bellucci D.; Goldoni G. Full Configuration Interaction Approach to the Few-Electron Problem in Artificial Atoms. J. Chem. Phys. 2006, 124, 12410210.1063/1.2179418. PubMed DOI

Joecker B.; Baczewski A. D.; Gamble J. K.; Pla J. J.; Saraiva A.; Morello A. Full Configuration Interaction Simulations of Exchange-Coupled Donors in Silicon Using Multi-Valley Effective Mass Theory. New J. Phys. 2021, 23, 07300710.1088/1367-2630/ac0abf. DOI

Xu E.; Uejima M.; Ten-no S. L. Full Coupled-Cluster Reduction for Accurate Description of Strong Electron Correlation. Phys. Rev. Lett. 2018, 121, 11300110.1103/PhysRevLett.121.113001. PubMed DOI

Purvis G. D. III; Bartlett R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. 10.1063/1.443164. DOI

Cullen J. M.; Zerner M. C. The Linked Singles and Doubles Model: An Approximate Theory of Electron Correlation Based on the Coupled-Cluster Ansatz. J. Chem. Phys. 1982, 77, 4088–4109. 10.1063/1.444319. DOI

Raghavachari K.; Trucks G. W.; Pople J. A.; Head-Gordon M. A. Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483. 10.1016/S0009-2614(89)87395-6. DOI

Møller C.; Plesset M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. 10.1103/PhysRev.46.618. DOI

Cremer D. Møller–Plesset Perturbation Theory: From Small Molecule Methods to Methods for Thousands of Atoms. WIREs Comput. Mol. Sci. 2011, 1, 509–530. 10.1002/wcms.58. DOI

List of Quantum Chemistry and Solid-State Physics Software. Wikipedia. https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software (accessed 2023-11-15).

Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package – Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 19410310.1063/5.0007045. PubMed DOI

Aidas K.; Angeli C.; Bak K. L.; Bakken V.; Bast R.; Boman L.; Christiansen O.; Cimiraglia R.; Coriani S.; Dahle P.; et al. The Dalton Quantum Chemistry Program System. WIREs Comput. Mol. Sci. 2014, 4, 269–284. 10.1002/wcms.1172. PubMed DOI PMC

Schmidt M. W.; Baldridge K. K.; Boatz J. A.; Elbert S. T.; Gordon M. S.; Jensen J. H.; Koseki S.; Matsunaga N.; Nguyen K. A.; Su S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. 10.1002/jcc.540141112. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.

Valiev M.; Bylaska E. J.; Govind N.; Kowalski K.; Straatsma T. P.; Van Dam H. J. J.; Wang D.; Nieplocha J.; Apra E.; Windus T. L.; de Jong W. A. D. NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI

Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 22410810.1063/5.0004608. PubMed DOI

Grant I.; Quiney H. GRASP: The Future?. Atoms 2022, 10, 108.10.3390/atoms10040108. DOI

Visscher L.; Visser O.; Aerts P.; Merenga H.; Nieuwpoort W. Relativistic Quantum Chemistry: The MOLFDIR Program Package. Comput. Phys. Commun. 1994, 81, 120–144. 10.1016/0010-4655(94)90115-5. DOI

Saue T.; Fægri K.; Helgaker T.; Gropen O. Principles of Direct 4-Component Relativistic SCF: Application to Caesium Auride. Mol. Phys. 1997, 91, 937–950. 10.1080/002689797171058. DOI

Grant I. P.; Quiney H. M. Application of Relativistic Theories and Quantum Electrodynamics to Chemical Problems. Int. J. Quantum Chem. 2000, 80, 283–297. 10.1002/1097-461X(2000)80:3<283::AID-QUA2>3.0.CO;2-L. DOI

Belpassi L.; de Santis M.; Quiney H. M.; Tarantelli F.; Storchi L. BERTHA: Implementation of a Four-Component Dirac-Kohn-Sham Relativistic Framework. J. Chem. Phys. 2020, 152, 16411810.1063/5.0002831. PubMed DOI

Grant I. P.; Quiney H. M.. Progress with Bertha: A Relativistic Atomic and Molecular Structure Package. In Recent Advances in the Theory of Chemical and Physical Systems; Julien J.-P., Maruani J., Mayou D., Wilson S., Delgado-Barrio G., Eds.; Springer, 2006; pp 199–215.

Chernysheva L. V.; Ivanov V. K. ATOM Program System and Computational Experiment. Atoms 2022, 10, 52.10.3390/atoms10020052. DOI

March N. H.Electronic Structure of Atoms, Molecules, and Clusters: Hartree-Fock and Beyond. In Advanced Topics in Theoretical Chemical Physics; Maruani J., Lefebvre R., Brändas E. J., Eds.; Springer, 2003; pp 53–70.

Evarestov R. A.Quantum Chemistry of Solids: LCAO Treatment of Crystals and Nanostructures, 2nd ed.; Springer, 2012.

Ren X.; Rinke P.; Joas C.; Scheffler M. Random-Phase Approximation and Its Applications in Computational Chemistry and Materials Science. J. Mater. Sci. 2012, 47, 7447–7471. 10.1007/s10853-012-6570-4. DOI

Starace A.Photoionization of Atoms. In Springer Handbook of Atomic, Molecular, and Optical Physics; Drake G., Ed.; Springer, 2006; pp 379–390.

Solov’yov A. V. Plasmon Excitations in Metal Clusters and Fullerenes. Int. J. Mod. Phys. B 2005, 19, 4143–4184. 10.1142/S0217979205032668. DOI

Strout D. L.; Scuseria G. E. A Quantitative Study of the Scaling Properties of the Hartree–Fock Method. J. Chem. Phys. 1995, 102, 8448–8452. 10.1063/1.468836. DOI

Scuseria G. E.; Lee T. J. Comparison of Coupled-Cluster Methods Which Include the Effects of Connected Triple Excitations. J. Chem. Phys. 1990, 93, 5851–5855. 10.1063/1.459684. DOI

Leininger M. L.; Allen W. D.; Schaefer III H. F.; Sherrill C. D. Is Møller–Plesset Perturbation Theory a Convergent Ab Initio Method?. J. Chem. Phys. 2000, 112, 9213–9222. 10.1063/1.481764. DOI

Herman M. S.; Hagedorn G. A. Does Møller–Plesset Perturbation Theory Converge? A Look at Two-Electron Systems. Int. J. Quantum Chem. 2009, 109, 210–225. 10.1002/qua.21763. DOI

Cremer D.; He Z. Sixth-Order Møller–Plesset Perturbation Theory – On the Convergence of the MPn Series. J. Phys. Chem. 1996, 100, 6173–6188. 10.1021/jp952815d. DOI

Doser B.; Lambrecht D. S.; Kussmann J.; Ochsenfeld C. Linear-Scaling Atomic Orbital-Based Second-Order Møller–Plesset Perturbation Theory by Rigorous Integral Screening Criteria. J. Chem. Phys. 2009, 130, 06410710.1063/1.3072903. PubMed DOI

Glasbrenner M.; Graf D.; Ochsenfeld C. Efficient Reduced-Scaling Second-Order Møller–Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenuated Coulomb Metric. J. Chem. Theory Comput. 2020, 16, 6856–6868. 10.1021/acs.jctc.0c00600. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI

Vydrov O. A.; Heyd J.; Krukau A.; Scuseria G. E. Importance of Short-Range Versus Long-Range Hartree-Fock Exchange for the Performance of Hybrid Density Functionals. J. Chem. Phys. 2006, 125, 07410610.1063/1.2244560. PubMed DOI

Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI

Tsuneda T.; Hirao K. Long-Range Correction for Density Functional Theory. WIREs Comput. Mol. Sci. 2014, 4, 375–390. 10.1002/wcms.1178. DOI

Li M.; Reimers J. R.; Ford M. J.; Kobayashi R.; Amos R. D. Accurate Prediction of the Properties of Materials Using the CAM-B3LYP Density Functional. J. Comput. Chem. 2021, 42, 1486–1497. 10.1002/jcc.26558. PubMed DOI

Castro A.; Appel H.; Oliveira M.; Rozzi C. A.; Andrade X.; Lorenzen F.; Marques M. A. L.; Gross E. K. U.; Rubio A. Octopus: A Tool for the Application of Time-Dependent Density Functional Theory. Phys. Stat. Sol. B 2006, 243, 2465–2488. 10.1002/pssb.200642067. DOI

Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 39550210.1088/0953-8984/21/39/395502. PubMed DOI

Makkar P.; Ghosh N. N. A Review on the Use of DFT for the Prediction of the Properties of Nanomaterials. RSC Adv. 2021, 11, 27897–27924. 10.1039/D1RA04876G. PubMed DOI PMC

Thoben N.; Kaper T.; de Graaff S.; Gerhards L.; Schmidtmann M.; Klüner T.; Beckhaus R.; Doye S. Density Functional Theory Calculations for Multiple Conformers Explaining the Regio- and Stereoselectivity of Ti-Catalyzed Hydroaminoalkylation Reactions. ChemPhysChem 2023, 24, e20230037010.1002/cphc.202300370. PubMed DOI

Mitschke N.; Chemutai Sum W.; Hassan K.; Kirchenwitz M.; Schrey H.; Gerhards L.; Kellner H.; Stradal T. E. B.; Matasyoh J. C.; Stadler M. Biologically Active Drimane Derivatives Isolated From Submerged Cultures of the Wood-Inhabiting Basidiomycete Dentipellis Fragilis. RSC Adv. 2023, 13, 25752–25761. 10.1039/D3RA04204A. PubMed DOI PMC

Mohrhusen L.; Gerhards L.; Hirsch D.; Klüner T.; Al-Shamery K. Multidentate Interaction of Methylamine with Rutile TiO2 (110). J. Phys. Chem. C 2021, 125, 11975–11986. 10.1021/acs.jpcc.1c02166. DOI

Gerhards L.; Werr M.; Hübner O.; Solov’yov I. A.; Himmel H.-J. Peculiar Differences between Two Copper Complexes Containing Similar Redox-Active Ligands: Density Functional and Multiconfigurational Calculations. Inorg. Chem. 2024, 63, 961–975. 10.1021/acs.inorgchem.3c02949. PubMed DOI PMC

Markovic A.; Gerhards L.; Sander P.; Dosche C.; Klüner T.; Beckhaus R.; Wittstock G. Electronic Transitions in Different Redox States of Trinuclear 5, 6, 11, 12, 17, 18-Hexaazatrinaphthylene-Bridged Titanium Complexes: Spectroelectrochemistry and Quantum Chemistry. ChemPhysChem 2020, 21, 2506–2514. 10.1002/cphc.202000547. PubMed DOI PMC

Perdew J. P.; Zunger A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048–5079. 10.1103/PhysRevB.23.5048. DOI

Tsuneda T.; Hirao K. Self-Interaction Corrections in Density Functional Theory. J. Chem. Phys. 2014, 140, 18A51310.1063/1.4866996. PubMed DOI

Grimme S. Density Functional Theory with London Dispersion Corrections. WIREs Comput. Mol. Sci. 2011, 1, 211–228. 10.1002/wcms.30. DOI

Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI

Müller T.; Sharma S.; Gross E. K. U.; Dewhurst J. K. Extending Solid-State Calculations to Ultra-Long-Range Length Scales. Phys. Rev. Lett. 2020, 125, 25640210.1103/PhysRevLett.125.256402. PubMed DOI

Nakata A.; Baker J. S.; Mujahed S. Y.; Poulton J. T. L.; Arapan S.; Lin J.; Raza Z.; Yadav S.; Truflandier L.; Miyazaki T.; Bowler D. R. Large Scale and Linear Scaling DFT With the CONQUEST Code. J. Chem. Phys. 2020, 152, 16411210.1063/5.0005074. PubMed DOI

Runge E.; Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 10.1103/PhysRevLett.52.997. DOI

Ullrich C. A.Time-Dependent Density-Functional Theory: Concepts and Applications; Oxford University Press: Oxford, UK, 2011.

Maitra N. T. Fundamental Aspects of Time-Dependent Density Functional Theory. J. Chem. Phys. 2016, 144, 22090110.1063/1.4953039. PubMed DOI

Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: A General-Purpose Quantum Chemistry Program Package. WIREs Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI

Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI

Time-Dependent Density Functional Theory; Marques M. A. L., Ullrich C. A., Nogueira F., Rubio A., Burke K., Gross E. K. U., Eds.; Lecture Notes in Physics, Vol. 706; Springer, 2006.

Adamo C.; Jacquemin D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. 10.1039/C2CS35394F. PubMed DOI

Lian C.; Guan M.; Hu S.; Zhang J.; Meng S. Photoexcitation in Solids: First-Principles Quantum Simulations by Real-Time TDDFT. Adv. Theory Simul. 2018, 1 (8), 180005510.1002/adts.201800055. DOI

Malcioğlu O. B.; Calzolari A.; Gebauer R.; Varsano D.; Baroni S. Dielectric and Thermal Effects on the Optical Properties of Natural Dyes: A Case Study on Solvated Cyanin. J. Am. Chem. Soc. 2011, 133, 15425–15433. 10.1021/ja201733v. PubMed DOI

Sjulstok E.; Olsen J. M. H.; Solov’yov I. A. Quantifying Electron Transfer Reactions in Biological Systems: What Interactions Play the Major Role?. Sci. Rep. 2016, 5, 1844610.1038/srep18446. PubMed DOI PMC

Shao Y.; Mei Y.; Sundholm D.; Kaila V. R. I. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. J. Chem. Theory Comput. 2020, 16, 587–600. 10.1021/acs.jctc.9b00823. PubMed DOI PMC

Timmer D.; Hergert G.; Gerhards L.; Lünemann D. C.; Schröder N.; Greven T.; van der Vlugt J. I.; De Sio A.; Solov’yov I. A.; Christoffers J.; Lienau C. Structural Flexibility Slows Down Charge Transfers in Diaminoterephthalate-C60 Dyads. J. Phys. Chem. C 2024, 128, 2380–2391. 10.1021/acs.jpcc.3c08270. DOI

Timrov I.; Vast N.; Gebauer R.; Baroni S. Electron Energy Loss and Inelastic X-Ray Scattering Cross Sections From Time-Dependent Density-Functional Perturbation Theory. Phys. Rev. B 2013, 88, 06430110.1103/PhysRevB.88.064301. DOI

Nicholls R. J. Advances in Modelling Electron Energy Loss Spectra From First Principles. J. Phys. Mater. 2021, 4, 02400810.1088/2515-7639/abebd2. DOI

Moitra T.; Konecny L.; Kadek M.; Rubio A.; Repisky M. Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. J. Phys. Chem. Lett. 2023, 14, 1714–1724. 10.1021/acs.jpclett.2c03599. PubMed DOI PMC

Ghosal A.; Roy A. K. A Real-Time TDDFT Scheme for Strong-Field Interaction in Cartesian Coordinate Grid. Chem. Phys. Lett. 2022, 796, 13956210.1016/j.cplett.2022.139562. DOI

Alberg-Fløjborg A.; Salo A. B.; Solov’yov I. A. Quantum Mechanical Simulations of a Carbon Ion Colliding With a Biological Target. J. Phys. B: At. Mol. Opt. Phys. 2020, 53, 14520210.1088/1361-6455/ab8c56. DOI

Salo A. B.; Alberg-Fløjborg A.; Solov’yov I. A. Free-Electron Production From Nucleotides Upon Collision With Charged Carbon Ions. Phys. Rev. A 2018, 98, 01270210.1103/PhysRevA.98.012702. DOI

Friedrich H.Scattering Theory; Lecture Notes in Physics, Vol. 872; Springer, 2013.

Dreizler R. M.; Kirchner T.; Lüdde C.. Quantum Collision Theory of Nonrelativistic Particles; Springer-Verlag GmbH, 2022.

Wachter A.Relativistic Quantum Mechanics; Springer, 2011.

Hofierka J.; Cunningham B.; Rawlins C. M.; Patterson C. H.; Green D. Many-Body Theory of Positron Binding to Polyatomic Molecules. Nature 2022, 606, 688–693. 10.1038/s41586-022-04703-3. PubMed DOI PMC

Rawlins C. M.; Hofierka J.; Cunningham B.; Patterson C. H.; Green D. G. Many-Body Theory Calculations of Positron Scattering and Annihilation in H2, N2, and CH4. Phys. Rev. Lett. 2023, 130, 26300110.1103/PhysRevLett.130.263001. PubMed DOI

Samanta K.; Tsogbayar T.; Zhang S. B.; Yeager D. L. Electron–Atom and Electron–Molecule Resonances: Some Theoretical Approaches Using Complex Scaled Multiconfigurational Methods. Adv. Quantum Chem. 2018, 77, 317–390. 10.1016/bs.aiq.2017.06.006. DOI

Schneider B. R-matrix Theory for Electron-Atom and Electron-Molecule Collisions Using Analytic Basis Set Expansions. Chem. Phys. Lett. 1975, 31, 237–241. 10.1016/0009-2614(75)85010-X. DOI

Burke P. G.; Mackey I.; Shimamura I. R-Matrix Theory of Electron–Molecule Scattering. J. Phys. B: Atom. Mol. Phys. 1977, 10, 2497–2512. 10.1088/0022-3700/10/12/027. DOI

Tennyson J. Electron–Molecule Collision Calculations Using the R-matrix Method. Phys. Rep. 2010, 491, 29–76. 10.1016/j.physrep.2010.02.001. DOI

Otvos J. W.; Stevenson D. P. Cross-Sections of Molecules for Ionization by Electrons. J. Am. Chem. Soc. 1956, 78, 546–551. 10.1021/ja01584a009. DOI

Deutsch H.; Becker K.; Matt S.; Märk T. D. Theoretical Determination of Absolute Electron-Impact Ionization Cross Sections of Molecules. Int. J. Mass Spectrom. 2000, 197, 37–69. 10.1016/S1387-3806(99)00257-2. DOI

Kim Y.-K.; Rudd M. E. Binary-Encounter-Dipole Model for Electron-Impact Ionization. Phys. Rev. A 1994, 50, 3954–3967. 10.1103/PhysRevA.50.3954. PubMed DOI

Tanaka H.; Brunger M. J.; Campbell L.; Kato H.; Hoshino M.; Rau A. R. P. Scaled Plane-Wave Born Cross Sections for Atoms and Molecules. Rev. Mod. Phys. 2016, 88, 02500410.1103/RevModPhys.88.025004. DOI

Kim Y.-K.; Santos J. P.; Parente F. Extension of the Binary-Encounter-Dipole Model to Relativistic Incident Electrons. Phys. Rev. A 2000, 62, 05271010.1103/PhysRevA.62.052710. DOI

Rudd M. E.; Kim Y. K.; Madison D. H.; Gay T. Electron Production in Proton Collisions with Atoms and Molecules: Energy Distributions. Rev. Mod. Phys. 1992, 64, 441–490. 10.1103/RevModPhys.64.441. DOI

Zatsarinny O. BSR: B-spline Atomic R-matrix Codes. Comput. Phys. Commun. 2006, 174, 273–356. 10.1016/j.cpc.2005.10.006. DOI

Bray I.; Fursa D. V.; Kheifets A. S.; Stelbovics A. T. Electrons and Photons Colliding with Atoms: Development and Application of the Convergent Close-Coupling Method. J. Phys. B: At. Mol. Opt. Phys. 2002, 35, R117–R146. 10.1088/0953-4075/35/15/201. DOI

Gianturco F. A.; Lucchese R. R.; Sanna N. Calculation of Low-Energy Elastic Cross Sections for Electron–CF4 Scattering. J. Chem. Phys. 1994, 100, 6464–6471. 10.1063/1.467237. DOI

Mašín Z.; Benda J.; Gorfinkiel J. D.; Harvey A. G.; Tennyson J. UKRmol+: A Suite for Modelling Electronic Processes in Molecules Interacting With Electrons, Positrons and Photons Using the R-matrix Method. Comput. Phys. Commun. 2020, 249, 10709210.1016/j.cpc.2019.107092. DOI

Borràs V. J.; González-Vázquez J.; Argenti L.; Martín F. Molecular-Frame Photoelectron Angular Distributions of CO in the Vicinity of Feshbach Resonances: An XCHEM Approach. J. Chem. Theory Comput. 2021, 17, 6330–6339. 10.1021/acs.jctc.1c00480. PubMed DOI

AMOS Gateway Homepage.2023. https://amosgateway.org (accessed 2023-11-15).

Hamilton K. R.; Bartschat K.; Douguet N.; Pamidighantam S. V.; Schneider B. I. Simulation for All: The Atomic, Molecular, and Optical Science Gateway. Comput. Sci. Eng. 2023, 25, 68–72. 10.1109/MCSE.2023.3312888. DOI

Amusia M. Y.Atomic Photoeffect; Plenum Press: New York, NY, 1990.

McLaughlin B.; Balance C. P.. Petascale Computations for Large-Scale Atomic and Molecular Collisions. In Sustained Simulation Performance 2014; Resch M. M., Bez W., Focht E., Kobayashi H., Patel N., Eds.; Springer, 2014; pp 173–185.

Cooper B.; Tudorovskaya M.; Mohr S.; O’Hare A.; Hanicinec M.; Dzarasova A.; Gorfinkiel J. D.; Benda J.; Mašín Z.; Al-Refaie A. F.; Knowles P. J.; Tennyson J. Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-matrix Method. Atoms 2019, 7, 97.10.3390/atoms7040097. DOI

Bernhardt P.; Paretzke H. G. Calculation of Electron Impact Ionization Cross Sections of DNA Using the Deutsch–Märk and Binary–Encounter–Bethe Formalisms. Int. J. Mass Spectrom. 2003, 223–224, 599–611. 10.1016/S1387-3806(02)00878-3. DOI

Huber S. E.; Mauracher A. Electron Impact Ionisation Cross Sections of Fluoro-Substituted Nucleosides. Eur. Phys. J. D 2019, 73, 137.10.1140/epjd/e2019-90708-9. PubMed DOI PMC

Langer J.; Zawadzki M.; Fárník M.; Pinkas J.; Fedor J.; Kočišek J. Electron Interactions with Bis(pentamethylcyclopentadienyl) Titanium(IV) Dichloride and Difluoride. Eur. Phys. J. D 2018, 72, 112.10.1140/epjd/e2018-80794-6. DOI

Francis Z.; El Bitar Z.; Incerti S.; Bernal M. A.; Karamitros M.; Tran H. N. Calculation of Lineal Energies for Water and DNA Bases Using the Rudd Model Cross Sections Integrated Within the Geant4-DNA Processes. J. Appl. Phys. 2017, 122, 01470110.1063/1.4990293. DOI

Cashwell E. D.; Everett C. J.. A Practical Manual on the Monte Carlo Method for Random Walk Problems; Pergamon Press: London, UK, 1959.

Kawrakow I.; Bielajew A. F. On the Condensed History Technique for Electron Transport. Nucl. Instrum. Meth. B 1998, 142, 253–280. 10.1016/S0168-583X(98)00274-2. DOI

Monte Carlo Transport of Electrons and Photons; Jenkins T. M., Nelson W. R., Rindi A., Eds.; Springer, 1988.

Berger M. J.; Coursey J. S.; Zucker M. A.; Chang J.. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NIST Standard Reference Database 124. U.S. Department of Commerce, National Institute of Standards and Technology, n.d. https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions (accessed 2023-09-08).

Dingfelder M. Track-structure Simulations for Charged Particles. Health Phys. 2012, 103, 590–595. 10.1097/HP.0b013e3182621292. PubMed DOI PMC

Böhlen T. T.; Cerutti F.; Chin M. P. W.; Fassò A.; Ferrari A.; Ortega P. G.; Mairani A.; Sala P. R.; Smirnov G.; Vlachoudis V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. 10.1016/j.nds.2014.07.049. DOI

Ziegler J. F.; Ziegler M. D.; Biersack J. P. SRIM – The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Meth. B 2010, 268, 1818–1823. 10.1016/j.nimb.2010.02.091. DOI

Salvat F.; Fernández-Varea J. M.; Sempau J.. PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport.2023. (accessed 2023–06–13); https://www.oecd-nea.org/science/docs/2011/nsc-doc2011-5.

Agostinelli S.; Allison J.; Amako K.; Apostolakis J.; Araujo H.; Arce P.; Asai M.; Axen D.; Banerjee S.; Barrand G.; et al. GEANT4 – A Simulation Toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303. 10.1016/S0168-9002(03)01368-8. DOI

Uehara S.; Nikjoo H.; Goodhead D. T. Cross-Sections for Water Vapour for the Monte Carlo Electron Track Structure Code From 10 eV to the MeV Region. Phys. Med. Biol. 1993, 38, 1841–1858. 10.1088/0031-9155/38/12/010. DOI

Friedland W.; Dingfelder M.; Kundrát P.; Jacob P. Track Structures, DNA Targets and Radiation Effects in the Biophysical Monte Carlo Simulation Code PARTRAC. Mutat. Res. 2011, 711, 28–40. 10.1016/j.mrfmmm.2011.01.003. PubMed DOI

Pimblott S. M.; Mozumder A. Structure of Electron Tracks in Water. 2. Distribution of Primary Ionizations and Excitations in Water Radiolysis. J. Phys. Chem. 1991, 95, 7291–7300. 10.1021/j100172a036. DOI

Champion C.; Le Loirec C.; Stosic B. EPOTRAN: A Full-differential Monte Carlo Code for Electron and Positron Transport in Liquid and Gaseous Water. Int. J. Radiat. Biol. 2012, 88, 54–61. 10.3109/09553002.2011.641451. PubMed DOI

Incerti S.; Baldacchino G.; Bernal M.; Capra R.; Champion C.; Francis Z.; Guèye P.; Mantero A.; Mascialino B.; Moretto P.; et al. The Geant4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 1, 157–178. 10.1142/S1793962310000122. DOI

Bernal M. A.; Bordage M. C.; Brown J. M. C.; Davídková M.; Delage E.; El Bitar Z.; Enger S. A.; Francis Z.; Guatelli S.; Ivanchenko V. N.; et al. Track Structure Modeling in Liquid Water: A Review of the Geant4-DNA Very Low Energy Extension of the Geant4 Monte Carlo Simulation Toolkit. Phys. Med. 2015, 31, 861–874. 10.1016/j.ejmp.2015.10.087. PubMed DOI

Zein S. A.; Bordage M.-C.; Francis Z.; Macetti G.; Genoni A.; Dal Cappello C.; Shin W.-G.; Incerti S. Electron Transport in DNA Bases: An Extension of the Geant4-DNA Monte Carlo Toolkit. Nucl. Instrum. Meth. B 2021, 488, 70–82. 10.1016/j.nimb.2020.11.021. DOI

Sakata D.; Incerti S.; Bordage M. C.; Lampe N.; Okada S.; Emfietzoglou D.; Kyriakou I.; Murakami K.; Sasaki T.; Tran H.; Guatelli S.; Ivantchenko V. N. An Implementation of Discrete Electron Transport Models for Gold in the Geant4 Simulation Toolkit. J. Appl. Phys. 2016, 120, 24490110.1063/1.4972191. DOI

Radiation Damage in Biomolecular Systems; García Gómez-Tejedor G., Fuss M. C., Eds.; Springer, 2012.

Hahn M. B. Accessing Radiation Damage to Biomolecules on the Nanoscale by Particle-Scattering Simulations. J. Phys. Commun. 2023, 7, 04200110.1088/2399-6528/accb3f. DOI

Kundrát P. A Semi-Analytical Radiobiological Model May Assist Treatment Planning in Light Ion Radiotherapy. Phys. Med. Biol. 2007, 52, 6813–6830. 10.1088/0031-9155/52/23/003. PubMed DOI

Korol A. V.; Sushko G. B.; Solov’yov A. V. All-Atom Relativistic Molecular Dynamics Simulations of Channeling and Radiation Processes in Oriented Crystals. Eur. Phys. J. D 2021, 75, 107.10.1140/epjd/s10053-021-00111-w. DOI

Solov’yov I. A.; Sushko G. B.; Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V.. Relativistic molecular dynamics. In MBN Explorer and MBN Studio Tutorials: Version 5.0; MesoBioNano Science Publishing: Frankfurt am Main, 2024.

Korol A. V.; Solov’yov A. V.; Greiner W. The Influence of the Dechannelling Process on the Photon Emission by an Ultra-Relativistic Positron Channelling in a Periodically Bent Crystal. J. Phys. G: Nucl. Part. Phys. 2001, 27, 95–125. 10.1088/0954-3899/27/1/307. DOI

Sushko G. B.; Korol A. V.; Solov’yov A. V. Atomistic Modeling of the Channeling Process with Radiation Reaction Force Included. Nucl. Instrum. Meth. B 2023, 535, 117–125. 10.1016/j.nimb.2022.12.008. DOI

Born M.; Oppenheimer J. R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. 10.1002/andp.19273892002. DOI

MacKerell Jr. A. D.; Bashford D.; Bellott M.; Dunbrack Jr R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616. 10.1021/jp973084f. PubMed DOI

MacKerell Jr. A. D.; Feig M.; Brooks C. L. III Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. 10.1002/jcc.20065. PubMed DOI

Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz Jr K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI

Tersoff J. Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon. Phys. Rev. Lett. 1988, 61, 2879–2882. 10.1103/PhysRevLett.61.2879. PubMed DOI

Tersoff J. New Empirical Approach for the Structure and Energy of Covalent Systems. Phys. Rev. B 1988, 37, 6991–7000. 10.1103/PhysRevB.37.6991. PubMed DOI

Brenner D. W. Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films. Phys. Rev. B 1990, 42, 9458–9471. 10.1103/PhysRevB.42.9458. PubMed DOI

Stuart S. J.; Tutein A. B.; Harrison J. A. A. Reactive Potential for Hydrocarbons with Intermolecular Interactions. J. Chem. Phys. 2000, 112, 6472–6486. 10.1063/1.481208. DOI

Brenner D. W.; Shenderova O. A.; Harrison J. A.; Stuart S. J.; Ni B.; Sinnott S. B. A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons. J. Phys.: Condens. Matter 2002, 14, 783–802. 10.1088/0953-8984/14/4/312. DOI

Case D. A.; Cheatham III T. E.; Darden T.; Gohlke H.; Luo R.; Merz Jr. K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC

Brooks B. R.; Bruccoleri R. E.; Olafson B. D.; States D. J.; Swaminathan S.; Karplus M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. 10.1002/jcc.540040211. DOI

Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. 10.1006/jcph.1995.1039. DOI

Phillips J. C.; Braun R.; Wang W.; Gumbart J.; Tajkhorshid E.; Villa E.; Chipot C.; Skeel R. D.; Kalé L.; Schulten K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. 10.1002/jcc.20289. PubMed DOI PMC

Akhukov M. A.; Chorkov V. A.; Gavrilov A. A.; Guseva D. V.; Khalatur P. G.; Khokhlov A. R.; Kniznik A. A.; Komarov P. V.; Okun M. V.; Potapkin B. V.; et al. MULTICOMP Package for Multilevel Simulation of Polymer Nanocomposites. Comput. Mater. Sci. 2023, 216, 11183210.1016/j.commatsci.2022.111832. DOI

Feig M.; Karanicolas J.; Brooks C. L. III C. L. B. MMTSB Tool Set: Enhanced Sampling and Multiscale Modeling Methods for Applications in Structural Biology. J. Mol. Graph. Model. 2004, 22, 377–395. 10.1016/j.jmgm.2003.12.005. PubMed DOI

Shankar U.; Gogoi R.; Sethi S. K.; Verma A.. Introduction to Materials Studio Software for the Atomistic-Scale Simulations. In Forcefields for Atomistic-Scale Simulations: Materials and Applications; Verma A., Rangappa S. M., Ogata S., Siengchin S., Eds.; Springer, 2022; pp 299–313.

Theory of Atomic and Molecular Clusters; Jellinek J., Ed.; Springer-Verlag Berlin Heidelberg, 1999.

Saito K.Chemical Physics of Molecular Condensed Matter; Springer, 2020.

Mathematical Approaches to Biomolecular Structure and Dynamics; Mesirov J. P., Schulten K., Sumners D. W., Eds.; Springer, 1996.

Zhao G.; Perilla J. R.; Yufenyuy E. L.; Meng X.; Chen B.; Ning J.; Ahn J.; Gronenborn A. M.; Schulten K.; Aiken C.; Zhang P. Mature HIV-1 Capsid Structure by Cryo-Electron Microscopy and All-Atom Molecular Dynamics. Nature 2013, 497, 643–646. 10.1038/nature12162. PubMed DOI PMC

Vashishta P.; Kalia R. K.; Nakano A. Multimillion Atom Simulations of Dynamics of Oxidation of an Aluminum Nanoparticle and Nanoindentation on Ceramics. J. Phys. Chem. B 2006, 110, 3727–3733. 10.1021/jp0556153. PubMed DOI

Shaw D. E.; Maragakis P.; Lindorff-Larsen K.; Piana S.; Dror R. O.; Eastwood M. P.; Bank J. A.; Jumper J. M.; Salmon J. K.; Shan Y.; Wriggers W. Atomic-Level Characterization of the Structural Dynamics of Proteins. Science 2010, 330, 341–346. 10.1126/science.1187409. PubMed DOI

Pierce L. C. T.; Salomon-Ferrer R.; de Oliveira C. A. F.; McCammon J. A.; Walker R. C. Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics. J. Chem. Theory Comput. 2012, 8, 2997–3002. 10.1021/ct300284c. PubMed DOI PMC

Lu D.; Wang H.; Chen M.; Lin L.; Car R.; E W.; Jia W.; Zhang L. 86 PFLOPS Deep Potential Molecular Dynamics Simulation of 100 Million Atoms With Ab Initio Accuracy. Comput. Phys. Commun. 2021, 259, 10762410.1016/j.cpc.2020.107624. DOI

Jia W.; Wang H.; Chen M.; Lu D.; Lin L.; Car R.; E W.; Zhang L. Pushing the Limit of Molecular Dynamics With Ab Initio Accuracy to 100 Million Atoms with Machine Learning. arXiv 2023, 2005.0022310.48550/arXiv.2005.00223. DOI

Warshel A.; Levitt M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227–249. 10.1016/0022-2836(76)90311-9. PubMed DOI

Field M. J.; Bash P. A.; Karplus M. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. J. Comput. Chem. 1990, 11, 700–733. 10.1002/jcc.540110605. DOI

Senn H. M.; Thiel W. QM/MM Methods for Biomolecular Systems. Angew. Chem., Int. Ed. 2009, 48, 1198–1229. 10.1002/anie.200802019. PubMed DOI

Maseras F.; Morokuma K. IMOMM: A New Integrated Ab Initio + Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition States. J. Comput. Chem. 1995, 16, 1170–1179. 10.1002/jcc.540160911. DOI

Svensson M.; Humbel S.; Froese R. D. J.; Matsubara T.; Sieber S.; Morokuma K. ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357–19363. 10.1021/jp962071j. DOI

Cao L.; Ryde U. On the Difference Between Additive and Subtractive QM/MM Calculations. Front. Chem. 2018, 6, 89.10.3389/fchem.2018.00089. PubMed DOI PMC

Dapprich S.; Komáromi I.; Byun K. S.; Morokuma K.; Frisch M. J. A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives. J. Mol. Struct. 1999, 461–462, 1–21. 10.1016/S0166-1280(98)00475-8. DOI

Söderhjelm P.; Husberg C.; Strambi A.; Olivucci M.; Ryde U. Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities. J. Chem. Theory Comput. 2009, 5, 649–658. 10.1021/ct800459t. PubMed DOI

Olsen J. M.; Aidas K.; Kongsted J. Excited States in Solution Through Polarizable Embedding. J. Chem. Theory Comput. 2010, 6, 3721–3734. 10.1021/ct1003803. DOI

Olsen J. M. H.; Kongsted J. Molecular Properties through Polarizable Embedding. Adv. Quantum Chem. 2011, 61, 107–143. 10.1016/B978-0-12-386013-2.00003-6. DOI

Bondanza M.; Nottoli M.; Cupellini L.; Lipparini F.; Mennucci B. Polarizable Embedding QM/MM: The Future Gold Standard for Complex (Bio)systems?. Phys. Chem. Chem. Phys. 2020, 22, 14433–14448. 10.1039/D0CP02119A. PubMed DOI

Gordon M. S.; Fedorov D. G.; Pruitt S. R.; Slipchenko L. V. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chem. Rev. 2012, 112, 632–672. 10.1021/cr200093j. PubMed DOI

Gao J.; Truhlar D. G.; Wang Y.; Mazack M. J. M.; Löffler P.; Provorse M. R.; Rehak P. Explicit Polarization: A Quantum Mechanical Framework for Developing Next Generation Force Fields. Acc. Chem. Res. 2014, 47, 2837–2845. 10.1021/ar5002186. PubMed DOI PMC

Warshel A.; Kato M.; Pisliakov A. V. Polarizable Force Fields: History, Test Cases, and Prospects. J. Chem. Theory Comput. 2007, 3, 2034–2045. 10.1021/ct700127w. PubMed DOI

Cieplak P.; Dupradeau F.-Y.; Duan Y.; Wang J. Polarization Effects in Molecular Mechanical Force Fields. J. Phys.: Condens. Matter 2009, 21, 33310210.1088/0953-8984/21/33/333102. PubMed DOI PMC

Jing Z.; Liu C.; Cheng S. Y.; Qi R.; Walker B. D.; Piquemal J.-P.; Ren P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu. Rev. Biophys. 2019, 48, 371–394. 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC

Curutchet C.; Muñoz Losa A.; Monti S.; Kongsted J.; Scholes G. D.; Mennucci B. Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model. J. Chem. Theory Comput. 2009, 5, 1838–1848. 10.1021/ct9001366. PubMed DOI

Boulanger E.; Thiel W. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model. J. Chem. Theory Comput. 2012, 8, 4527–4538. 10.1021/ct300722e. PubMed DOI

Lemkul J. A.; Huang J.; Roux B.; MacKerell Jr. A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116, 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC

Stern H. A.; Kaminski G. A.; Banks J. L.; Zhou R.; Berne B. J.; Friesner R. A. Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry. J. Phys. Chem. B 1999, 103, 4730–4737. 10.1021/jp984498r. DOI

Giovannini T.; Puglisi A.; Ambrosetti M.; Cappelli C. Polarizable QM/MM Approach with Fluctuating Charges and Fluctuating Dipoles: The QM/FQFμ Model. J. Chem. Theory Comput. 2019, 15, 2233–2245. 10.1021/acs.jctc.8b01149. PubMed DOI

Dziedzic J.; Mao Y.; Shao Y.; Ponder J.; Head-Gordon T.; Head-Gordon M.; Skylaris C.-K. TINKTEP: A Fully Self-Consistent, Mutually Polarizable QM/MM Approach Based on the AMOEBA Force Field. J. Chem. Phys. 2016, 145, 12410610.1063/1.4962909. PubMed DOI

Wu X.; Teuler J.-M.; Cailliez F.; Clavaguéra C.; Salahub D. R.; de la Lande A. Simulating Electron Dynamics in Polarizable Environments. J. Chem. Theory Comput. 2017, 13, 3985–4002. 10.1021/acs.jctc.7b00251. PubMed DOI

Ponder W.; Wu C.; Ren P.; Pande V. S.; Chodera J. D.; Schnieders M. J.; Haque I.; Mobley D. L.; Lambrecht D. S.; DiStasio Jr. R. A.; et al. Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B 2010, 114, 2549–2564. 10.1021/jp910674d. PubMed DOI PMC

Shi Y.; Xia Z.; Zhang J.; Best R.; Wu C.; Ponder J. W.; Ren P. Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins. J. Chem. Theory Comput. 2013, 9, 4046–4063. 10.1021/ct4003702. PubMed DOI PMC

Loco D.; Lagardère L.; Caprasecca S.; Lipparini F.; Mennucci B.; Piquemal J.-P. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. J. Chem. Theory Comput. 2017, 13, 4025–4033. 10.1021/acs.jctc.7b00572. PubMed DOI

Zhang C.; Lu C.; Jing Z.; Wu C.; Piquemal J.-P.; Ponder J. W.; Ren P. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J. Chem. Theory Comput. 2018, 14, 2084–2108. 10.1021/acs.jctc.7b01169. PubMed DOI PMC

Nottoli M.; Bondanza M.; Mazzeo P.; Cupellini L.; Curutchet C.; Loco D.; Lagardère L.; Piquemal J.-P.; Mennucci B.; Lipparini F. QM/AMOEBA Description of Properties and Dynamics of Embedded Molecules. WIREs Comput. Mol. Sci. 2023, 13, e167410.1002/wcms.1674. DOI

Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N · log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Herce H. D.; Garcia A. E.; Darden T. The Electrostatic Surface Term: (I) Periodic Systems. J. Chem. Phys. 2007, 126, 12410610.1063/1.2714527. PubMed DOI

Frenkel D.; Smit B.. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Academic Press, San Diego, CA, 2002.

Field M. J. The pDynamo Program for Molecular Simulations Using Hybrid Quantum Chemical and Molecular Mechanical Potentials. J. Chem. Theory Comput. 2008, 4, 1151–1161. 10.1021/ct800092p. PubMed DOI

Zhang B.; Altarawy D.; Barnes T.; Turney J. M.; Schaefer III H. F. Janus: An Extensible Open-Source Software Package for Adaptive QM/MM Methods. J. Chem. Theory Comput. 2019, 15, 4362–4373. 10.1021/acs.jctc.9b00182. PubMed DOI

Lin H.; Zhang Y.; Pezeshki S.; Wang B.; Wu X.-P.; Gagliardi L.; Truhlar D. G.. QMMM 2018; University of Minnesota: Minneapolis, MN, 2018. http://comp.chem.umn.edu/qmmm (accessed 2023-09-13).

Korol V.; Husen P.; Sjulstok E.; Nielsen C.; Friis I.; Frederiksen A.; Salo A. B.; Solov’yov I. A. Introducing VIKING: A Novel Online Platform for Multiscale Modeling. ACS Omega 2020, 5, 1254–1260. 10.1021/acsomega.9b03802. PubMed DOI PMC

Metz S.; Kästner J.; Sokol A. A.; Keal T. W.; Sherwood P. ChemShell–A Modular Software Package for QM/MM Simulations. WIREs Comput. Mol. Sci. 2014, 4, 101–110. 10.1002/wcms.1163. DOI

Cofer-Shabica D. V.; Menger M. F. S. J.; Ou Q.; Shao Y.; Subotnik J. E.; Faraji S. INAQS, A Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM Simulations. J. Chem. Theory Comput. 2022, 18, 4601–4614. 10.1021/acs.jctc.2c00204. PubMed DOI

Kong J.; White C. A.; Krylov A. I.; Sherrill D.; Adamson R. D.; Furlani T. R.; Lee M. S.; Lee A. M.; Gwaltney S. R.; Adams T. R.; et al. Q-Chem 2.0: A High-Performance Ab Initio Electronic Structure Program Package. J. Comput. Chem. 2000, 21, 1532–1548. 10.1002/1096-987X(200012)21:16<1532::AID-JCC10>3.0.CO;2-W. DOI

Epifanovsky E.; Gilbert A. T. B.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; et al. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 08480110.1063/5.0055522. PubMed DOI PMC

Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface. GROMACS, n.d. https://manual.gromacs.org/current/reference-manual/special/qmmm.html (accessed 2023-09-13).

Melo M. C. R.; Bernardi R. C.; Rudack T.; Scheurer M.; Riplinger C.; Phillips J. C.; Maia J. D. C.; Rocha G. B.; Ribeiro J. V.; Stone J. E.; Neese F.; Schulten K.; Luthey-Schulten Z. NAMD Goes Quantum: An Integrative Suite for Hybrid Simulations. Nat. Meth. 2018, 15, 351–354. 10.1038/nmeth.4638. PubMed DOI PMC

Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Stewart J. J. MOPAC: A Semiempirical Molecular Orbital Program. J. Comp.-Aided Mol. Design 1990, 4, 1–103. 10.1007/BF00128336. PubMed DOI

Mroginski M.-A.; Adam S.; Amoyal G. S.; Barnoy A.; Bondar A.-N.; Borin V. A.; Church J. R.; Domratcheva T.; Ensing B.; Fanelli F.; et al. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem. Photobiol. 2021, 97, 243–269. 10.1111/php.13372. PubMed DOI PMC

Nielsen C.; Nørby M. S.; Kongsted J.; Solov’yov I. A. Absorption Spectra of FAD Embedded in Cryptochromes. J. Phys. Chem. Lett. 2018, 9, 3618–3623. 10.1021/acs.jpclett.8b01528. PubMed DOI

Reese A.; List N. H.; Kongsted J.; Solov’yov I. A. How Far Does a Receptor Influence Vibrational Properties of an Odorant?. PLoS One 2016, 11, e015234510.1371/journal.pone.0152345. PubMed DOI PMC

Shaik S.; Cohen S.; Wang Y.; Chen H.; Kumar D.; Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity–Modeled by QM/MM Calculations. Chem. Rev. 2010, 110, 949–1017. 10.1021/cr900121s. PubMed DOI

Gomes A. S. P.; Jacob C. R. Quantum-Chemical Embedding Methods for Treating Local Electronic Excitations in Complex Chemical Systems. Ann. Rep. Sect. C (Phys. Chem.) 2012, 108, 222–277. 10.1039/c2pc90007f. DOI

Dinh P. M.; Reinhard P. G.; Suraud E. Dynamics of Clusters and Molecules in Contact with an Environment. Phys. Rep. 2010, 485, 43–107. 10.1016/j.physrep.2009.07.006. DOI

Lopes P. E. M.; Roux B.; MacKerell Jr. A. D. Molecular Modeling and Dynamics Studies with Explicit Inclusion of Electronic Polarizability: Theory and Applications. Theor. Chem. Acc. 2009, 124, 11–28. 10.1007/s00214-009-0617-x. PubMed DOI PMC

Macías Labrada I. M.; Estévez Baños L. I.; Codorniu Pujals D.; Márquez Mijares M. Carbon Nanotubes with Point Defects Produced by Ionizing Radiation: A Study Using DFTB. Eur. Phys. J. D 2023, 77, 153.10.1140/epjd/s10053-023-00735-0. DOI

Elstner M.; Frauenheim T.; Suhai S. An Approximate DFT Method for QM/MM Simulations of Biological Structures and Processes. J. Mol. Struct. THEOCHEM 2003, 632, 29–41. 10.1016/S0166-1280(03)00286-0. DOI

Masson F.; Laino T.; Rothlisberger U.; Hutter J. A QM/MM Investigation of Thymine Dimer Radical Anion Splitting Catalyzed by DNA Photolyase. ChemPhysChem 2009, 10, 400–410. 10.1002/cphc.200800624. PubMed DOI

Maity S.; Bold B. M.; Prajapati J. D.; Sokolov M.; Kubař T.; Elstner M.; Kleinekathöfer U. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex. J. Phys. Chem. Lett. 2020, 11, 8660–8667. 10.1021/acs.jpclett.0c02526. PubMed DOI

Kubař T.; Welke K.; Groenhof G. New QM/MM Implementation of the DFTB3 Method in the Gromacs Package. J. Comput. Chem. 2015, 36, 1978–1989. 10.1002/jcc.24029. PubMed DOI

Bold B. M.; Sokolov M.; Maity S.; Wanko M.; Dohmen P. M.; Kranz J. J.; Kleinekathöfer U.; Höfener S.; Elstner M. Benchmark and Performance of Long-Range Corrected Time-Dependent Density Functional Tight Binding (LC-TD-DFTB) on Rhodopsins and Light-Harvesting Complexes. Phys. Chem. Chem. Phys. 2020, 22, 10500–10518. 10.1039/C9CP05753F. PubMed DOI

Maity S.; Sarngadharan P.; Daskalakis V.; Kleinekathöfer U. Time-Dependent Atomistic Simulations of the CP29 Light-Harvesting Complex. J. Chem. Phys. 2021, 155, 05510310.1063/5.0053259. PubMed DOI

Maity S.; Daskalakis V.; Elstner M.; Kleinekathöfer U. Multiscale QM/MM Molecular Dynamics Simulations of the Trimeric Major Light-Harvesting Complex II. Phys. Chem. Chem. Phys. 2021, 23, 7407–7417. 10.1039/D1CP01011E. PubMed DOI

Multiscale Dynamics Simulations: Nano and Nano-bio Systems in Complex Environments, Vol. 22; Salahub D. R., Wei D., Eds.; Royal Society of Chemistry: Cambridge, UK, 2021.

Humeniuk A.Methods for Simulating Light-Induced Dynamics in Large Molecular Systems. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2018.

Brunk E.; Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem. Rev. 2015, 115, 6217–6263. 10.1021/cr500628b. PubMed DOI

Kubař T.; Gutiérrez R.; Kleinekathöfer U.; Cuniberti G.; Elstner M. Modeling Charge Transport in DNA Using Multi-scale Methods. Phys. Stat. Sol. (b) 2013, 250, 2277–2287. 10.1002/pssb.201349148. DOI

Kubař T.; Elstner M. Coarse-Grained Time-Dependent Density Functional Simulation of Charge Transfer in Complex Systems: Application to Hole Transfer in DNA. J. Phys. Chem. B 2010, 114, 11221–11240. 10.1021/jp102814p. PubMed DOI

Yusef Buey M.; Mineva T.; Rapacioli M. Coupling Density Functional Based Tight Binding with Class 1 Force Fields in a Hybrid QM/MM Scheme. Theor. Chem. Acc. 2022, 141, 16.10.1007/s00214-022-02878-6. DOI

Paris A.; Taioli S. Multiscale Investigation of Oxygen Vacancies in TiO2 Anatase and Their Role in Memristor’s Behavior. J. Phys. Chem. C 2016, 120, 22045–22053. 10.1021/acs.jpcc.6b07196. DOI

Malerba L.; Caturla M. J.; Gaganidze E.; Kaden C.; Konstantinović M. J.; Olsson P.; Robertson C.; Rodney D.; Ruiz-Moreno A. M.; Serrano M.; et al. Multiscale Modelling for Fusion and Fission Materials: The M4F Project. Nucl. Mater. Energy 2021, 29, 10105110.1016/j.nme.2021.101051. DOI

Seabra G. de M.; Walker R. C.; Elstner M.; Case D. A.; Roitberg A. E. Implementation of the SCC-DFTB Method for Hybrid QM/MM Simulations within the Amber Molecular Dynamics Package. J. Phys. Chem. A 2007, 111, 5655–5664. 10.1021/jp070071l. PubMed DOI PMC

Feng S.; Guo F.; Yuan C.; Cheng X.; Wang Y.; Zhang H.; Chen J.; Su L. Effect of Neutron Irradiation on Structure and Decomposition of α-RDX: A ReaxFF Molecular Dynamics Study. Comput. Theor. Chem. 2023, 1219, 11396510.1016/j.comptc.2022.113965. DOI

Nagaya K.; Motomura K.; Kukk E.; Takahashi Y.; Yamazaki K.; Ohmura S.; Fukuzawa H.; Wada S.; Mondal S.; Tachibana T.; et al. Femtosecond Charge and Molecular Dynamics of I-containing Organic Molecules Induced by Intense X-ray Free-Electron Laser Pulses. Faraday Disc. 2016, 194, 537–562. 10.1039/C6FD00085A. PubMed DOI

Rödl M.; Kerschbaumer S.; Kopacka H.; Blaser L.; Purtscher F. R. S.; Huppertz H.; Hofer T. S.; Schwartz H. A. Structural, Dynamical, and Photochemical Properties of Ortho-tetrafluoroazobenzene Inside a Flexible MOF Under Visible Light Irradiation. RSC Adv. 2021, 11, 3917–3930. 10.1039/D0RA10500G. PubMed DOI PMC

Cui Q.; Elstner M.; Kaxiras E.; Frauenheim T.; Karplus M. A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method. J. Phys. Chem. B 2001, 105, 569–585. 10.1021/jp0029109. DOI

Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitricǎ T.; Dominguez A.; et al. DFTB+, A Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations. J. Chem. Phys. 2020, 152, 12410110.1063/1.5143190. PubMed DOI

Galván I. Fdez.; Vacher M.; Alavi A.; Angeli C.; Aquilante F.; Autschbach J.; Bao J. J.; Bokarev S. I.; Bogdanov N. A.; Carlson R. K.; et al. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. 10.1021/acs.jctc.9b00532. PubMed DOI

Sjulstok E.; Lüdemann G.; Kubař T.; Elstner M.; Solov’yov I. A. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome. Biophys. J. 2018, 114, 2563–2572. 10.1016/j.bpj.2018.04.014. PubMed DOI PMC

Lüdemann G.; Solov’yov I. A.; Kubař T.; Elstner M. Solvent Driving Force Ensures Fast Formation of a Persistent and Well-Separated Radical Pair in Plant Cryptochrome. J. Am. Chem. Soc. 2015, 137, 1147–1156. 10.1021/ja510550g. PubMed DOI

Timmer D.; Frederiksen A.; Lünemann D. C.; Thomas A. R.; Xu J.; Bartölke R.; Schmidt J.; Kubař T.; De Sio A.; Solov’yov I. A.; Mouritsen H.; Lienau C. Tracking the Electron Transfer Cascade in European Robin Cryptochrome 4 Mutants. J. Am. Chem. Soc. 2023, 145, 11566–11578. 10.1021/jacs.3c00442. PubMed DOI PMC

Yagi K.; Ito S.; Sugita Y. Exploring the Minimum-Energy Pathways and Free-Energy Profiles of Enzymatic Reactions with QM/MM Calculations. J. Phys. Chem. B 2021, 125, 4701–4713. 10.1021/acs.jpcb.1c01862. PubMed DOI PMC

Guo L.; Qi C.; Zheng X.; Zhang R.; Shen X.; Kaya S. Toward Understanding the Adsorption Mechanism of Large Size Organic Corrosion Inhibitors on an Fe(110) Surface Using the DFTB Method. RSC Adv. 2017, 7, 29042–29050. 10.1039/C7RA04120A. DOI

Murmu M.; Saha S. K.; Guo L.; Murmu N. C.; Banerjee P. Intrinsic Electronic Property and Adsorption of Organic Molecules on Specific Iron Surface: An ab initio DFT and DFTB Study. J. Adhes. Sci. Technol. 2023, 37, 1837–1855. 10.1080/01694243.2022.2097580. DOI

Nénon S.; Champagne B. SCC-DFTB Calculation of the Static First Hyperpolarizability: From Gas Phase Molecules to Functionalized Surfaces. J. Chem. Phys. 2013, 138, 20410710.1063/1.4806259. PubMed DOI

Xu S. C.; Irle S.; Musaev D. G.; Lin M. C. Quantum Chemical Study of the Dissociative Adsorption of OH and H2O on Pristine and Defective Graphite (0001) Surfaces: Reaction Mechanisms and Kinetics. J. Phys. Chem. C 2007, 111, 1355–1365. 10.1021/jp066142i. DOI

Goyal P.; Qian H.-J.; Irle S.; Lu X.; Roston D.; Mori T.; Elstner M.; Cui Q. Molecular Simulation of Water and Hydration Effects in Different Environments: Challenges and Developments for DFTB Based Models. J. Phys. Chem. B 2014, 118, 11007–11027. 10.1021/jp503372v. PubMed DOI PMC

Barone V.; Carnimeo I.; Scalmani G. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach. J. Chem. Theory Comput. 2013, 9, 2052–2071. 10.1021/ct301050x. PubMed DOI

Bursch M.; Caldeweyher E.; Hansen A.; Neugebauer H.; Ehlert S.; Grimme S. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Acc. Chem. Res. 2019, 52, 258–266. 10.1021/acs.accounts.8b00505. PubMed DOI

Ehrlich S.; Moellmann J.; Grimme S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Acc. Chem. Res. 2013, 46, 916–926. 10.1021/ar3000844. PubMed DOI

Brandenburg J. G.; Grimme S. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). J. Phys. Chem. Lett. 2014, 5, 1785–1789. 10.1021/jz500755u. PubMed DOI

Miriyala V. M.; Řezáč J. Description of Non-Covalent Interactions in SCC-DFTB Methods. J. Comput. Chem. 2017, 38, 688–697. 10.1002/jcc.24725. PubMed DOI

Gómez-Flores C. L.; Maag D.; Kansari M.; Vuong V.-Q.; Irle S.; Gräter F.; Kubař T.; Elstner M. Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology. J. Chem. Theory Comput. 2022, 18, 1213–1226. 10.1021/acs.jctc.1c00811. PubMed DOI

Marx D.; Hutter J.. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press, Cambridge, UK, 2009.

Tuckerman M. E. Ab initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications. J. Phys.: Condens. Matter 2002, 14, R1297–R1355. 10.1088/0953-8984/14/50/202. DOI

Iftimie R.; Minary P.; Tuckerman M. E. Ab initio Molecular Dynamics: Concepts, Recent Developments, and Future Trends. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6654–6659. 10.1073/pnas.0500193102. PubMed DOI PMC

Barnett R. N.; Landman U. Born-Oppenheimer Molecular-Dynamics Simulations of Finite Systems: Structure and Dynamics of (H2O)2. Phys. Rev. B 1993, 48, 2081–2097. 10.1103/PhysRevB.48.2081. PubMed DOI

Niklasson A. M. N.; Negre C. F. A. Shadow Energy Functionals and Potentials in Born–Oppenheimer Molecular Dynamics. J. Chem. Phys. 2023, 158, 15410510.1063/5.0146431. PubMed DOI

Worth G. A.; Cederbaum L. S. Beyond Born-Oppenheimer: Molecular Dynamics Through a Conical Intersection. Annu. Rev. Phys. Chem. 2004, 55, 127–158. 10.1146/annurev.physchem.55.091602.094335. PubMed DOI

Kirrander A.; Vacher M.. Ehrenfest Methods for Electron and Nuclear Dynamics. In Quantum Chemistry and Dynamics of Excited States: Methods and Applications; González L., Lindh R., Eds.; John Wiley & Sons Ltd., 2020; pp 469–497.

Car R.; Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474. 10.1103/PhysRevLett.55.2471. PubMed DOI

Hutter J. Car-Parrinello Molecular Dynamics. WIREs Comput. Mol. Sci. 2012, 2, 604–612. 10.1002/wcms.90. DOI

Gonze X.; Beuken J.-M.; Caracas R.; Detraux F.; Fuchs M.; Rignanese G.-M.; Sindic L.; Verstraete M.; Zerah G.; Jollet F.; et al. First-Principles Computation of Material Properties: The ABINIT Software Project. Comput. Mater. Sci. 2002, 25, 478–492. 10.1016/S0927-0256(02)00325-7. DOI

Clark S. J.; Segall M. D.; Pickard C. J.; Hasnip P. J.; Probert M. J.; Refson K.; Payne M. C. First Principles Methods Using CASTEP. Z. Kristallogr. 2005, 220, 567–570. 10.1524/zkri.220.5.567.65075. DOI

Klöffel T.; Mathias G.; Meyer B. Integrating State of the Art Compute, Communication, and Autotuning Strategies to Multiply the Performance of Ab Initio Molecular Dynamics on Massively Parallel Multi-Core Supercomputers. Comput. Phys. Commun. 2021, 260, 10774510.1016/j.cpc.2020.107745. DOI

Ojanperä A.; Havu V.; Lehtovaara L.; Puska M. Nonadiabatic Ehrenfest Molecular Dynamics Within the Projector Augmented-Wave Method. J. Chem. Phys. 2012, 136, 14410310.1063/1.3700800. PubMed DOI

Andrade X.; Alberdi-Rodriguez J.; Strubbe D. A.; Oliveira M. J.; Nogueira F.; Castro A.; Muguerza J.; Arruabarrena A.; Louie S. G.; Aspuru-Guzik A.; Rubio A.; Marques M. A. Time-Dependent Density-Functional Theory in Massively Parallel Computer Architectures: The OCTOPUS Project. J. Phys.: Condens. Matter 2012, 24, 23320210.1088/0953-8984/24/23/233202. PubMed DOI

Soler J. M.; Artacho E.; Gale J. D.; García A.; Junquera J.; Ordejón P.; Sánchez-Portal D. The SIESTA Method for Ab Initio Order-N Materials Simulation. J. Phys.: Condens. Matter 2002, 14, 2745–2779. 10.1088/0953-8984/14/11/302. DOI

Andreoni W.; Marx D.; Sprik M. Editorial: A Tribute to Michele Parrinello: From Physics via Chemistry to Biology. ChemPhysChem 2005, 6, 1671–1676. 10.1002/cphc.200500427. PubMed DOI

Boero M.; Oshiyama A.. Car-Parrinello Molecular Dynamics. In Encyclopedia of Nanotechnology; Bhushan B., Ed.; Springer, 2015; pp 1–10.

van Duin A. C. T.; Dasgupta S.; Lorant F.; Goddard W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. 10.1021/jp004368u. DOI

Senftle T. P.; Hong S.; Islam M. M.; Kylasa S. B.; Zheng Y.; Shin Y. K.; Junkermeier C.; Engel-Herbert R.; Janik M. J.; Aktulga H. M.; Verstraelen T.; Grama A.; van Duin A. C. T. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. npj Comput. Mater. 2016, 2, 1501110.1038/npjcompumats.2015.11. DOI

Russo Jr. M. F.; van Duin A. C. T. Atomistic-Scale Simulations of Chemical Reactions: Bridging From Quantum Chemistry to Engineering. Nucl. Instrum. Meth. B 2011, 269, 1549–1554. 10.1016/j.nimb.2010.12.053. DOI

ReaxxFF Manual, Amsterdam Modeling Suite 2024.1; SCM, 2024. https://www.scm.com/doc/ReaxFF/_downloads/af5ba007160596ded1785a11e54b6c8b/ReaxFF.pdf.

Shchygol G.; Yakovlev A.; Trnka T.; van Duin A. C. T.; Verstraelen T. ReaxFF Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines and Insights. J. Chem. Theory Comput. 2019, 15, 6799–6812. 10.1021/acs.jctc.9b00769. PubMed DOI

te Velde G.; Bickelhaupt F. M.; Baerends E. J.; Fonseca Guerra C.; van Gisbergen S. J. A.; Snijders J. G.; Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. 10.1002/jcc.1056. DOI

Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V. Classical Molecular Dynamics Simulations of Fusion and Fragmentation in Fullerene–Fullerene Collisions. Eur. Phys. J. D 2017, 71, 212.10.1140/epjd/e2017-80117-7. DOI

de Vera P.; Verkhovtsev A.; Sushko G.; Solov’yov A. V. Reactive Molecular Dynamics Simulations of Organometallic Compound W(CO)6 Fragmentation. Eur. Phys. J. D 2019, 73, 215.10.1140/epjd/e2019-100232-9. DOI

Andreides B.; Verkhovtsev A. V.; Fedor J.; Solov’yov A. V. Role of the Molecular Environment in Quenching the Irradiation-Driven Fragmentation of Fe(CO)5: A Reactive Molecular Dynamics Study. J. Phys. Chem. A 2023, 127, 3757–3767. 10.1021/acs.jpca.2c08756. PubMed DOI PMC

Verkhovtsev A. V.; Solov’yov I. A.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics: A Review. Eur. Phys. J. D 2021, 75, 213.10.1140/epjd/s10053-021-00223-3. DOI

Ebel D. S.; Ghiorso M. S.; Sack R. O.; Grossman L. Gibbs Energy Minimization in Gas + Liquid + Solid Systems. J. Comput. Chem. 2000, 21, 247–256. 10.1002/(SICI)1096-987X(200003)21:4<247::AID-JCC1>3.0.CO;2-J. DOI

de Nevers N.Physical and Chemical Equilibrium for Chemical Engineers; John Wiley & Sons, Inc., 2012.

Thermodynamic Databases. Thermo-Calc Software. https://thermocalc.com/products/databases/ (accessed 2023-09-15).

The Thermodynamic Reference Database (THEREDA). https://www.thereda.de/en (accessed 2023-09-15).

Blasco M.; Gimeno M. J.; Auqué L. F. Comparison of Different Thermodynamic Databases used in a Geothermometrical Modelling Calculation. Procedia Earth Planet. Sci. 2017, 17, 120–123. 10.1016/j.proeps.2016.12.023. DOI

Kaufman L.; Bernstein H.. Computer Calculation of Phase Diagrams; Academic Press: New York, NY, 1970.

Liu Z.-K.; Yi W.. Computational Thermodynamics of Materials; Cambridge University Press, 2016.

Müller B.ChemEQL – A Software for the Calculation of Chemical Equilibria. Eawag - Swiss Federal Institute of Aquatic Science and Technology, n.d. https://www.eawag.ch/en/department/surf/projects/chemeql/ (accessed 2023-09-15).

MINEQL+ Homepage. https://www.mineql.com/ (accessed 2023-09-15).

Visual MINTEQ Homepage. https://vminteq.com (accessed 2023-09-15).

Voter A. F. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events. Phys. Rev. Lett. 1997, 78, 3908–3911. 10.1103/PhysRevLett.78.3908. DOI

Miron R. A.; Fichthorn K. A. Accelerated Molecular Dynamics with the Bond-Boost Method. J. Chem. Phys. 2003, 119, 6210–6216. 10.1063/1.1603722. DOI

Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Modeling MesoBioNano Systems with MBN Studio Made Easy. J. Mol. Graph. Model. 2019, 88, 247–260. 10.1016/j.jmgm.2019.02.003. PubMed DOI

PyMOL Homepage. https://pymol.org/ (accessed 2023-09-16).

Liu G. R.; Quek S. S.. The Finite Element Method: A Practical Course, 2nd ed.; Elsevier, 2014.

Whiteley J.Finite Element Methods: A Practical Guide; Springer, 2017.

Ataei H.; Mamaghani M.. Finite Element Analysis Applications and Solved Problems using ABAQUS; CreateSpace Independent Publishing Platform, 2017.

Boulbes R. J.Troubleshooting Finite-Element Modeling with Abaqus; Springer, 2020.

EIC-Pathfinder Project “Emerging Technologies for Crystal-Based Gamma-Ray Light Sources” (TECHNO-CLS). MBN Research Center. https://www.mbnresearch.com/TECHNO-CLS/Main (accessed 2023-10-26)

Han B.; Isborn C. M.; Shi L. Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models. J. Chem. Theory Comput. 2021, 17, 889–901. 10.1021/acs.jctc.0c01102. PubMed DOI

Bleiziffer P.; Schaller K.; Riniker S. Machine Learning of Partial Charges Derived From High-Quality Quantum-Mechanical Calculations. J. Chem. Inf. Model. 2018, 58, 579–590. 10.1021/acs.jcim.7b00663. PubMed DOI

Müser M. H.; Sukhomlinov S. V.; Pastewka L. Interatomic Potentials: Achievements and Challenges. Adv. Phys. X 2023, 8, 209312910.1080/23746149.2022.2093129. DOI

Elstner M.; Porezag D.; Jungnickel G.; Elsner J.; Haugk M.; Frauenheim T.; Suhai S.; Seifert G. Self-Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Complex Materials Properties. Phys. Rev. B 1998, 58, 7260–7268. 10.1103/PhysRevB.58.7260. DOI

Vennelakanti V.; Nazemi A.; Mehmood R.; Steeves A. H.; Kulik H. J. Harder, Better, Faster, Stronger: Large-scale QM and QM/MM for Predictive Modeling in Enzymes and Proteins. Curr. Opin. Struct. Biol. 2022, 72, 9–17. 10.1016/j.sbi.2021.07.004. PubMed DOI

Kubař T.; Elstner M.; Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu. Rev. Biophys. 2023, 52, 525–551. 10.1146/annurev-biophys-111622-091140. PubMed DOI PMC

Kulik H. J.; Zhang J.; Klinman J. P.; Martinez T. J. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. J. Phys. Chem. B 2016, 120, 11381–11394. 10.1021/acs.jpcb.6b07814. PubMed DOI PMC

Jindal G.; Warshel A. Exploring the Dependence of QM/MM Calculations of Enzyme Catalysis on the Size of the QM Region. J. Phys. Chem. B 2016, 120, 9913–9921. 10.1021/acs.jpcb.6b07203. PubMed DOI PMC

Das S.; Nam K.; Major D. T. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical–Molecular Mechanical Simulations of Proton Transfer in DNA. J. Chem. Theory Comput. 2018, 14, 1695–1705. 10.1021/acs.jctc.7b00964. PubMed DOI

Azzolini M.; Angelucci M.; Cimino R.; Larciprete R.; Pugno N. M.; Taioli S.; Dapor M. Secondary Electron Emission and Yield Spectra of Metals from Monte Carlo Simulations and Experiments. J. Phys.: Condens. Matter 2019, 31, 05590110.1088/1361-648X/aaf363. PubMed DOI

Solov’yov I. A.; Prosvetov A.; Sushko G.; Solov’yov A. V.. Book of Abstracts, The Second Conference “Multiscale Irradiation and Chemistry Driven Processes and Related Technologies”. Book of Abstracts, 2023; p 26.

Moskovkin P.; Panshenskov M.; Lucas S.; Solov’yov A. V. Simulation of Nanowire Fragmentation By Means of Kinetic Monte Carlo Approach: 2D Case. Phys. Stat. Sol. B 2014, 251, 1456–1462. 10.1002/pssb.201350376. DOI

Yakubovich A. V.; Solov’yov I. A.; Solov’yov A. V.; Greiner W. Phase Transition in Polypeptides: A Step Towards the Understanding of Protein Folding. Eur. Phys. J. D 2006, 40, 363–367. 10.1140/epjd/e2006-00241-9. DOI

Yakubovich A. V.; Solov’yov I. A.; Solov’yov A. V.; Greiner W. Ab initio Theory of Helix ↔Coil Phase Transition. Eur. Phys. J. D 2008, 46, 215–225. 10.1140/epjd/e2007-00328-9. DOI

Solov’yov I. A.; Yakubovich A. V.; Solov’yov A. V.; Greiner W. α-Helix ↔Random Coil Phase Transition: Analysis of Ab Initio Theory Predictions. Eur. Phys. J. D 2008, 46, 227–240. 10.1140/epjd/e2007-00327-x. DOI

Yakubovich A. V.; Solov’yov A. V. Quantitative Thermodynamic Model for Globular Protein Folding. Eur. Phys. J. D 2014, 68, 145.10.1140/epjd/e2014-50097-3. DOI

Landau L. D.; Lifshitz E. M.. Fluid Mechanics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1987.

Zel’dovich Y. B.; Raiser Y. P.. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Academic Press: New York, NY, 1966.

Surdutovich E.; Solov’yov A. V. Cell Survival Probability in a Spread-Out Bragg Peak for Novel Treatment Planning. Eur. Phys. J. D 2017, 71, 210.10.1140/epjd/e2017-80120-0. DOI

Winkler R.; Fowlkes J. D.; Rack P. D.; Plank H. 3D Nanoprinting via Focused Electron Beams. J. Appl. Phys. 2019, 125, 21090110.1063/1.5092372. DOI

Plank H.; Winkler R.; Schwalb C. H.; Hütner J.; Fowlkes J. D.; Rack P. D.; Utke I.; Huth M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2020, 11, 48.10.3390/mi11010048. PubMed DOI PMC

Fleming I.; Williams D.. Spectroscopic Methods in Organic Chemistry, 7th ed.; Springer, 2019.

Molecular Spectroscopy – Experiment and Theory: From Molecules to Functional Materials; Koleżyński A., Król M., Eds. Springer, 2018219.

Svanberg S.Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications, 5th ed.; Springer, 2022.

Cramer S. P.X-Ray Spectroscopy with Synchrotron Radiation: Fundamentals and Applications; Springer, 2020.

Advances in Spectroscopic Monitoring of the Atmosphere; Chen W., Venables D. S., Sigrist M. W., Eds. Elsevier, 2021.

Protopopov V.Spectroscopic Techniques For Semiconductor Industry; World Scientific Publishing: Singapore, 2022.

Tennyson J.Astronomical Spectroscopy: An Introduction to the Atomic and Molecular Physics of Astronomical Spectroscopy, 3rd ed.; World Scientific Publishing Europe: London, UK, 2019.

VAMDC Portal. https://portal.vamdc.org/vamdc_portal/home.seam (accessed 2023-10-18).

Albert D.; Antony B. K.; Ba Y. A.; Babikov Y. L.; Bollard P.; Boudon V.; Delahaye F.; Del Zanna G.; Dimitrijević M. S.; Drouin B. J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76.10.3390/atoms8040076. DOI

VESPA (Virtual European Solar and Planetary Access) Portal. https://vespa.obspm.fr/planetary/data/ (accessed 2023-10-18).

Cavity Ring-Down Spectroscopy: Techniques and Applications; Giel Berden R. E., Ed.; Blackwell Publishing: Chichester, UK, 2009.

Maiuri M.; Garavelli M.; Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J. Am. Chem. Soc. 2020, 142, 3–15. 10.1021/jacs.9b10533. PubMed DOI

Fabrikant I. I.; Shpenik O. B.; Snegursky A. V.; Zavilopulo A. N. Electron Impact Formation of Metastable Atoms. Phys. Rep. 1988, 159, 1–97. 10.1016/0370-1573(88)90164-0. DOI

Brydson R.Electron Energy Loss Spectroscopy, 1st ed.; Garland Science: London, UK, 2001.

Ibach H.; Mills D. L.. Electron Energy Loss Spectroscopy and Surface Vibration; Academic Press: New York, NY, 1982.

Mason N. J.; Dawes A.; Holtom P. D.; Mukerji R. J.; Davis M. P.; Sivaraman B.; Kaiser R. I.; Hoffmann S. V.; Shaw D. A. VUV Spectroscopy and Photo-Processing of Astrochemical Ices: An Experimental Study. Faraday Discus 2006, 133, 311–329. 10.1039/b518088k. PubMed DOI

Hüfner S.Photoelectron Spectroscopy: Principles and Applications, 3rd ed.; Springer, 2003.

Whitten J. E. Ultraviolet Photoelectron Spectroscopy: Practical Aspects and Best Practices. Appl. Surf. Sci. Adv. 2023, 13, 10038410.1016/j.apsadv.2023.100384. DOI

van der Heide P.X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices; John Wiley & Sons, Hoboken, NJ, 2012.

Leading Edge Techniques in Forensic Trace Evidence Analysis: More New Trace Analysis Methods; Blackledge R. D., Ed.; John Wiley & Sons, 2023.

de Hoffmann E.; Stroobant V.. Mass Spectrometry: Principles and Applications, 3rd ed.; John Wiley & Sons, 2007.

Gross J. H.Mass Spectrometry: A Textbook, 3rd ed.; Springer, 2017.

McCullagh J.; Oldham N.. Mass Spectrometry; Oxford University Press: Oxford, UK, 2019.

Mass Spectrometry Applications Areas. ThermoFisher Scientific. https://www.thermofisher.com/de/de/home/industrial/mass-spectrometry/mass-spectrometry-learning-center/mass-spectrometry-applications-area.html (accessed 2023-10-18).

Leseigneur G.; Bredehöft J. H.; Gautier T.; Giri C.; Krüger H.; MacDermott A. J.; Meierhenrich U. J.; Caro G. M. M.; Raulin F.; Steele A.; et al. ESA’s Cometary Mission Rosetta – Re-Characterization of the COSAC Mass Spectrometry Results. Angew. Chem., Int. Ed. 2022, 61, e20220192510.1002/anie.202201925. PubMed DOI PMC

Altwegg K.; Balsiger H.; Berthelier J. J.; Bieler A.; Calmonte U.; Fuselier S. A.; Goesmann F.; Gasc S.; Gombosi T. I.; Le Roy L.; et al. Organics in Comet 67P – A First Comparative Analysis of Mass Spectra From ROSINA–DFMS, COSAC and Ptolemy. Mon. Not. R. Astron. Soc. 2017, 469, S130–S141. 10.1093/mnras/stx1415. DOI

Hübschmann H.-J.Handbook of GC-MS: Fundamentals and Applications; Wiley-VCH Verlag, 2015.

Tegami S.; Bello S. D.; Luan S.; Mairani A.; Parodi K.; Holzscheiter M. H. LET Monitoring Using Liquid Ionization Chambers. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 2017, 6, 197–207. 10.4236/ijmpcero.2017.62018. DOI

Bauer P. How to Measure Absolute Stopping Cross Sections by Backscattering and by Transmission Methods: Part I. Backscattering. Nucl. Instrum. Meth. B 1987, 27, 301–314. 10.1016/0168-583X(87)90569-6. DOI

Mertens P. How to Measure Absolute Stopping Cross Sections by Backscattering and by Transmission Methods: Part II. Transmission. Nucl. Instrum. Meth. B 1987, 27, 315–322. 10.1016/0168-583X(87)90570-2. DOI

Räisänen J.; Wätjen U.; Plompen A. J. M.; Munnik F. Stopping Power Determinations by the Transmission Technique. Nucl. Instrum. Meth. B 1996, 118, 1–6. 10.1016/0168-583X(95)01185-4. DOI

Mertens P.; Bauer P.; Semrad D. Proton Stopping Powers in Al, Ni, Cu, Ag and Au Measured Comparatively on Identical Targets in Backscattering and Transmission Geometry. Nucl. Instrum. Meth. B 1986, 15, 91–95. 10.1016/0168-583X(86)90260-0. DOI

Fontana C. L.; Chen C.-H.; Crespillo M. L.; Graham J. T.; Xue H.; Zhang Y.; Weber W. J. Stopping Power Measurements with the Time-of-Flight (ToF) Technique. Nucl. Instrum. Meth. B 2016, 366, 104–116. 10.1016/j.nimb.2015.10.048. DOI

Sihver L.; Schardt D.; Kanai T. Depth-Dose Distributions of High-Energy Carbon, Oxygen and Neon Beams in Water. Jpn. J. Med. Phys. 1998, 18, 1–21. 10.11323/jjmp1992.18.1_1. DOI

Haettner E.; Iwase H.; Schardt D. Experimental Fragmentation Studies with 12C Therapy Beams. Radiat. Prot. Dosim. 2006, 122, 485–487. 10.1093/rpd/ncl402. PubMed DOI

Schauer J.; Wieser H. P.; Huang Y.; Ruser H.; Lascaud J.; Würl M.; Chmyrov A.; Vidal M.; Herault J.; Ntziachristos V.; Assmann W.; Parodi K.; Dollinger G. Proton Beam Range Verification by Means of Ionoacoustic Measurements at Clinically Relevant Doses Using a Correlation-Based Evaluation. Front. Oncol. 2022, 12, 92554210.3389/fonc.2022.925542. PubMed DOI PMC

Jette D.; Chen W. Creating a Spread-Out Bragg Peak in Proton Beams. Phys. Med. Biol. 2011, 56, N131–N138. 10.1088/0031-9155/56/11/N01. PubMed DOI

Jia S. B.; Romano F.; Cirrone G. A. P.; Cuttone G.; Hadizadeh M. H.; Mowlavi A. A.; Raffaele L. Designing a Range Modulator Wheel to Spread-Out the Bragg Peak for a Passive Proton Therapy Facility. Nucl. Instrum. Meth. A 2016, 806, 101–108. 10.1016/j.nima.2015.10.006. DOI

Stewart K. J.; Elliott A.; Seuntjens J. P. Development of a Guarded Liquid Ionization Chamber for Clinical Dosimetry. Phys. Med. Biol. 2007, 52, 3089–3104. 10.1088/0031-9155/52/11/011. PubMed DOI

Conte V.; Colautti P.; Grosswendt B.; Moro D.; De Nardo L. Track Structure of Light Ions: Experiments and Simulations. New J. Phys. 2012, 14, 09301010.1088/1367-2630/14/9/093010. DOI

Stein J. D.; White F. A. New Method for the Measurement of Electron Yield from Ion Bombardment. J. Appl. Phys. 1972, 43, 2617–2620. 10.1063/1.1661567. DOI

Lohmann S.; Niggas A.; Charnay V.; Holeňák R.; Primetzhofer D. Assessing Electron Emission Induced by Pulsed Ion Beams: A Time-of-Flight Approach. Nucl. Instrum. Meth. B 2020, 479, 217–221. 10.1016/j.nimb.2020.06.026. DOI

Apak R.; Calokerinos A.; Gorinstein S.; Segundo M. A.; Hibbert D. B.; Gülçin I.; Çekiç S. D.; Güçlü K.; Özyürek M.; Çelik S. E.; et al. Methods to Evaluate the Scavenging Activity of Antioxidants Toward Reactive Oxygen and Nitrogen Species (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 87–144. 10.1515/pac-2020-0902. DOI

Zhang K.; Zhao M.; Sun D.-W.; Tiwari B. K Correlation of Plasma Generated Long-Lived Reactive Species in Aqueous and Gas Phases with Different Feeding Gases. Plasma Sources Sci. Technol. 2023, 32, 04501510.1088/1361-6595/acc684. DOI

Kondeti V. S. S. K.; Phan C. Q.; Wende K.; Jablonowski H.; Gangal U.; Granick J. L.; Hunter R. C.; Bruggeman P. J. Long-Lived and Short-Lived Reactive Species Produced by a Cold Atmospheric Pressure Plasma Jet for the Inactivation of Pseudomonas Aeruginosa and Staphylococcus Aureus. Free Radic. Biol. Med. 2018, 124, 275–287. 10.1016/j.freeradbiomed.2018.05.083. PubMed DOI

Mason N. J.; Nair B.; Jheeta S.; Szymańska E. Electron Induced Chemistry: A New Frontier in Astrochemistry. Faraday Discuss. 2014, 168, 235–247. 10.1039/C4FD00004H. PubMed DOI

Strazzulla G.; Palumbo M. E.; Boduch P.; Rothard H. Ion Implantation and Chemical Cycles in the Icy Galilean Satellites. Earth Moon Planets 2023, 127, 2.10.1007/s11038-023-09550-4. DOI

Halliwell B.; Adhikary A.; Dingfelder M.; Dizdaroglu M. Hydroxyl Radical is a Significant Player in Oxidative DNA Damage In Vivo. Chem. Soc. Rev. 2021, 50, 8355–8360. 10.1039/D1CS00044F. PubMed DOI PMC

Schumacher B.; Pothof J.; Vijg J.; Hoeijmakers J. H. J. The Central Role of DNA Damage in the Ageing Process. Nature 2021, 592, 695–703. 10.1038/s41586-021-03307-7. PubMed DOI PMC

Olano L.; Montero I. Energy Spectra of Secondary Electrons in Dielectric Materials by Charging Analysis. Results Phys. 2020, 19, 10345610.1016/j.rinp.2020.103456. DOI

Mehnaz; Yang L. H.; Zou Y. B.; Da B.; Mao S. F.; Li H. M.; Zhao Y. F.; Ding Z. J. A Comparative Study on Monte Carlo Simulations of Electron Emission From Liquid Water. Med. Phys. 2020, 47, 759–771. 10.1002/mp.13913. PubMed DOI

Thiberge S.; Zik O.; Moses E. An Apparatus for Imaging Liquids, Cells, and Other Wet Samples in the Scanning Electron Microscopy. Rev. Sci. Instrum. 2004, 75, 2280–2289. 10.1063/1.1763262. DOI

Joy D. C.; Joy C. S. Scanning Electron Microscope Imaging in Liquids – Some Data on Electron Interactions in Water. J. Microsc. 2006, 221, 84–88. 10.1111/j.1365-2818.2006.01548.x. PubMed DOI

Kaneda M.; Shimizu M.; Hayakawa T.; Iriki Y.; Tsuchida H.; Itoh A. Positive and Negative Cluster Ions From Liquid Ethanol by Fast Ion Bombardment. J. Chem. Phys. 2010, 132, 14450210.1063/1.3367767. PubMed DOI

Kitajima K.; Tsuchida H.; Majima T.; Saito M. Secondary Electron-Induced Biomolecular Fragmentation in Fast Heavy-Ion Irradiation of Microdroplets of Glycine Solution. J. Chem. Phys. 2019, 150, 09510210.1063/1.5081883. PubMed DOI

Nag P.; Ranković M.; Schewe H. C.; Rakovský J.; Sala L.; Kočišek J.; Fedor J. Experimental Setup for Probing Electron-Induced Chemistry in Liquid Micro-Jets. J. Phys. B: At. Mol. Opt. Phys. 2023, 56, 21520110.1088/1361-6455/ad0205. DOI

Knowles K. E.; Koch M. D.; Shelton J. L. Three Applications of Ultrafast Transient Absorption Spectroscopy of Semiconductor Thin Films: Spectroelectrochemistry, Microscopy, and Identification of Thermal Contributions. J. Mater. Chem. C 2018, 6, 11853–11867. 10.1039/C8TC02977F. DOI

Senje L.; Coughlan M.; Jung D.; Taylor M.; Nersisyan G.; Riley D.; Lewis C. L. S.; Lundh O.; Wahlström C.-G.; Zepf M.; Dromey B. Experimental Investigation of Picosecond Dynamics Following Interactions Between Laser Accelerated Protons and Water. Appl. Phys. Lett. 2017, 110, 10410210.1063/1.4977846. DOI

Taylor M.; Coughlan M.; Nersisyan G.; Senje L.; Jung D.; Currell F.; Riley D.; Lewis C. L. S.; Zepf M.; Dromey B. Probing Ultrafast Proton Induced Dynamics in Transparent Dielectrics. Plasma Phys. Control. Fusion 2018, 60, 05400410.1088/1361-6587/aab16c. DOI

Rothemund P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440, 297–302. 10.1038/nature04586. PubMed DOI

Dey S.; Fan C.; Gothelf K. V.; Li J.; Lin C.; Liu L.; Liu N.; Nijenhuis M. A. D.; Saccà B.; Simmel F. C.; et al. DNA Origami. Nat. Rev. Methods Primers 2021, 1, 13.10.1038/s43586-020-00009-8. DOI

Extreme Light Infrastructure Homepage. https://eli-laser.eu/ (accessed 2023-11-15).

Ebel K.; Bald I. Low-Energy (5 – 20 eV) Electron-Induced Single and Double Strand Breaks in Well-Defined DNA Sequences. J. Phys. Chem. Lett. 2022, 13, 4871–4876. 10.1021/acs.jpclett.2c00684. PubMed DOI PMC

Sykes D.Surface Chemical Analysis. In Springer Handbook of Electronic and Photonic Materials, 2nd ed.; Kasap S., Capper P., Eds.; Springer, 2017; pp 413–423.

Erdoğan G.; Güler G.; Kiliç T.; Kiliç D. O.; Erdoğan B.; Tosun Z.; Kivrak H. D.; Türkan U.; Özcan F.; Gürsoy M.; Karaman M.. Surface Characterization Techniques. In Surface Treatments for Biological, Chemical, and Physical Applications; Gürsoy M., Karaman M., Eds.; WILEY-VCH Verlag, 2017; pp 67–114.

Surface Analysis Techniques. ThermoFisher Scientific. https://www.thermofisher.com/de/de/home/materials-science/xps-technology/multi-technique-workflow.html (accessed 2024-02-29).

Krishna D. N. G.; Philip J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Appl. Surf. Sci. Adv. 2022, 12, 10033210.1016/j.apsadv.2022.100332. DOI

Lannon Jr. J. M.; Stinespring C. D.. Auger Electron Spectroscopy in Analysis of Surfaces. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation; Meyers R., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2006; pp 1–15.

Strehblow H.-H. Review – Ion Scattering as a Surface Analytical Tool for the Study of Passive Layers. J. Electrochem. Soc. 2021, 168, 02151010.1149/1945-7111/abdfe2. DOI

Wang Z. L.Reflection Electron Microscopy and Spectroscopy for Surface Analysis; Cambridge University Press: Cambridge, UK, 1996.

Biliškov N. Infrared Spectroscopic Monitoring of Solid-State Processes. Phys. Chem. Chem. Phys. 2022, 24, 19073–19120. 10.1039/D2CP01458K. PubMed DOI

Kudelski A. Raman Spectroscopy of Surfaces. Surf. Sci. 2009, 603, 1328–1334. 10.1016/j.susc.2008.11.039. DOI

Vickerman J. C.; Briggs D.. ToF-SIMS: Materials Analysis by Mass Spectrometry, 2nd ed.; IM Publications: Chichester, UK, 2013.

Vad K.; Csik A.; Langer G. A. Secondary Neutral Mass Spectrometry – A Powerful Technique for Quantitative Elemental and Depth Profiling Analyses of Nanostructures. Spectrosc. Eur. 2009, 21, 13–16.

Ferus M.; Petera L.; Koukal J.; Lenža L.; Drtinová B.; Haloda J.; Matýsek D.; Pastorek A.; Laitl V.; Poltronieri R. C.; et al. Elemental Composition, Mineralogy and Orbital Parameters of the Porangaba Meteorite. Icarus 2020, 341, 11367010.1016/j.icarus.2020.113670. DOI

Kaczmarek K.; Leniart A.; Lapinska B.; Skrzypek S.; Lukomska-Szymanska M. Selected Spectroscopic Techniques for Surface Analysis of Dental Materials: A Narrative Review. Materials 2021, 14, 2624.10.3390/ma14102624. PubMed DOI PMC

Hunter E. E.Practical Electron Microscopy: A Beginner’s Illustrated Guide, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993.

Goldstein J. I.; Newbury D. E.; Michael J. R.; Ritchie N. W. M.; Scott J. H. J.; Joy D. C.. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer, 2017.

Trummer C.; Winkler R.; Plank H.; Kothleitner G.; Haberfehlner G. Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography. ACS Appl. Nano Mater. 2019, 2, 5356–5359. 10.1021/acsanm.9b01390. DOI

Hinum-Wagner J.; Kuhness D.; Kothleitner G.; Winkler R.; Plank H. FEBID 3D-Nanoprinting at Low Substrate Temperatures: Pushing the Speed While Keeping the Quality. Nanomaterials 2021, 11, 1527.10.3390/nano11061527. PubMed DOI PMC

Jurczyk J.; Pillatsch L.; Berger L.; Priebe A.; Madajska K.; Kapusta C.; Szymańska I. B.; Michler J.; Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. Nanomaterials 2022, 12, 2710.10.3390/nano12152710. PubMed DOI PMC

Jiang N. Electron Beam Damage in Oxides: A Review. Rep. Prog. Phys. 2016, 79, 01650110.1088/0034-4885/79/1/016501. PubMed DOI

Egerton R. F.; Li P.; Malac M. Radiation Damage in the TEM and SEM. Micron 2004, 35, 399–409. 10.1016/j.micron.2004.02.003. PubMed DOI

Verkhovtsev A. V.; Erofeev Y.; Solov’yov A. V. Mechanisms of Radiation-Induced Structural Transformations in Deposited Gold Clusters. Phys. Rev. B 2023, 108, 11542310.1103/PhysRevB.108.115423. DOI

Wang Z. W.; Palmer R. E. Determination of the Ground-State Atomic Structures of Size-Selected Au Nanoclusters by Electron-Beam-Induced Transformation. Phys. Rev. Lett. 2012, 108, 24550210.1103/PhysRevLett.108.245502. PubMed DOI

Dearg M.; Roncaglia C.; Nelli D.; El Koraychy E. Y.; Ferrando R.; Slater T. J. A.; Palmer R. E. Frame-By-Frame Observations of Structure Fluctuations in Single Mass-Selected Au Clusters Using Aberration-Corrected Electron Microscopy. Nanoscale Horiz. 2024, 9, 143–147. 10.1039/D3NH00291H. PubMed DOI

Lepore M. A.; Maligno A. R.; Berto F. A Unified Approach to Simulate the Creep-Fatigue Crack Growth in P91 Steel at Elevated Temperature Under SSY and SSC Conditions. Eng. Fail. Anal. 2021, 127, 10556910.1016/j.engfailanal.2021.105569. DOI

Suzuki M.; Funayama T.; Suzuki M.; Kobayashi Y. Radiation-Quality-Dependent Bystander Cellular Effects Induced by Heavy-Ion Microbeams Through Different Pathways. J. Radiat. Res. 2023, 64, 824–832. 10.1093/jrr/rrad059. PubMed DOI PMC

Cheng S.; Cheadle E. J.; Illidge T. M. Understanding the Effects of Radiotherapy on the Tumour Immune Microenvironment to Identify Potential Prognostic and Predictive Biomarkers of Radiotherapy Response. Cancers 2020, 12, 2835.10.3390/cancers12102835. PubMed DOI PMC

Ding Y.; Zhao Z.; Matysik J.; Gärtner W.; Losi A. Mapping the Role of Aromatic Amino Acids Within a Blue-Light Sensing LOV Domain. Phys. Chem. Chem. Phys. 2021, 23, 16767–16775. 10.1039/D1CP02217B. PubMed DOI

Thamarath S. S.; Heberle J.; Hore P. J.; Kottke T.; Matysik J. Solid-State Photo-CIDNP Effect Observed in Phototropin LOV1-C57S by 13C Magic-Angle Spinning NMR Spectroscopy. J. Am. Chem. Soc. 2010, 132, 15542–15543. 10.1021/ja1082969. PubMed DOI

Losi A.; Gardner K. H.; Möglich A. Blue-Light Receptors for Optogenetics. Chem. Rev. 2018, 118, 10659–10709. 10.1021/acs.chemrev.8b00163. PubMed DOI PMC

Kottke T.; Batschauer A.; Ahmad M.; Heberle J. Blue-Light-Induced Changes in Arabidopsis Cryptochrome 1 Probed by FTIR Difference Spectroscopy. Biochemistry 2006, 45, 2472–2479. 10.1021/bi051964b. PubMed DOI

Berlew E. E.; Kuznetsov I. A.; Yamada K.; Bugaj L. J.; Chow B. Y. Optogenetic Rac1 Engineered from Membrane Lipid-Binding RGS-LOV for Inducible Lamellipodia Formation. Photochem. Photobiol. Sci. 2020, 19, 353–361. 10.1039/c9pp00434c. PubMed DOI PMC

Badura A.; Esper B.; Ataka K.; Grunwald C.; Wöll C.; Kuhlmann J.; Heberle J.; Rögner M. Light-Driven Water Splitting for (Bio-)Hydrogen Production: Photosystem 2 as the Central Part of a Bioelectrochemical Device. Photochem. Photobiol. 2006, 82, 1385–1390. 10.1562/2006-07-14-RC-969. PubMed DOI

Krassen H.; Schwarze A.; Friedrich B.; Ataka K.; Lenz O.; Heberle J. Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS Nano 2009, 3, 4055–4061. 10.1021/nn900748j. PubMed DOI

Hore P.; Mouritsen H. The Radical-Pair Mechanism of Magnetoreception. Annu. Rev. Biophys. 2016, 45, 299–344. 10.1146/annurev-biophys-032116-094545. PubMed DOI

Ritz T.; Thalau P.; Phillips J. B.; Wiltschko R.; Wiltschko W. Resonance Effects Indicate a Radical-Pair Mechanism for Avian Magnetic Compass. Nature 2004, 429, 177–180. 10.1038/nature02534. PubMed DOI

Pedersen J. B.; Nielsen C.; Solov’yov I. A. Multiscale Description of Avian Migration: From Chemical Compass to Behaviour Modeling. Sci. Rep. 2016, 6, 3670910.1038/srep36709. PubMed DOI PMC

Grüning G.; Wong S. Y.; Gerhards L.; Schuhmann F.; Kattnig D. R.; Hore P. J.; Solov’yov I. A. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. J. Am. Chem. Soc. 2022, 144, 22902–22914. 10.1021/jacs.2c06233. PubMed DOI

Gerhards L.; Nielsen C.; Kattnig D.; Hore P. J.; Solov’yov I. A. Modeling Spin Relaxation in Complex Radical Systems Using MolSpin. J. Comput. Chem. 2023, 44, 1704–1714. 10.1002/jcc.27120. PubMed DOI

Husen P.; Nielsen C.; Martino C. F.; Solov’yov I. A. Molecular Oxygen Binding in the Mitochondrial Electron Transfer Flavoprotein. J. Chem. Inf. Model. 2019, 59, 4868–4879. 10.1021/acs.jcim.9b00702. PubMed DOI

Moser C. C.; Keske J. M.; Warncke K.; Farid R. S.; Dutton P. L. Nature of Biological Electron Transfer. Nature 1992, 355, 796–802. 10.1038/355796a0. PubMed DOI

de la Lande A.; Babcock N. S.; Rezác J.; Lévy B.; Sanders B. C.; Salahub D. R. Quantum Effects in Biological Electron Transfer. Phys. Chem. Chem. Phys. 2012, 14, 5902–5918. 10.1039/c2cp21823b. PubMed DOI

Solov’yov I. A.; Domratcheva T.; Moughal Shahi A. R.; Schulten K. Decrypting Cryptochrome: Revealing the Molecular Identity of the Photoactivation Reaction. J. Am. Chem. Soc. 2012, 134, 18046–18052. 10.1021/ja3074819. PubMed DOI PMC

Solov’yov I. A.; Domratcheva T.; Schulten K. Separation of Photo-Induced Radical Pair in Cryptochrome to a Functionally Critical Distance. Sci. Rep. 2014, 4, 3845.10.1038/srep03845. PubMed DOI PMC

Gerhards L.; Klüner T. Quantum Chemical Investigation of Photocatalytical Sulfoxidation of Hydrocarbons on TiO2. J. Phys. Chem. C 2021, 125, 13313–13323. 10.1021/acs.jpcc.1c03377. DOI

Gerhards L.; Klüner T. Theoretical Investigation of CH-Bond Activation by Photocatalytic Excited SO2 and the Effects of C-, N-, S-, and Se-doped TiO2. Phys. Chem. Chem. Phys. 2022, 24, 2051–2069. 10.1039/D1CP04335H. PubMed DOI

Frederiksen A.; Teusch T.; Solov’yov I. A.. Quantum Effects in Biological Systems. In Dynamics of Systems on the Nanoscale; Solov’yov I. A., Verkhovtsev A. V., Korol A. V., Solov’yov A. V., Eds.; Springer, 2022; pp 201–247.

Guallar V.; Wallrapp F. Mapping Protein Electron Transfer Pathways with QM/MM Methods. J. R. Soc. Interface 2008, 5, 233–239. 10.1098/rsif.2008.0061.focus. PubMed DOI PMC

Stevens D. R.; Hammes-Schiffer S. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase with QM/MM Free Energy Simulations. J. Am. Chem. Soc. 2018, 140, 8965–8969. 10.1021/jacs.8b05177. PubMed DOI PMC

Ko C.; Hammes-Schiffer S. Charge-Transfer Excited States and Proton Transfer in Model Guanine–Cytosine DNA Duplexes in Water. J. Phys. Chem. Lett. 2013, 4, 2540–2545. 10.1021/jz401144c. DOI

Zeugner A.; Byrdin M.; Bouly J. P.; Bakrim N.; Giovani B.; Brettel K.; Ahmad M. Light-Induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with In Vivo Function. J. Biol. Chem. 2005, 280, 19437–19440. 10.1074/jbc.C500077200. PubMed DOI

Losi A.; Gärtner W. The Evolution of Flavin-Binding Photoreceptors: An Ancient Chromophore Serving Trendy Blue-Light Sensors. Annu. Rev. Plant Biol. 2012, 63, 49–72. 10.1146/annurev-arplant-042811-105538. PubMed DOI

Stepanenko O. V.; Stepanenko O. V.; Shcherbakova D. M.; Kuznetsova I. M.; Turoverov K. K.; Verkhusha V. V. Modern Fluorescent Proteins: From Chromophore Formation to Novel Intracellular Applications. Biotechniques 2011, 51, 313–327. 10.2144/000113765. PubMed DOI PMC

Lax M. The Franck-Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. 10.1063/1.1700283. DOI

Christie J. M. Phototropin Blue-Light Receptors. Annu. Rev. Plant Biol. 2007, 58, 21–45. 10.1146/annurev.arplant.58.032806.103951. PubMed DOI

Briggs W. R.; Beck C. F.; Cashmore A.; Christie J. M.; Hughes J.; Jarillo J. A.; Kagawa T.; Kanegae H.; Liscum E.; Nagatani A.; et al. The Phototropin Family of Photoreceptors. Plant Cell 2001, 13, 993–997. 10.1105/tpc.13.5.993. PubMed DOI PMC

Matysik J.; Gerhards L.; Theiss T.; Timmermann L.; Kurle-Tucholski P.; Musabirova G.; Qin R.; Ortmann F.; Solov’yov I. A.; Gulder T. Spin Dynamics of Flavoproteins. Int. J. Mol. Sci. 2023, 24, 8218.10.3390/ijms24098218. PubMed DOI PMC

van Wonderen J. H.; Adamczyk K.; Wu X.; Jiang X.; Piper S. E. H.; Hall C. R.; Edwards M. J.; Clarke T. A.; Zhang H.; Jeuken L. J. C.; Sazanovich I. V.; Towrie M.; Blumberger J.; Meech S. R.; Butt J. N. Nanosecond Heme-to-Heme Electron Transfer Rates in a Multiheme Cytochrome Nanowire Reported by a Spectrally Unique His/Met-Ligated Heme. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e210793911810.1073/pnas.2107939118. PubMed DOI PMC

Schuhmann F.; Kattnig D. R.; Solov’yov I. A. Exploring Post-Activation Conformational Changes in Pigeon Cryptochrome 4. J. Phys. Chem. B 2021, 125, 9652–9659. 10.1021/acs.jpcb.1c02795. PubMed DOI

Bondanza M.; Nottoli M.; Cupellini L.; Lipparini F.; Mennucci B. Polarizable Embedding QM/MM: The Future Gold Standard for Complex (Bio)systems?. Phys. Chem. Chem. Phys. 2020, 22, 14433–14448. 10.1039/D0CP02119A. PubMed DOI

Lopata K.; Govind N. Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. J. Chem. Theory Comput. 2011, 7, 1344–1355. 10.1021/ct200137z. PubMed DOI

Provorse M. R.; Isborn C. M. Electron Dynamics with Real-Time Time-Dependent Density Functional Theory. Int. J. Quantum Chem. 2016, 116, 739–749. 10.1002/qua.25096. DOI

Pedron F. N.; Issoglio F.; Estrin D. A.; Scherlis D. A. Electron Transfer Pathways from Quantum Dynamics Simulations. J. Chem. Phys. 2020, 153, 22510210.1063/5.0023577. PubMed DOI

Xu J.; Jarocha L. E.; Zollitsch T.; Konowalczyk M.; Henbest K. B.; Richert S.; Golesworthy M. J.; Schmidt J.; Déjean V.; Sowood D. J. C.; et al. Magnetic Sensitivity of Cryptochrome 4 from a Migratory Songbird. Nature 2021, 594, 535–540. 10.1038/s41586-021-03618-9. PubMed DOI

Barragan A. M.; Soudackov A. V.; Luthey-Schulten Z.; Hammes-Schiffer S.; Schulten K.; Solov’yov I. A. Theoretical Description of the Primary Proton-Coupled Electron Transfer Reaction in the Cytochrome bc 1 Complex. J. Am. Chem. Soc. 2021, 143, 715–723. 10.1021/jacs.0c07799. PubMed DOI PMC

Joshi S. Y.; Deshmukh S. A. A Review of Advancements in Coarse-Grained Molecular Dynamics Simulations. Mol. Simul. 2021, 47, 786–803. 10.1080/08927022.2020.1828583. DOI

Boudaïffa B.; Cloutier P.; Hunting D.; Huels M. A.; Sanche L. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science 2000, 287, 1658–1660. 10.1126/science.287.5458.1658. PubMed DOI

Coupier B.; Farizon B.; Farizon M.; Gaillard M. J.; Gobet F.; de Castro Faria N. V.; Jalbert G.; Ouaskit S.; Carré M.; Gstir B.; et al. Inelastic Interactions of Protons and Electrons with Biologically Relevant Molecules. Eur. Phys. J. D 2002, 20, 459–468. 10.1140/epjd/e2002-00166-3. DOI

de Vries J.; Hoekstra R.; Morgenstern R.; Schlathölter T. Charge Driven Fragmentation of Nucleic Acid Bases. Phys. Rev. Lett. 2003, 91, 05340110.1103/PhysRevLett.91.053401. PubMed DOI

Hanel G.; Gstir B.; Denifl S.; Scheier P.; Probst M.; Farizon B.; Farizon M.; Illenberger E.; Märk T. D. Electron Attachment to Uracil: Effective Destruction at Subexcitation Energies. Phys. Rev. Lett. 2003, 90, 18810410.1103/PhysRevLett.90.188104. PubMed DOI

Liu B.; Nielsen S. B.; Hvelplund P.; Zettergren H.; Cederquist H.; Manil B.; Huber B. A. Collision-Induced Dissociation of Hydrated Adenosine Monophosphate Nucleotide Ions: Protection of the Ion in Water Nanoclusters. Phys. Rev. Lett. 2006, 97, 13340110.1103/PhysRevLett.97.133401. PubMed DOI

Milosavljević A. R.; Nicolas C.; Lemaire J.; Dehon C.; Thissen R.; Bizau J.; Réfrégiers M.; Nahon L.; Giuliani A. Photoionization of a Protein Isolated in Vacuo. Phys. Chem. Chem. Phys. 2011, 13, 15432–15436. 10.1039/c1cp21211g. PubMed DOI

González-Magaña O.; Tiemens M.; Reitsma G.; Boschman L.; Door M.; Bari S.; Hoekstra R.; Lahaie P. O.; Wagner J. R.; Huels M. A.; Schlathölter T. Fragmentation of Protonated Oligonucleotides by Energetic Photons, Protons, and Cq+ Ions. Phys. Rev. A 2013, 87, 03270210.1103/PhysRevA.87.032702. DOI

Lalande M.; Schwob L.; Vizcaino V.; Chirot F.; Dugourd P.; Schlathölter T.; Poully J.-C. Direct Radiation Effects on the Structure and Stability of Collagen and Other Proteins. ChemBioChem. 2019, 20, 2972–2980. 10.1002/cbic.201900202. PubMed DOI

Maclot S.; Delaunay R.; Piekarski D. G.; Domaracka A.; Huber B. A.; Adoui L.; Martín F.; Alcamí M.; Avaldi L.; Bolognesi P.; Díaz-Tendero S.; Rousseau P. Determination of Energy-Transfer Distributions in Ionizing Ion–Molecule Collisions. Phys. Rev. Lett. 2016, 117, 07320110.1103/PhysRevLett.117.073201. PubMed DOI

Wang X.; Rathnachalam S.; Zamudio-Bayer V.; Bijlsma K.; Li W.; Hoekstra R.; Kubin M.; Timm M.; von Issendorff B.; Lau J. T.; Faraji S.; Schlathölter T. Intramolecular Hydrogen Transfer in DNA Induced by Site-Selective Resonant Core Excitation. Phys. Chem. Chem. Phys. 2022, 24, 7815–7825. 10.1039/D1CP05741C. PubMed DOI PMC

Palacios A.; Martín F. The Quantum Chemistry of Attosecond Molecular Science. WIREs Comput. Mol. Sci. 2020, 10, e143010.1002/wcms.1430. DOI

West B. A.; Womick J. M.; Moran A. M. Interplay between Vibrational Energy Transfer and Excited State Deactivation in DNA Components. J. Phys. Chem. A 2013, 117, 5865–5874. 10.1021/jp306799e. PubMed DOI

Li W.; Kavatsyuk O.; Douma W.; Wang X.; Hoekstra R.; Mayer D.; Robinson M.; Gühr M.; Lalande M.; Abdelmouleh M.; Ryszka M.; Poully J. C.; Schlathölter T. Charge Reversing Multiple Electron Detachment Auger Decay of Inner-Shell Vacancies in Gas-Phase Deprotonated DNA. Chem. Sci. 2021, 12, 13177–13186. 10.1039/D1SC02885E. PubMed DOI PMC

Hu Y.; Niemeyer C. M. From DNA Nanotechnology to Material Systems Engineering. Adv. Mater. 2019, 31, 180629410.1002/adma.201806294. PubMed DOI

Rajendran A.; Endo M.; Sugiyama H. Single-Molecule Analysis Using DNA Origami. Angew. Chem., Int. Ed. 2012, 51, 874–890. 10.1002/anie.201102113. PubMed DOI

Keller A.; Rackwitz J.; Cauët E.; Liëvin J.; Körzdörfer T.; Rotaru A.; Gothelf K. V.; Besenbacher F.; Bald I. Sequence Dependence of Electron-Induced DNA Strand Breakage Revealed by DNA Nanoarrays. Sci. Rep. 2014, 4, 7391.10.1038/srep07391. PubMed DOI PMC

Sala L.; Zerolová A.; Rodriguez A.; Reimitz D.; Davídková M.; Ebel K.; Bald I.; Kočišek J. Folding DNA into Origami Nanostructures Enhances Resistance to Ionizing Radiation. Nanoscale 2021, 13, 11197–11203. 10.1039/D1NR02013G. PubMed DOI PMC

Sala L.; Lyshchuk H.; Šáchová J.; Chvátil D.; Kočišek J. Different Mechanisms of DNA Radiosensitization by 8-Bromoadenosine and 2’-Deoxy-2’-Fluorocytidine Observed on DNA Origami Nanoframe Supports. J. Phys. Chem. Lett. 2022, 13, 3922–3928. 10.1021/acs.jpclett.2c00584. PubMed DOI PMC

Fang W.; Xie M.; Hou X.; Liu X.; Zuo X.; Chao J.; Wang L.; Fan C.; Liu H.; Wang L. DNA Origami Radiometers for Measuring Ultraviolet Exposure. J. Am. Chem. Soc. 2020, 142, 8782–8789. 10.1021/jacs.0c01254. PubMed DOI

Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem. Rev. 2021, 121, 9407–9449. 10.1021/acs.chemrev.1c00074. PubMed DOI

Martínez-Fernández L.; Francés-Monerris A.. DNA Photostability. In Theoretical and Computational Photochemistry; García-Iriepa C., Marazzi M., Eds.; Elsevier, 2023; pp 311–336.

Westermayr J.; Gastegger M.; Menger M. F. S. J.; Mai S.; González L.; Marquetand P. Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations. Chem. Sci. 2019, 10, 8100–8107. 10.1039/C9SC01742A. PubMed DOI PMC

Poppleton E.; Bohlin J.; Matthies M.; Sharma S.; Zhang F.; Šulc P. Design, Optimization and Analysis of Large DNA and RNA Nanostructures through Interactive Visualization, Editing and Molecular Simulation. Nucleic Acids Res. 2020, 48, e7210.1093/nar/gkaa417. PubMed DOI PMC

Huynh E.; Hosny A.; Guthier C.; Bitterman D. S.; Petit S. F.; Haas-Kogan D. A.; Kann B.; Aerts H. J. W. L.; Mak R. H. Artificial Intelligence in Radiation Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 771–781. 10.1038/s41571-020-0417-8. PubMed DOI

Singh M.; Sharma D.; Garg M.; Kumar A.; Baliyan A.; Rani R.; Kumar V. Current Understanding of Biological Interactions and Processing of DNA Origami Nanostructures: Role of Machine Learning and Implications in Drug Delivery. Biotechnol. Adv. 2022, 61, 10805210.1016/j.biotechadv.2022.108052. PubMed DOI

Rackwitz J.; Bald I. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences–Influence of DNA Sequence and Topology. Chem.-Eur. J. 2018, 24, 4680–4688. 10.1002/chem.201705889. PubMed DOI

Berardinelli F.; Coluzzi E.; Sgura A.; Antoccia A. Targeting Telomerase and Telomeres to Enhance Ionizing Radiation Effects in in Vitro and in Vivo Cancer Models. Mutat. Res. Rev. Mutat. Res. 2017, 773, 204–219. 10.1016/j.mrrev.2017.02.004. PubMed DOI

Keller A.; Linko V. Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angew. Chem., Int. Ed. 2020, 59, 15818–15833. 10.1002/anie.201916390. PubMed DOI PMC

Paul P. M.; Toma E. S.; Breger P.; Mullot G.; Auge F.; Balcou P.; Muller H. G.; Agostini P. Observation of a Train of Attosecond Pulses from High Harmonic Generation. Science 2001, 292, 1689–1692. 10.1126/science.1059413. PubMed DOI

Drescher M.; Hentschel M.; Kienberger R.; Uiberacker M.; Yakovlev V.; Scrinzi A.; Westerwalbesloh T.; Kleineberg U.; Heinzmann U.; Krausz F. Time-Resolved Atomic Inner-Shell Spectroscopy. Nature 2002, 419, 803–807. 10.1038/nature01143. PubMed DOI

Goulielmakis E.; Loh Z.-H.; Wirth A.; Santra R.; Rohringer N.; Yakovlev V. S.; Zherebtsov S.; Pfeifer T.; Azzeer A. M.; Kling M. F.; et al. Real-Time Observation of Valence Electron Motion. Nature 2010, 466, 739–743. 10.1038/nature09212. PubMed DOI

Schultze M.; Fieß M.; Karpowicz N.; Gagnon J.; Korbman M.; Hofstetter M.; Neppl S.; Cavalieri A. L.; Komninos Y.; Mercouris T.; et al. Delay in Photoemission. Science 2010, 328, 1658–1662. 10.1126/science.1189401. PubMed DOI

Lépine F.; Ivanov M. Y.; Vrakking M. J. J. Attosecond Molecular Dynamics: Fact or Fiction?. Nat. Photonics 2014, 8, 195–204. 10.1038/nphoton.2014.25. DOI

Sansone G.; Kelkensberg F.; Pérez-Torres J. F.; Morales F.; Kling M. F.; Siu W.; Ghafur O.; Johnsson P.; Swoboda M.; Benedetti E.; et al. Electron Localization Following Attosecond Molecular Photoionization. Nature 2010, 465, 763–766. 10.1038/nature09084. PubMed DOI

Neidel C.; Klei J.; Yang C. H.; Rouzée A.; Vrakking M. J. J.; Klünder K.; Miranda M.; Arnold C. L.; Fordell T.; L’Huillier A.; et al. Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale. Phys. Rev. Lett. 2013, 111, 03300110.1103/PhysRevLett.111.033001. PubMed DOI

Calegari F.; Ayuso D.; Trabattoni A.; Belshaw L.; De Camillis S.; Anumula S.; Frassetto F.; Poletto L.; Palacios A.; Decleva P.; et al. Ultrafast Electron Dynamics in Phenylalanine Initiated by Attosecond Pulses. Science 2014, 346, 336–339. 10.1126/science.1254061. PubMed DOI

Hervé M.; Boyer A.; Brédy R.; Compagnon I.; Lépine F. Ultrafast Dynamics in Molecular Ions Following UV and XUV Excitation: A Perspective. Adv. Phys. X 2022, 7, 212328310.1080/23746149.2022.2123283. DOI

Hervé M.; Boyer A.; Brédy R.; Allouche A. R.; Compagnon I.; Lépine F. On-the-fly Investigation of XUV Excited Large Molecular Ions Using a High Harmonic Generation Light Source. Sci. Rep. 2022, 12, 1319110.1038/s41598-022-17416-4. PubMed DOI PMC

Vacher M.; Bearpark M. J.; Robb M. A.; Malhado J. P. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence. Phys. Rev. Lett. 2017, 118, 08300110.1103/PhysRevLett.118.083001. PubMed DOI

Despré V.; Golubev N. V.; Kuleff A. I. Charge Migration in Propiolic Acid: A Full Quantum Dynamical Study. Phys. Rev. Lett. 2018, 121, 20300210.1103/PhysRevLett.121.203002. PubMed DOI

Hervé M.; Despré V.; Castellanos Nash P.; Loriot V.; Boyer A.; Scognamiglio A.; Karras G.; Brédy R.; Constant E.; Tielens A. G. G. M.; et al. Ultrafast Dynamics of Correlation Bands Following XUV Molecular Photoionization. Nat. Phys. 2021, 17, 327–331. 10.1038/s41567-020-01073-3. DOI

Berrah N.; Sanchez-Gonzalez A.; Jurek Z.; Obaid R.; Xiong H.; Squibb R. J.; Osipov T.; Lutman A.; Fang L.; Barillot T.; et al. Femtosecond-Resolved Observation of the Fragmentation of Buckminsterfullerene Following X-ray Multiphoton Ionization. Nat. Phys. 2019, 15, 1279–1283. 10.1038/s41567-019-0665-7. DOI

Wabnitz H.; Bittner L.; de Castro A. R. B.; Döhrmann R.; Gürtler P.; Laarmann T.; Laasch W.; Schulz J.; Swiderski A.; von Haeften K.; et al. Multiple Ionization of Atom Clusters by Intense Soft X-rays From a Free-Electron Laser. Nature 2002, 420, 482–485. 10.1038/nature01197. PubMed DOI

Baccarelli I.; Bald I.; Gianturco F. A.; Illenberger E.; Kopyra J. Electron-Induced Damage of DNA and Its Components: Experiments and Theoretical Models. Phys. Rep. 2011, 508, 1–44. 10.1016/j.physrep.2011.06.004. DOI

Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J.. Recent Progress in Dissociative Electron Attachment: From Diatomics to Biomolecules.In Advances In Atomic, Molecular, and Optical Physics; Arimondo E., Lin C. C., Yelin S. F., Eds.; Academic Press: Cambridge, MA, 2017; Vol 66, pp 545–657.

Kočišek J.; Pysanenko A.; Fárník M.; Fedor J. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons. J. Phys. Chem. Lett. 2016, 7, 3401–3405. 10.1021/acs.jpclett.6b01601. PubMed DOI

Allan M. Electron Collisions with Formic Acid Monomer and Dimer. Phys. Rev. Lett. 2007, 98, 12320110.1103/PhysRevLett.98.123201. PubMed DOI

Kočišek J.; Sedmidubská B.; Indrajith S.; Fárník M.; Fedor J. Electron Attachment to Microhydrated Deoxycytidine Monophosphate. J. Phys. Chem. B 2018, 122, 5212–5217. 10.1021/acs.jpcb.8b03033. PubMed DOI

Postler J.; Renzler M.; Kaiser A.; Huber S. E.; Probst M.; Scheier P.; Ellis A. M. Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) in Liquid Helium Nanodroplets. J. Phys. Chem. C 2015, 119, 20917–20922. 10.1021/acs.jpcc.5b05260. PubMed DOI PMC

Lengyel J.; Papp P.; Matejčík Š.; Kočišek J.; Fárník M.; Fedor J. Suppression of Low-Energy Dissociative Electron Attachment in Fe(CO)5 upon Clustering. Beilstein J. Nanotechnol. 2017, 8, 2200–2207. 10.3762/bjnano.8.219. PubMed DOI PMC

Lengyel J.; Kočišek J.; Fárník M.; Fedor J. Self-Scavenging of Electrons in Fe(CO)5 Aggregates Deposited on Argon Nanoparticles. J. Phys. Chem. C 2016, 120, 7397–7402. 10.1021/acs.jpcc.6b00901. DOI

Landheer K.; Rosenberg S. G.; Bernau L.; Swiderek P.; Utke I.; Hagen C. W.; Fairbrother D. H. Low-Energy Electron-Induced Decomposition and Reactions of Adsorbed Tetrakis(trifluorophosphine)platinum [Pt(PF3)4]. J. Phys. Chem. C 2011, 115, 17452–17463. 10.1021/jp204189k. DOI

Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI

Böhler E.; Warneke J.; Swiderek P. Control of Chemical Reactions and Synthesis by Low-Energy Electrons. Chem. Soc. Rev. 2013, 42, 9219–9231. 10.1039/c3cs60180c. PubMed DOI

Arumainayagam C. R.; Garrod R. T.; Boyer M. C.; Hay A. K.; Bao S. T.; Campbell J. S.; Wang J.; Nowak C. M.; Arumainayagam M. R.; Hodge P. J. Extraterrestrial Prebiotic Molecules: Photochemistry vs. Radiation Chemistry of Interstellar Ices. Chem. Soc. Rev. 2019, 48, 2293–2314. 10.1039/C7CS00443E. PubMed DOI

Smyth M.; Kohanoff J.; Fabrikant I. I. Electron-Induced Hydrogen Loss in Uracil in a Water Cluster Environment. J. Chem. Phys. 2014, 140, 18431310.1063/1.4874841. PubMed DOI

Pysanenko A.; Habartová A.; Svrčková P.; Lengyel J.; Poterya V.; Roeselová M.; Fedor J.; Fárník M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. Chem. A 2015, 119, 8991–8999. 10.1021/acs.jpca.5b05368. PubMed DOI

Chesnavich W. J.; Bowers M. T. Statistical Phase Space Theory of Polyatomic Systems. Application to the Unimolecular Reactions C6H5CN ·+ → C6H4 ·+ + HCN and C4H6 ·+ → C3H+3+CH3. J. Am. Chem. Soc. 1977, 99, 1705–1711. 10.1021/ja00448a003. DOI

Kato̅ T. Phase Space Bottlenecks and Rates of No-Barrier Fragmentation Reactions into Polyatomic Molecules. J. Chem. Phys. 1996, 105, 9502–9508. 10.1063/1.472821. DOI

Garrett B. C.; Truhlar D. G. Generalized Transition State Theory. Classical Mechanical Theory and Applications to Collinear Reactions of Hydrogen Molecules. J. Phys. Chem. 1979, 83, 1052–1079. 10.1021/j100471a031. DOI

Ptasinska S.; Denifl S.; Scheier P.; Illenberger E.; Mark T. D. Bond- and Site-Selective Loss of H Atoms from Nucleobases by Very-Low-Energy Electrons (< 3 eV). Angew. Chem., Int. Ed. 2005, 44, 6941–6943. 10.1002/anie.200502040. PubMed DOI

McAllister M.; Kazemigazestane N.; Henry L. T.; Gu B.; Fabrikant I.; Tribello G. A.; Kohanoff J. Solvation Effects on Dissociative Electron Attachment to Thymine. J. Phys. Chem. B 2019, 123, 1537–1544. 10.1021/acs.jpcb.8b11621. PubMed DOI

Suchan J.; Kolafa J.; Slavíček P. Electron-Induced Fragmentation of Water Droplets: Simulation Study. J. Chem. Phys. 2022, 156, 14430310.1063/5.0088591. PubMed DOI

Thorman R. M.; Kumar T. P. R.; Fairbrother D. H.; Ingólfsson O. The Role of Low-Energy Electrons in Focused Electron Beam Induced Deposition: Four Case Studies of Representative Precursors. Beilstein J. Nanotechnol. 2015, 6, 1904–1926. 10.3762/bjnano.6.194. PubMed DOI PMC

Johny M.; Onvlee J.; Kierspel T.; Bieker H.; Trippel S.; Küpper J. Spatial Separation of Pyrrole and Pyrrole-Water Clusters. Chem. Phys. Lett. 2019, 721, 149–152. 10.1016/j.cplett.2019.01.052. DOI

Mauracher A.; Echt O.; Ellis A. M.; Yang S.; Bohme D. K.; Postler J.; Kaiser A.; Denifl S.; Scheier P. Cold Physics and Chemistry: Collisions, Ionization and Reactions Inside Helium Nanodroplets Close to Zero K. Phys. Rep. 2018, 751, 1–90. 10.1016/j.physrep.2018.05.001. DOI

Dvořák J.; Rankovič M.; Houfek K.; Nag P.; Čurík R.; Fedor J.; Čížek M. Vibronic Coupling through the Continuum in the e + CO2 System. Phys. Rev. Lett. 2022, 129, 01340110.1103/PhysRevLett.129.013401. PubMed DOI

Ragesh Kumar T. P.; Nag P.; Rankovič M.; Luxford T. F. M.; Kočišek J.; Mašín Z.; Fedor J. Distant Symmetry Control in Electron-Induced Bond Cleavage. J. Phys. Chem. Lett. 2022, 13, 11136–11142. 10.1021/acs.jpclett.2c03096. PubMed DOI

Poštulka J.; Slavíček P.; Fedor J.; Fárník M.; Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B 2017, 121, 8965–8974. 10.1021/acs.jpcb.7b07390. PubMed DOI

Lin B.; Gao F.; Yang Y.; Wu D.; Zhang Y.; Feng G.; Dai T.; Du X. FLASH Radiotherapy: History and Future. Front. Oncol. 2021, 11, 64440010.3389/fonc.2021.644400. PubMed DOI PMC

Zacheis G. A.; Gray K. A.; Kamat P. V. Radiation-Induced Catalysis on Oxide Surfaces: Degradation of Hexachlorobenzene on γ-Irradiated Alumina Nanoparticles. J. Phys. Chem. B 1999, 103, 2142–2150. 10.1021/jp990211u. DOI

Coekelbergs R.; Crucq A.; Frennet A. Radiation Catalysis. Adv. Catal. 1962, 13, 55–136. 10.1016/S0360-0564(08)60286-2. DOI

Abedini A.; Daud A. R.; Hamid M. A. A.; Othman N. K.; Saion E. A Review on Radiation-Induced Nucleation and Growth of Colloidal Metallic Nanoparticles. Nanoscale Res. Lett. 2013, 8, 474.10.1186/1556-276X-8-474. PubMed DOI PMC

Roy K.; Lahiri S. In Situ γ-Radiation: One-Step Environmentally Benign Method to Produce Gold–Palladium Bimetallic Nanoparticles. Anal. Chem. 2008, 80, 7504–7507. 10.1021/ac800593u. PubMed DOI

Zhang D.; He J.; Zhou M. Radiation-Assisted Strategies Provide New Perspectives to Improve the Nanoparticle Delivery to Tumor. Adv. Drug Delivery Rev. 2023, 193, 11464210.1016/j.addr.2022.114642. PubMed DOI

Gauduel Y. A.; Glinec Y.; Rousseau J.-P.; Burgy F.; Malka V. High Energy Radiation Femtochemistry of Water Molecules: Early Electron-Radical Pairs Processes. Eur. Phys. J. D 2010, 60, 121–135. 10.1140/epjd/e2010-00152-2. DOI

Svoboda V.; Michiels R.; LaForge A. C.; Med J.; Stienkemeier F.; Slavíček P.; Wörner H. J. Real-Time Observation of Water Radiolysis and Hydrated Electron Formation Induced by Extreme-Ultraviolet Pulses. Sci. Adv. 2020, 6, eaaz038510.1126/sciadv.aaz0385. PubMed DOI PMC

Baldacchino G.; Vigneron G.; Renault J.-P.; Pin S.; Abedinzadeh Z.; Deycard S.; Balanzat E.; Bouffard S.; Gardès-Albert M.; Hickel B.; Mialocq J.-C. A Nanosecond Pulse Radiolysis Study of the Hydrated Electron with High Energy Ions with a Narrow Velocity Distribution. Chem. Phys. Lett. 2004, 385, 66–71. 10.1016/j.cplett.2003.12.048. DOI

Dromey B.; Coughlan M.; Senje L.; Taylor M.; Kuschel S.; Villagomez-Bernabe B.; Stefanuik R.; Nersisyan G.; Stella L.; Kohanoff J.; et al. Picosecond Metrology of Laser-Driven Proton Bursts. Nat. Commun. 2016, 7, 1064210.1038/ncomms10642. PubMed DOI PMC

Prasselsperger A.; Coughlan M.; Breslin N.; Yeung M.; Arthur C.; Donnelly H.; White S.; Afshari M.; Speicher M.; Yang R.; et al. Real-Time Electron Solvation Induced by Bursts of Laser-Accelerated Protons in Liquid Water. Phys. Rev. Lett. 2021, 127, 18600110.1103/PhysRevLett.127.186001. PubMed DOI

Coughlan M.; Donnelly H.; Breslin N.; Arthur C.; Nersisyan G.; Yeung M.; Villagomez-Bernabe B.; Afshari M.; Currell F.; Zepf M.; Dromey B. Ultrafast Dynamics and Evolution of Ion-Induced Opacity in Transparent Dielectrics. New J. Phys. 2020, 22, 10302310.1088/1367-2630/abbae8. DOI

Ziegler J. F. Stopping of Energetic Light Ions in Elemental Matter. J. Appl. Phys. 1999, 85, 1249–1272. 10.1063/1.369844. DOI

Macchi A.; Borghesi M.; Passoni M. Ion Acceleration by Superintense Laser-Plasma Interaction. Rev. Mod. Phys. 2013, 85, 751–794. 10.1103/RevModPhys.85.751. DOI

Kar S.; Ahmed H.; Prasad R.; Cerchez M.; Brauckmann S.; Aurand B.; Cantono G.; Hadjisolomou P.; Lewis C. L. S.; Macchi A.; et al. Guided Post-Acceleration of Laser-Driven Ions by a Miniature Modular Structure. Nat. Commun. 2016, 7, 1079210.1038/ncomms10792. PubMed DOI PMC

Dromey B.; Zepf M.; Gopal A.; Lancaster K.; Wei M. S.; Krushelnick K.; Tatarakis M.; Vakakis N.; Moustaizis S.; Kodama R.; et al. High Harmonic Generation in the Relativistic Limit. Nat. Phys. 2006, 2, 456–459. 10.1038/nphys338. DOI

Ackland G. Controlling Radiation Damage. Science 2010, 327, 1587–1588. 10.1126/science.1188088. PubMed DOI

Amaldi U.; Kraft G. Radiotherapy with Beams of Carbon Ions. Rep. Prog. Phys. 2005, 68, 1861–1882. 10.1088/0034-4885/68/8/R04. DOI

Schardt D.; Elsässer T.; Schulz-Ertner D. Heavy-Ion Tumor Therapy: Physical and Radiobiological Benefits. Rev. Mod. Phys. 2010, 82, 383–425. 10.1103/RevModPhys.82.383. DOI

Durante M.; Cucinotta F. A. Physical Basis of Radiation Protection in Space Travel. Rev. Mod. Phys. 2011, 83, 1245–1281. 10.1103/RevModPhys.83.1245. DOI

Kronenberg A.; Cucinotta F. A. Space Radiation Protection Issues. Health Phys. 2012, 103, 556–567. 10.1097/HP.0b013e3182690caf. PubMed DOI

de Vera P.; Surdutovich E.; Solov’yov A. V. The Role of Shock Waves on the Biodamage Induced by Ion Beam Radiation. Cancer Nanotechnol 2019, 10, 5.10.1186/s12645-019-0050-3. DOI

Bottländer D.; Mücksch C.; Urbassek H. M. Effect of Swift-Ion Irradiation on DNA Molecules: A Molecular Dynamics Study Using the REAX Force Field. Nucl. Instrum. Meth. B 2015, 365, 622–625. 10.1016/j.nimb.2015.08.060. DOI

Favaudon V.; Caplier L.; Monceau V.; Pouzoulet F.; Sayarath M.; Fouillade C.; Poupon M. F.; Brito I.; Hupé P.; Bourhis J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93.10.1126/scitranslmed.3008973. PubMed DOI

Malka V.; Faure J.; Gauduel Y. A.; Lefebvre E.; Rousse A.; Phuoc K. T. Principles and Applications of Compact Laser-Plasma Accelerators. Nat. Phys. 2008, 4, 447–453. 10.1038/nphys966. DOI

Fuchs T.; Szymanowski H.; Oelfke U.; Glinec Y.; Rechatin C.; Faure J.; Malka V. Treatment Planning for Laser-Accelerated Very-High Energy Electrons. Phys. Med. Biol. 2009, 54, 3315–3328. 10.1088/0031-9155/54/11/003. PubMed DOI

Malka V.; Faure J.; Gauduel Y. A. Ultra-Short Electron Beams Based Spatio-Temporal Radiation Biology and Radiotherapy. Mutat. Res. Rev. Mutat. Res. 2010, 704, 142–151. 10.1016/j.mrrev.2010.01.006. PubMed DOI

Ogawa Y. Paradigm Shift in Radiation Biology/Radiation Oncology – Exploitation of the “H2O2 Effect” for Radiotherapy Using Low-LET (Linear Energy Transfer) Radiation Such as X-Rays and High-Energy Electrons. Cancers 2016, 8, 28–40. 10.3390/cancers8030028. PubMed DOI PMC

Paganetti H.; Niemierko A.; Ancukiewicz M.; Gerweck L. E.; Goitein M.; Loeffler J. S.; Suit H. D. Relative Biological Effectiveness (RBE) Values for Proton Beam Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 407–421. 10.1016/S0360-3016(02)02754-2. PubMed DOI

Mazal A.; Prezado Y.; Ares C.; de Marzi L.; Patriarca A.; Miralbell R.; Favaudon V. FLASH and Minibeams in Radiation Therapy: The Effect of Microstructures on Time and Space and Their Potential Application to Protontherapy. Br. J. Radiol. 2020, 93, 2019080710.1259/bjr.20190807. PubMed DOI PMC

Horendeck D.; Walsh K. D.; Hirakawa H.; Fujimori A.; Kitamura H.; Kato T. A. High LET-Like Radiation Tracks at the Distal Side of Accelerated Proton Bragg Peak. Front. Oncol. 2021, 11, 69004210.3389/fonc.2021.690042. PubMed DOI PMC

Audouin J.; Hofverberg P.; Ngono-Ravache Y.; Desorgher L.; Baldacchino G. Intermediate LET-like Effect in Distal Part of Proton Bragg Peak Revealed by Track-Ends Imaging During Super-Fricke Radiolysis. Sci. Rep. 2023, 13, 1546010.1038/s41598-023-42639-4. PubMed DOI PMC

Bizzarri M.; Naimark O.; Nieto-Villar J.; Fedeli V.; Giuliani A. Complexity in Biological Organization: Deconstruction (and Subsequent Restating) of Key Concepts. Entropy 2020, 22, 885.10.3390/e22080885. PubMed DOI PMC

Erenpreisa J.; Giuliani A.; Yoshikawa K.; Falk M.; Hildenbrand G.; Salmina K.; Freivalds T.; Vainshelbaum N.; Weidner J.; Sievers A.; Pilarczyk G.; Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int. J. Mol. Sci. 2023, 24, 2658.10.3390/ijms24032658. PubMed DOI PMC

Cremer T.; Cremer M.; Hübner B.; Strickfaden H.; Smeets D.; Popken J.; Sterr M.; Markaki Y.; Rippe K.; Cremer C. The 4D Nucleome: Evidence for a Dynamic Nuclear Landscape Based on Co-Aligned Active and Inactive Nuclear Compartments. FEBS Lett. 2015, 589, 2931–2943. 10.1016/j.febslet.2015.05.037. PubMed DOI

Sievers A.; Sauer L.; Hausmann M.; Hildenbrand G. Eukaryotic Genomes Show Strong Evolutionary Conservation of K-Mer Composition and Correlation Contributions between Introns and Intergenic Regions. Genes 2021, 12, 1571.10.3390/genes12101571. PubMed DOI PMC

Sievers A.; Sauer L.; Bisch M.; Sprengel J.; Hausmann M.; Hildenbrand G. Moderation of Structural DNA Properties by Coupled Dinucleotide Contents in Eukaryotes. Genes 2023, 14, 755.10.3390/genes14030755. PubMed DOI PMC

Krigerts J.; Salmina K.; Freivalds T.; Zayakin P.; Rumnieks F.; Inashkina I.; Giuliani A.; Hausmann M.; Erenpreisa J. Differentiating Cancer Cells Reveal Early Large-Scale Genome Regulation by Pericentric Domains. Biophys. J. 2021, 120, 711–724. 10.1016/j.bpj.2021.01.002. PubMed DOI PMC

Erenpreisa J.; Krigerts J.; Salmina K.; Gerashchenko B. I.; Freivalds T.; Kurg R.; Winter R.; Krufczik M.; Zayakin P.; Hausmann M.; Giuliani A. Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis). Cells 2021, 10, 1582.10.3390/cells10071582. PubMed DOI PMC

Hausmann M.; Hildenbrand G.; Pilarczyk G.. Networks and Islands of Genome Nano-architecture and Their Potential Relevance for Radiation Biology. In Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine; Kloc M., Kubiak J. Z., Eds.; Springer, 2022; pp 3–34. PubMed

Lee J.-H.; Hausmann M.. Super-Resolution Radiation Biology: From Bio-Dosimetry towards Nano-Studies of DNA Repair Mechanisms. In DNA - Damages and Repair Mechanisms; Behzadi P., Ed.; IntechOpen: London, UK, 2021.

Jezkova L.; Zadneprianetc M.; Kulikova E.; Smirnova E.; Bulanova T.; Depes D.; Falkova I.; Boreyko A.; Krasavin E.; Davidkova M.; Kozubek S.; Valentova O.; Falk M. Particles with Similar LET Values Generate DNA Breaks of Different Complexity and Reparability: A High-Resolution Microscopy Analysis of γH2AX/53BP1 Foci. Nanoscale 2018, 10, 1162–1179. 10.1039/C7NR06829H. PubMed DOI

Falk M.; Hausmann M. A Paradigm Revolution or Just Better Resolution – Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation?. Cancers 2021, 13, 18.10.3390/cancers13010018. PubMed DOI PMC

Bobkova E.; Depes D.; Lee J.-H.; Jezkova L.; Falkova I.; Pagacova E.; Kopecna O.; Zadneprianetc M.; Bacikova A.; Kulikova E.; Smirnova E.; Bulanova T.; Boreyko A.; Krasavin E.; Wenz F.; Bestvater F.; Hildenbrand G.; Hausmann M.; Falk M. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018, 19, 3713.10.3390/ijms19123713. PubMed DOI PMC

Scully R.; Panday A.; Elango R.; Willis N. A. DNA Double-Strand Break Repair-Pathway Choice in Somatic Mammalian Cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. 10.1038/s41580-019-0152-0. PubMed DOI PMC

Falk M.; Hausmann M.; Lukasova E.; Biswas A.; Hildenbrand G.; Davidkova M.; Krasavin E.; Kleibl Z.; Falkova I.; Jezkova L.; et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A – Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 205–223. 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI

Falk M.; Hausmann M.; Lukasova E.; Biswas A.; Hildenbrand G.; Davidkova M.; Krasavin E.; Kleibl Z.; Falkova I.; Jezkova L.; et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B – Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 225–247. 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI

Iliakis G.; Mladenov E.; Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers 2019, 11, 1671.10.3390/cancers11111671. PubMed DOI PMC

Falk M.; Lukasova E.; Gabrielova B.; Ondrej V.; Kozubek S. Chromatin Dynamics during DSB Repair. Biochim. Biophys. Acta 2007, 1773, 1534–1545. 10.1016/j.bbamcr.2007.07.002. PubMed DOI

Falk M.; Lukásová E.; Kozubek S. Chromatin Structure Influences the Sensitivity of DNA to Gamma-Radiation. Biochim. Biophys. Acta 2008, 1783, 2398–2414. 10.1016/j.bbamcr.2008.07.010. PubMed DOI

Falk M.; Lukasova E.; Gabrielova B.; Ondrej V.; Kozubek S. Local Changes of Higher-Order Chromatin Structure during DSB-Repair. J. Phys. Conf. Ser. 2008, 101, 01201810.1088/1742-6596/101/1/012018. DOI

Falk M.; Lukasova E.; Kozubek S. Higher-Order Chromatin Structure in DSB Induction, Repair and Misrepair. Mutat. Res. 2010, 704, 88–100. 10.1016/j.mrrev.2010.01.013. PubMed DOI

Sievers A.; Wenz F.; Hausmann M.; Hildenbrand G. Conservation of k-Mer Composition and Correlation Contribution between Introns and Intergenic Regions of Animalia Genomes. Genes 2018, 9, 482.10.3390/genes9100482. PubMed DOI PMC

Weidner J.; Neitzel C.; Gote M.; Deck J.; Küntzelmann K.; Pilarczyk G.; Falk M.; Hausmann M. Advanced Image-Free Analysis of the Nano-Organization of Chromatin and Other Biomolecules by Single Molecule Localization Microscopy (SMLM). Comput. Struct. Biotechnol. J. 2023, 21, 2018–2034. 10.1016/j.csbj.2023.03.009. PubMed DOI PMC

Krufczik M.; Sievers A.; Hausmann A.; Lee J.-H.; Hildenbrand G.; Schaufler W.; Hausmann M. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Int. J. Mol. Sci. 2017, 18, 1005.10.3390/ijms18051005. PubMed DOI PMC

Zhang Y.; Máté G.; Müller P.; Hillebrandt S.; Krufczik M.; Bach M.; Kaufmann R.; Hausmann M.; Heermann D. W. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory. PLoS One 2015, 10, e012855510.1371/journal.pone.0128555. PubMed DOI PMC

Zhang Y.; Heermann D. W. DNA Double-Strand Breaks: Linking Gene Expression to Chromosome Morphology and Mobility. Chromosoma 2014, 123, 103–115. 10.1007/s00412-013-0432-y. PubMed DOI

Hausmann M.; Wagner E.; Lee J.-H.; Schrock G.; Schaufler W.; Krufczik M.; Papenfuß F.; Port M.; Bestvater F.; Scherthan H. Super-Resolution Localization Microscopy of Radiation-Induced Histone H2AX-Phosphorylation in Relation to H3K9-Trimethylation in HeLa Cells. Nanoscale 2018, 10, 4320–4331. 10.1039/C7NR08145F. PubMed DOI

Hausmann M.; Falk M.; Neitzel C.; Hofmann A.; Biswas A.; Gier T.; Falkova I.; Heermann D. W.; Hildenbrand G. Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach. Int. J. Mol. Sci. 2021, 22, 3636.10.3390/ijms22073636. PubMed DOI PMC

Hofmann A.; Krufczik M.; Heermann D.; Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters. Int. J. Mol. Sci. 2018, 19, 2263.10.3390/ijms19082263. PubMed DOI PMC

Hahn H.; Neitzel C.; Kopečná O.; Heermann D. W.; Falk M.; Hausmann M. Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-Ray-Induced DNA Double-Strand Break Repair. Cancers 2021, 13, 5561.10.3390/cancers13215561. PubMed DOI PMC

Scherthan H.; Lee J.-H.; Maus E.; Schumann S.; Muhtadi R.; Chojowski R.; Port M.; Lassmann M.; Bestvater F.; Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers 2019, 11, 1877.10.3390/cancers11121877. PubMed DOI PMC

Morales M. E.; White T. B.; Streva V. A.; DeFreece C. B.; Hedges D. J.; Deininger P. L. The Contribution of ALU Elements to Mutagenic DNA Double-Strand Break Repair. PLoS Genet. 2015, 11, e100501610.1371/journal.pgen.1005016. PubMed DOI PMC

Hausmann M.; Ilić N.; Pilarczyk G.; Lee J.-H.; Logeswaran A.; Borroni A. P.; Krufczik M.; Theda F.; Waltrich N.; Bestvater F.; Hildenbrand G.; Cremer C.; Blank M. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int. J. Mol. Sci. 2017, 18, 2066.10.3390/ijms18102066. PubMed DOI PMC

Vicar T.; Gumulec J.; Kolar R.; Kopecna O.; Pagacova E.; Falkova I.; Falk M. DeepFoci: Deep Learning-Based Algorithm for Fast Automatic Analysis of DNA Double-Strand Break Ionizing Radiation-Induced Foci. Comput. Struct. Biotechnol. J. 2021, 19, 6465–6480. 10.1016/j.csbj.2021.11.019. PubMed DOI PMC

Dobešová L.; Gier T.; Kopečná O.; Pagáčová E.; Vičar T.; Bestvater F.; Toufar J.; Bačíková A.; Kopel P.; Fedr R.; Hildenbrand G.; Falková I.; Falk M.; Hausmann M. Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells. Pharmaceutics 2022, 14, 166.10.3390/pharmaceutics14010166. PubMed DOI PMC

Ahmad R.; Schettino G.; Royle G.; Barry M.; Pankhurst Q. A.; Tillement O.; Russell B.; Ricketts K. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part. Part. Syst. Charact. 2020, 37, 190041110.1002/ppsc.201900411. PubMed DOI PMC

Her S.; Jaffray D. A.; Allen C. Gold Nanoparticles for Applications in Cancer Radiotherapy: Mechanisms and Recent Advancements. Adv. Drug Delivery Rev. 2017, 109, 84–101. 10.1016/j.addr.2015.12.012. PubMed DOI

Ricketts K.; Ahmad R.; Beaton L.; Cousins B.; Critchley K.; Davies M.; Evans S.; Fenuyi I.; Gavriilidis A.; Harmer Q. J.; et al. Recommendations for Clinical Translation of Nanoparticle-Enhanced Radiotherapy. Br. J. Radiol. 2018, 91, 2018032510.1259/bjr.20180325. PubMed DOI PMC

Douglass M.; Bezak E.; Penfold S. Monte Carlo Investigation of the Increased Radiation Deposition due to Gold Nanoparticles Using Kilovoltage and Megavoltage Photons in a 3D Randomized Cell Model. Med. Phys. 2013, 40, 07171010.1118/1.4808150. PubMed DOI

Butterworth K. T.; McMahon S. J.; Currell F. J.; Prise K. M. Physical Basis and Biological Mechanisms of Gold Nanoparticle Radiosensitization. Nanoscale 2012, 4, 4830.10.1039/c2nr31227a. PubMed DOI

Rosa S.; Connolly C.; Schettino G.; Butterworth K. T.; Prise K. M. Biological Mechanisms of Gold Nanoparticle Radiosensitization. Cancer Nanotechnol 2017, 8, 2.10.1186/s12645-017-0026-0. PubMed DOI PMC

Sicard-Roselli C.; Brun E.; Gilles M.; Baldacchino G.; Kelsey C.; McQuaid H.; Polin C.; Wardlow N.; Currell F. A New Mechanism for Hydroxyl Radical Production in Irradiated Nanoparticle Solutions. Small 2014, 10, 3338–3346. 10.1002/smll.201400110. PubMed DOI

Verkhovtsev A. V.; Nichols A.; Mason N. J.; Solov’yov A. V. Molecular Dynamics Characterization of Radiosensitizing Coated Gold Nanoparticles in Aqueous Environment. J. Phys. Chem. A 2022, 126, 2170–2184. 10.1021/acs.jpca.2c00489. PubMed DOI

Kazmierska J.; Sala N. J.; Leech M.; Jereczek-Fossa B. A.; Lievens Y.; Yarnold J.. Radiotherapy: Seizing the Opportunity in Cancer Care; European Society for Radiotherapy and Oncology, 2018. https://www.estro.org/getattachment/Advocacy/ECF/Marie-Curie-Legacy-Campaign/Radiotherapy_seizing_the_opportunity_in_cancer_care.pdf (accessed 2024-02-29).

Zeng C.; Amos R. A.; Winey B.; Beltran C.; Saleh Z.; Tochner Z.; Kooy H.; Both S.. Proton Treatment Planning. In Target Volume Delineation and Treatment Planning for Particle Therapy: A Practical Guide; Lee N. Y., Leeman J. E., Cahlon O., Sine K., Jiang G., Lu J. J., Both S., Eds.; Springer, 2018; pp 45–105.

Wang X.; Zhang X.; Li X.; Amos R. A.; Shaitelman S. F.; Hoffman K.; Howell R.; Salehpour M.; Zhang S. X.; Sun T. L.; et al. Accelerated Partial-Breast Irradiation Using Intensity-Modulated Proton Radiotherapy: Do Uncertainties Outweigh Potential Benefits?. Br. J. Radiol. 2013, 86, 2013017610.1259/bjr.20130176. PubMed DOI PMC

Kim Y.; Kim J.; Cho S. Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy. Prog. Med. Phys. 2020, 31, 1–7. 10.14316/pmp.2020.31.1.1. DOI

Kelleter L.; Zhen-Hong Tham B.; Saakyan R.; Griffiths J.; Amos R.; Jolly S.; Gibson A. Technical Note: Simulation of Dose Buildup in Proton Pencil Beams. Med. Phys. 2019, 46, 3734–3738. 10.1002/mp.13660. PubMed DOI

Ree A. H.; Redalen K. R. Personalized Radiotherapy: Concepts, Biomarkers and Trial Design. Br. J. Radiol. 2015, 88, 2015000910.1259/bjr.20150009. PubMed DOI PMC

Falls K. C.; Sharma R. A.; Lawrence Y. R.; Amos R. A.; Advani S. J.; Ahmed M. M.; Vikram B.; Coleman C. N.; Prasanna P. G. Radiation-Drug Combinations to Improve Clinical Outcomes and Reduce Normal Tissue Toxicities: Current Challenges and New Approaches: Report of the Symposium Held at the 63rd Annual Meeting of the Radiation Research Society, 15–18 October 2017; Cancun, Mexico. Radiat. Res. 2018, 190, 350–360. 10.1667/RR15121.1. PubMed DOI PMC

Cancer Nanotechnology: Principles and Application in Radiation Oncology; Cho S. H., Krishnan S., Eds.; CRC Press: Boca Raton, FL, 2013.

Suzuki M. Boron Neutron Capture Therapy (BNCT): A Unique Role in Radiotherapy with a View to Entering the Accelerator-Based BNCT Era. Int. J. Clin. Oncol. 2020, 25, 43–50. 10.1007/s10147-019-01480-4. PubMed DOI

Porra L.; Seppälä T.; Wendland L.; Revitzer H.; Joensuu H.; Eide P.; Koivunoro H.; Smick N.; Smick T.; Tenhunen M. Accelerator-Based Boron Neutron Capture Therapy Facility at the Helsinki University Hospital. Acta. Oncol. 2022, 61, 269–273. 10.1080/0284186X.2021.1979646. PubMed DOI

Favaudon V.; Caplier L.; Monceau V.; Pouzoulet F.; Sayarath M.; Fouillade C.; Poupon M.-F.; Brito I.; Hupé P.; Bourhis J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response Between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93.10.1126/scitranslmed.3008973. PubMed DOI

Lourenço A.; Subiel A.; Lee N.; Flynn S.; Cotterill J.; Shipley D.; Romano F.; Speth J.; Lee E.; Zhang Y.; et al. Absolute Dosimetry for FLASH Proton Pencil Beam Scanning Radiotherapy. Sci. Rep. 2023, 13, 2054.10.1038/s41598-023-28192-0. PubMed DOI PMC

Mascia A. E.; Daugherty E. C.; Zhang Y.; Lee E.; Xiao Z.; Sertorio M.; Woo J.; Backus L. R.; McDonald J. M.; McCann C.; et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol 2023, 9, 62–69. 10.1001/jamaoncol.2022.5843. PubMed DOI PMC

Prezado Y.; Jouvion G.; Guardiola C.; Gonzalez W.; Juchaux M.; Bergs J.; Nauraye C.; Labiod D.; De Marzi L.; Pouzoulet F.; et al. Tumor Control in RG2 Glioma-Bearing Rats: A Comparison Between Proton Minibeam Therapy and Standard Proton Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 266–271. 10.1016/j.ijrobp.2019.01.080. PubMed DOI

Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius F. Energy Transfer Catalysis Mediated by Visible Light: Principles, Applications, Directions. Chem. Soc. Rev. 2018, 47, 7190–7202. 10.1039/C8CS00054A. PubMed DOI

Marzo L.; Pagire S. K.; Reiser O.; König B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angew. Chem., Int. Ed. 2018, 57, 10034–10072. 10.1002/anie.201709766. PubMed DOI

Zhan C.; Chen X.-J.; Yi J.; Li J.-F.; Wu D.-Y.; Tian Z.-Q. From Plasmon-Enhanced Molecular Spectroscopy to Plasmon-Mediated Chemical Reactions. Nat. Rev. Chem. 2018, 2, 216–230. 10.1038/s41570-018-0031-9. DOI

Liu X.; Atwater M.; Wang J.; Huo Q. Extinction Coefficient of Gold Nanoparticles with Different Sizes and Different Capping Ligands. Colloids Surf., B 2007, 58, 3–7. 10.1016/j.colsurfb.2006.08.005. PubMed DOI

Gellé A.; Jin T.; de La Garza L.; Price G. D.; Besteiro L. V.; Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem. Rev. 2020, 120, 986–1041. 10.1021/acs.chemrev.9b00187. PubMed DOI

Christopher P.; Xin H.; Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011, 3, 467–472. 10.1038/nchem.1032. PubMed DOI

Dutta A.; Schürmann R.; Kogikoski S.; Mueller N. S.; Reich S.; Bald I. Kinetics and Mechanism of Plasmon-Driven Dehalogenation Reaction of Brominated Purine Nucleobases on Ag and Au. ACS Catal. 2021, 11, 8370–8381. 10.1021/acscatal.1c01851. PubMed DOI PMC

Kogikoski S.; Dutta A.; Bald I. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. ACS Nano 2021, 15, 20562–20573. 10.1021/acsnano.1c09176. PubMed DOI PMC

Schürmann R.; Bald I. Real-Time Monitoring of Plasmon Induced Dissociative Electron Transfer to the Potential DNA Radiosensitizer 8-Bromoadenine. Nanoscale 2017, 9, 1951–1955. 10.1039/C6NR08695K. PubMed DOI

Zhou L.; Swearer D. F.; Zhang C.; Robatjazi H.; Zhao H.; Henderson L.; Dong L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science 2018, 362, 69–72. 10.1126/science.aat6967. PubMed DOI

Sivan Y.; Baraban J.; Un I. W.; Dubi Y. Comment on “Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science 2019, 364, eaaw936710.1126/science.aaw9367. PubMed DOI

Robatjazi H.; Bao J. L.; Zhang M.; Zhou L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Plasmon-Driven Carbon–Fluorine (C(sp3)–F) Bond Activation with Mechanistic Insights into Hot-Carrier-Mediated Pathways. Nat. Catal. 2020, 3, 564–573. 10.1038/s41929-020-0466-5. DOI

Dubi Y.; Un I. W.; Baraban J. H.; Sivan Y. Distinguishing Thermal From Non-Thermal Contributions to Plasmonic Hydrodefluorination. Nat. Catal. 2022, 5, 244–246. 10.1038/s41929-022-00767-6. DOI

Swaminathan S.; Rao V. G.; Bera J. K.; Chandra M. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C–N Bond Forming Reaction of Amines. Angew. Chem., Int. Ed. 2021, 60, 12532–12538. 10.1002/anie.202101639. PubMed DOI

Baffou G.; Bordacchini I.; Baldi A.; Quidant R. Simple Experimental Procedures to Distinguish Photothermal From Hot-Carrier Processes in Plasmonics. Light Sci. Appl. 2020, 9, 108.10.1038/s41377-020-00345-0. PubMed DOI PMC

Schürmann R.; Dutta A.; Ebel K.; Tapio K.; Milosavljević A. R.; Bald I. Plasmonic Reactivity of Halogen Thiophenols on Gold Nanoparticles Studied by SERS and XPS. J. Chem. Phys. 2022, 157, 08470810.1063/5.0098110. PubMed DOI

Schürmann R.; Ebel K.; Nicolas C.; Milosavljević A. R.; Bald I. Role of Valence Band States and Plasmonic Enhancement in Electron-Transfer-Induced Transformation of Nitrothiophenol. J. Phys. Chem. Lett. 2019, 10, 3153–3158. 10.1021/acs.jpclett.9b00848. PubMed DOI PMC

Sprague-Klein E. A.; Negru B.; Madison L. R.; Coste S. C.; Rugg B. K.; Felts A. M.; McAnally M. O.; Banik M.; Apkarian V. A.; Wasielewski M. R.; et al. Photoinduced Plasmon-Driven Chemistry in trans-1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. J. Am. Chem. Soc. 2018, 140, 10583–10592. 10.1021/jacs.8b06347. PubMed DOI

Ding T.; Mertens J.; Lombardi A.; Scherman O. A.; Baumberg J. J. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons. ACS Photonics 2017, 4, 1453–1458. 10.1021/acsphotonics.7b00206. PubMed DOI PMC

Koopman W.; Titov E.; Sarhan R. M.; Gaebel T.; Schürmann R.; Mostafa A.; Kogikoski S.; Milosavljević A. R.; Stete F.; Liebig F.; et al. The Role of Structural Flexibility in Plasmon-Driven Coupling Reactions: Kinetic Limitations in the Dimerization of Nitro-Benzenes. Adv. Mater. Interfaces 2021, 8, 210134410.1002/admi.202101344. DOI

Cheruvathoor Poulose A.; Zoppellaro G.; Konidakis I.; Serpetzoglou E.; Stratakis E.; Tomanec O.; Beller M.; Bakandritsos A.; Zbořil R. Fast and Selective Reduction of Nitroarenes Under Visible Light With an Earth-Abundant Plasmonic Photocatalyst. Nature Nanotechnol 2022, 17, 485–492. 10.1038/s41565-022-01087-3. PubMed DOI PMC

Ezendam S.; Herran M.; Nan L.; Gruber C.; Kang Y.; Gröbmeyer F.; Lin R.; Gargiulo J.; Sousa-Castillo A.; Cortés E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS Energy Lett. 2022, 7, 778–815. 10.1021/acsenergylett.1c02241. PubMed DOI PMC

King M. E.; Wang C.; Fonseca Guzman M. V.; Ross M. B. Plasmonics for Environmental Remediation and Pollutant Degradation. Chem. Catal. 2022, 2, 1880–1892. 10.1016/j.checat.2022.06.017. DOI

Takimoto D.; Toma S.; Suda Y.; Shirokura T.; Tokura Y.; Fukuda K.; Matsumoto M.; Imai H.; Sugimoto W. Platinum Nanosheets Synthesized via Topotactic Reduction of Single-Layer Platinum Oxide Nanosheets for Electrocatalysis. Nat. Commun. 2023, 14, 1910.1038/s41467-022-35616-4. PubMed DOI PMC

Kodama K.; Nagai T.; Kuwaki A.; Jinnouchi R.; Morimoto Y. Challenges in Applying Highly Active Pt-Based Nanostructured Catalysts for Oxygen Reduction Reactions to Fuel Cell Vehicles. Nat. Nanotechnol. 2021, 16, 140–147. 10.1038/s41565-020-00824-w. PubMed DOI

Liu Z.; Zhao Z.; Peng B.; Duan X.; Huang Y. Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827. 10.1021/jacs.0c07696. PubMed DOI

Xie C.; Niu Z.; Kim D.; Li M.; Yang P. Surface and Interface Control in Nanoparticle Catalysis. Chem. Rev. 2020, 120, 1184–1249. 10.1021/acs.chemrev.9b00220. PubMed DOI

Jenkinson K. J.; Wagner A.; Kornienko N.; Reisner E.; Wheatley A. E. H. A One-Pot Route to Faceted FePt-Fe3O4 Dumbbells: Probing Morphology–Catalytic Activity Effects in O2 Reduction Catalysis. Adv. Funct. Mater. 2020, 30, 200263310.1002/adfm.202002633. DOI

Zhang J.; Zhang L.; Cui Z. Strategies to Enhance the Electrochemical Performances of Pt-Based Intermetallic Catalysts. Chem. Commun. 2021, 57, 11–26. 10.1039/D0CC05170E. PubMed DOI

Lei W.; Li M.; He L.; Meng X.; Mu Z.; Yu Y.; Ross F. M.; Yang W. A General Strategy for Bimetallic Pt-Based Nano-Branched Structures as Highly Active and Stable Oxygen Reduction and Methanol Oxidation Bifunctional Catalysts. Nano Res. 2020, 13, 638–645. 10.1007/s12274-020-2666-3. DOI

Mao J.; Chen Y.; Pei J.; Wang D.; Li Y. Pt–M M = Cu, Fe, Zn, etc.) Bimetallic Nanomaterials with Abundant Surface Defects and Robust Catalytic Properties. Chem. Commun. 2016, 52, 5985–5988. 10.1039/C6CC02264B. PubMed DOI

Tian X. L.; Xu Y. Y.; Zhang W.; Wu T.; Xia B. Y.; Wang X. Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Lett. 2017, 2, 2035–2043. 10.1021/acsenergylett.7b00593. DOI

Zhang B. W.; Yang H. L.; Wang Y. X.; Dou S. X.; Liu H. K. A Comprehensive Review on Controlling Surface Composition of Pt-Based Bimetallic Electrocatalysts. Adv. Energy Mater. 2018, 8, 170359710.1002/aenm.201703597. DOI

Chaudhari N. K.; Joo J.; Kwon H. B.; Kim B.; Kim H. Y.; Joo S. H.; Lee K. Nanodendrites of Platinum-Group Metals for Electrocatalytic Applications. Nano Res. 2018, 11, 6111–6140. 10.1007/s12274-018-2161-2. DOI

Ming S.; Wheatley A. E. H. Manipulating Morphology and Composition in Colloidal Heterometallic Nanopods and Nanodendrites. Nanoscale 2023, 15, 8814–8824. 10.1039/D3NR00461A. PubMed DOI

Chen R.; Nguyen Q. N.; Xia Y. Oriented Attachment: A Unique Mechanism for the Colloidal Synthesis of Metal Nanostructures. ChemNanoMat 2022, 8, e20210047410.1002/cnma.202100474. DOI

Gao R. T.; Zhang J.; Nakajima T.; He J.; Liu X.; Zhang X.; Wang L.; Wu L. Single-Atomic-Site Platinum Steers Photogenerated Charge Carrier Lifetime of Hematite Nanoflakes for Photoelectrochemical Water Splitting. Nat. Commun. 2023, 14, 264010.1038/s41467-023-38343-6. PubMed DOI PMC

Hughes A. E.; Haque N.; Northey S. A.; Giddey S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 9310.3390/resources10090093. DOI

Sushma; Kumari M.; Saroha A. K. Performance of Various Catalysts on Treatment of Refractory Pollutants in Industrial Wastewater by Catalytic Wet Air Oxidation: A Review. J. Environ. Manage. 2018, 228, 169–188. 10.1016/j.jenvman.2018.09.003. PubMed DOI

Fujiwara K.; Okuyama K.; Pratsinis S. E. Metal–Support Interactions in Catalysts for Environmental Remediation. Environ. Sci. Nano 2017, 4, 2076–2092. 10.1039/C7EN00678K. DOI

Huth M.; Porrati F.; Dobrovolskiy O. V. Focused Electron Beam Induced Deposition Meets Materials Science. Microelectron. Eng. 2018, 185–186, 9–28. 10.1016/j.mee.2017.10.012. DOI

De Teresa J. M.; Fernández-Pacheco A.; Córdoba R.; Serrano-Ramón L.; Sangiao S.; Ibarra M. R. Review of Magnetic Nanostructures Grown by Focused Electron Beam Induced Deposition (FEBID). J. Phys. D: Appl. Phys. 2016, 49, 24300310.1088/0022-3727/49/24/243003. DOI

Huth M.; Porrati F.; Barth S. Living Up to Its Potential – Direct-Write Nanofabrication with Focused Electron Beams. J. Appl. Phys. 2021, 130, 17090110.1063/5.0064764. DOI

Reyntjens S.; Puers R. Focused Ion Beam Induced Deposition: Fabrication of Three-Dimensional Microstructures and Young’s Modulus of the Deposited Material. J. Micromech. Microeng. 2000, 10, 181–188. 10.1088/0960-1317/10/2/314. DOI

Kometani R.; Ishihara S. Nanoelectromechanical Device Fabrications by 3-D Nanotechnology Using Focused-Ion Beams. Sci. Technol. Adv. Mater. 2009, 10, 03450110.1088/1468-6996/10/3/034501. PubMed DOI PMC

Cui A.; Li W.; Luo Q.; Liu Z.; Gu C. Freestanding Nanostructures for Three-Dimensional Superconducting Nanodevices. Appl. Phys. Lett. 2012, 100, 14310610.1063/1.3701283. DOI

Nanda G.; van Veldhoven E.; Maas D.; Sadeghian H.; Alkemade P. F. A. Helium Ion Beam Induced Growth of Hammerhead AFM Probes. J. Vac. Sci. Technol. B 2015, 33, 06F50310.1116/1.4936068. DOI

Córdoba R.; Ibarra A.; Mailly D.; De Teresa J. M. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition. Nano Lett. 2018, 18, 1379–1386. 10.1021/acs.nanolett.7b05103. PubMed DOI

Swiderek P.; Marbach H.; Hagen C. W. Chemistry for Electron-Induced Nanofabrication. Beilstein J. Nanotechnol. 2018, 9, 1317–1320. 10.3762/bjnano.9.124. PubMed DOI PMC

Botman A.; Mulders J. J. L.; Hagen C. W. Creating Pure Nanostructures From Electron-Beam-Induced Deposition Using Purification Techniques: A Technology Perspective. Nanotechnology 2009, 20, 37200110.1088/0957-4484/20/37/372001. PubMed DOI

Geier B.; Gspan C.; Winkler R.; Schmied R.; Fowlkes J. D.; Fitzek H.; Rauch S.; Rattenberger J.; Rack P. D.; Plank H. Rapid and Highly Compact Purification for Focused Electron Beam Induced Deposits: A Low Temperature Approach Using Electron Stimulated H2O Reactions. J. Phys. Chem. C 2014, 118, 14009–14016. 10.1021/jp503442b. DOI

Fowlkes J. D.; Geier B.; Lewis B. B.; Rack P. D.; Stanford M. G.; Winkler R.; Plank H. Electron Nanoprobe Induced Oxidation: A Simulation of Direct-Write Purification. Phys. Chem. Chem. Phys. 2015, 17, 18294–18304. 10.1039/C5CP01196E. PubMed DOI

Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic Modeling of Thermal Effects in Focused Electron Beam-Induced Deposition of Me2Au(tfac). Eur. Phys. J. D 2023, 77, 15.10.1140/epjd/s10053-023-00598-5. DOI

Huth M.; Klingenberger D.; Grimm C.; Porrati F.; Sachser R. Conductance Regimes of W-based Granular Metals Prepared by Electron Beam Induced Deposition. New J. Phys. 2009, 11, 03303210.1088/1367-2630/11/3/033032. DOI

Huth M.; Porrati F.; Gruszka P.; Barth S. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition. Micromachines 2020, 11, 28.10.3390/mi11010028. PubMed DOI PMC

Stanford M. G.; Mahady K.; Lewis B. B.; Fowlkes J. D.; Tan S.; Livengood R.; Magel G. A.; Moore T. M.; Rack P. D. Laser-Assisted Focused He+ Ion Beam Induced Etching with and without XeF2 Gas Assist. ACS Appl. Mater. Interfaces 2016, 8, 29155–29162. 10.1021/acsami.6b09758. PubMed DOI

Seewald L. M.; Winkler R.; Kothleitner G.; Plank H. Expanding 3D Nanoprinting Performance by Blurring the Electron Beam. Micromachines 2021, 12, 115.10.3390/mi12020115. PubMed DOI PMC

Frabboni S.; Gazzadi G. C.; Felisari L.; Spessot A. Fabrication by Electron Beam Induced Deposition and Transmission Electron Microscopic Characterization of Sub-10-nm Freestanding Pt Nanowires. Appl. Phys. Lett. 2006, 88, 21311610.1063/1.2206996. DOI

Keller L.; Al Mamoori M. K. I.; Pieper J.; Gspan C.; Stockem I.; Schröder C.; Barth S.; Winkler R.; Plank H.; Pohlit M.; Müller J.; Huth M. Direct-Write of Free-Form Building Blocks for Artificial Magnetic 3D Lattices. Sci. Rep. 2018, 8, 6160.10.1038/s41598-018-24431-x. PubMed DOI PMC

Sanz-Hernández D.; Hierro-Rodriguez A.; Donnelly C.; Pablo-Navarro J.; Sorrentino A.; Pereiro E.; Magén C.; McVitie S.; de Teresa J. M.; Ferrer S.; Fischer P.; Fernández-Pacheco A. Artificial Double-Helix for Geometrical Control of Magnetic Chirality. ACS Nano 2020, 14, 8084–8092. 10.1021/acsnano.0c00720. PubMed DOI PMC

Passaseo A.; Esposito M.; Cuscunà M.; Tasco V. Materials and 3D Designs of Helix Nanostructures for Chirality at Optical Frequencies. Adv. Opt. Mater. 2017, 5, 160107910.1002/adom.201601079. DOI

Winkler R.; Schmidt F.-P.; Haselmann U.; Fowlkes J. D.; Lewis B. B.; Kothleitner G.; Rack P. D.; Plank H. Direct-Write 3D Nanoprinting of Plasmonic Structures. ACS Appl. Mater. Interfaces 2017, 9, 8233–8240. 10.1021/acsami.6b13062. PubMed DOI

Esposito M.; Tasco V.; Cuscunà M.; Todisco F.; Benedetti A.; Tarantini I.; De Giorgi M.; Sanvitto D.; Passaseo A. Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics 2015, 2, 105–114. 10.1021/ph500318p. DOI

Beard J. D.; Gordeev S. N. Large Flexibility of High Aspect Ratio Carbon Nanostructures Fabricated by Electron-Beam-Induced Deposition. Nanotechnology 2010, 21, 47570210.1088/0957-4484/21/47/475702. PubMed DOI

Burbridge D. J.; Gordeev S. N. Proximity Effects in Free-Standing EBID Structures. Nanotechnology 2009, 20, 28530810.1088/0957-4484/20/28/285308. PubMed DOI

Mutunga E.; Winkler R.; Sattelkow J.; Rack P. D.; Plank H.; Fowlkes J. D. Impact of Electron-Beam Heating during 3D Nanoprinting. ACS Nano 2019, 13, 5198–5213. 10.1021/acsnano.8b09341. PubMed DOI

Fowlkes J. D.; Winkler R.; Mutunga E.; Rack P. D.; Plank H. Simulation Informed CAD for 3D Nanoprinting. Micromachines 2020, 11, 8.10.3390/mi11010008. PubMed DOI PMC

Bret T.; Utke I.; Gaillard C.; Hoffmann P. Periodic Structure Formation by Focused Electron-Beam-Induced Deposition. J. Vac. Sci. Technol. B 2004, 22, 2504–2510. 10.1116/1.1800356. DOI

Mølhave K.; Madsen D. N.; Dohn S.; Bøggild P. Constructing, Connecting and Soldering Nanostructures by Environmental Electron Beam Deposition. Nanotechnology 2004, 15, 1047–1053. 10.1088/0957-4484/15/8/033. DOI

Fowlkes J. D.; Winkler R.; Lewis B. B.; Stanford M. G.; Plank H.; Rack P. D. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition. ACS Nano 2016, 10, 6163–6172. 10.1021/acsnano.6b02108. PubMed DOI

Hirt L.; Reiser A.; Spolenak R.; Zambelli T. Additive Manufacturing of Metal Structures at the Micrometer Scale. Adv. Mater. 2017, 29, 160421110.1002/adma.201604211. PubMed DOI

Sanz-Hernández D.; Fernández-Pacheco A. Modelling Focused Electron Beam Induced Deposition Beyond Langmuir Adsorption. Beilstein J. Nanotechnol. 2017, 8, 2151–2161. 10.3762/bjnano.8.214. PubMed DOI PMC

Plank H.; Gspan C.; Dienstleder M.; Kothleitner G.; Hofer F. The Influence of Beam Defocus on Volume Growth Rates for Electron Beam Induced Platinum Deposition. Nanotechnology 2008, 19, 48530210.1088/0957-4484/19/48/485302. PubMed DOI

Kuhness D.; Gruber A.; Winkler R.; Sattelkow J.; Fitzek H.; Letofsky-Papst I.; Kothleitner G.; Plank H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS Appl. Mater. Interfaces 2021, 13, 1178–1191. 10.1021/acsami.0c17030. PubMed DOI

Pablo-Navarro J.; Sangiao S.; Magén C.; María de Teresa J. Diameter Modulation of 3D Nanostructures in Focused Electron Beam Induced Deposition Using Local Electric Fields and Beam Defocus. Nanotechnology 2019, 30, 50530210.1088/1361-6528/ab423c. PubMed DOI

Winkler R.; Lewis B. B.; Fowlkes J. D.; Rack P. D.; Plank H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals. ACS Appl. Nano Mater. 2018, 1, 1014–1027. 10.1021/acsanm.8b00158. DOI

Fowlkes J. D.; Winkler R.; Lewis B. B.; Fernández-Pacheco A.; Skoric L.; Sanz-Hernández D.; Stanford M. G.; Mutunga E.; Rack P. D.; Plank H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). ACS Appl. Nano Mater. 2018, 1, 1028–1041. 10.1021/acsanm.7b00342. DOI

Toth M.; Lobo C.; Friedli V.; Szkudlarek A.; Utke I. Continuum Models of Focused Electron Beam Induced Processing. Beilstein J. Nanotechnol. 2015, 6, 1518–1540. 10.3762/bjnano.6.157. PubMed DOI PMC

Guo D.; Kometani R.; Warisawa S.; Ishihara S. Three-Dimensional Nanostructure Fabrication by Controlling Downward Growth on Focused-Ion-Beam Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2012, 51, 06500110.1143/JJAP.51.065001. DOI

Guo D.; Kometani R.; Warisawa S.; Ishihara S. Growth of Ultra-Long Free-Space-Nanowire by the Real-Time Feedback Control of the Scanning Speed on Focused-Ion-Beam Chemical Vapor Deposition. J. Vac. Sci. Technol. B 2013, 31, 06160110.1116/1.4824170. DOI

Winkler R.; Fowlkes J.; Szkudlarek A.; Utke I.; Rack P. D.; Plank H. The Nanoscale Implications of a Molecular Gas Beam during Electron Beam Induced Deposition. ACS Appl. Mater. Interfaces 2014, 6, 2987–2995. 10.1021/am405591d. PubMed DOI

Olsen K.; Bohr J. The Generic Geometry of Helices and Their Close-Packed Structures. Theor. Chem. Acc. 2010, 125, 207–215. 10.1007/s00214-009-0639-4. DOI

Keller L.; Huth M. Pattern Generation for Direct-Write Three-Dimensional Nanoscale Structures via Focused Electron Beam Induced Deposition. Beilstein J. Nanotechnol. 2018, 9, 2581–2598. 10.3762/bjnano.9.240. PubMed DOI PMC

Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Meth. 2012, 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Engmann S.; Stano M.; Matejčík Š.; Ingólfsson O. Gas Phase Low Energy Electron Induced Decomposition of the Focused Electron Beam Induced Deposition (FEBID) Precursor Trimethyl (Methylcyclopentadienyl) Platinum(iv) (MeCpPtMe3). Phys. Chem. Chem. Phys. 2012, 14, 14611–14618. 10.1039/c2cp42637d. PubMed DOI

Wnuk J. D.; Gorham J. M.; Rosenberg S. G.; van Dorp W. F.; Madey T. E.; Hagen C. W.; Fairbrother D. H. Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem. C 2009, 113, 2487–2496. 10.1021/jp807824c. DOI

Athanasopoulos H. K. The Moon Village and Space 4.0: The ‘Open Concept’ as a New Way of Doing Space?. Space Policy 2019, 49, 10132310.1016/j.spacepol.2019.05.001. DOI

van Dishoeck E. F. Astrochemistry of Dust, Ice and Gas: Introduction and Overview. Faraday Discus 2014, 168, 9–47. 10.1039/C4FD00140K. PubMed DOI

Ghosh M.; Hendy M.; Raush J.; Momeni K. A Phase-Field Model for In-Space Manufacturing of Binary Alloys. Materials 2023, 16, 383.10.3390/ma16010383. PubMed DOI PMC

Dohnálek Z.; Kimmel G. A.; Ayotte P.; Smith R. S.; Kay B. D. The Deposition Angle-Dependent Density of Amorphous Solid Water Films. J. Chem. Phys. 2003, 118, 364–372. 10.1063/1.1525805. DOI

Kimmel G. A.; Stevenson K. P.; Dohnálek Z.; Smith R. S.; Kay B. D. Control of Amorphous Solid Water Morphology Using Molecular Beams. I. Experimental Results. J. Chem. Phys. 2001, 114, 5284–5294. 10.1063/1.1350580. DOI

Stevenson K. P.; Kimmel G. A.; Dohnálek Z.; Smith R. S.; Kay K. Controlling the Morphology of Amorphous Solid Water. Science 1999, 283, 1505–1507. 10.1126/science.283.5407.1505. PubMed DOI

Holtom P. D.; Dawes A.; Mukerji R. J.; Davis M. P.; Webb S. M.; Hoffman S. V.; Mason N. J. VUV Photoabsorption Spectroscopy of Sulfur Dioxide Ice. Phys. Chem. Chem. Phys. 2006, 8, 714–718. 10.1039/B513182K. PubMed DOI

Bacon D. J.; Osetsky Y. N. Modelling Atomic Scale Radiation Damage Processes and Effects in Metals. Int. Mater. Rev. 2002, 47, 233–241. 10.1179/095066002225006575. DOI

Shingledecker C. N.; Herbst E. A General Method for the Inclusion of Radiation Chemistry in Astrochemical Models. Phys. Chem. Chem. Phys. 2018, 20, 5359–5367. 10.1039/C7CP05901A. PubMed DOI

Shingledecker C. N.; Tennis J.; Le Gal R.; Herbst E. On Cosmic-Ray-Driven Grain Chemistry in Cold Core Models. Astrophys. J. 2018, 861, 20.10.3847/1538-4357/aac5ee. DOI

Sherwood B. Principles for a Practical Moon Base. Acta Astronautica 2019, 160, 116–124. 10.1016/j.actaastro.2019.04.018. DOI

Strigari L.; Strolin S.; Morganti A. G.; Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front. Public Health 2021, 9, 73333710.3389/fpubh.2021.733337. PubMed DOI PMC

Mertens C. J.; Slaba T. C.; Hu S. Active Dosimeter-Based Estimate of Astronaut Acute Radiation Risk for Real-Time Solar Energetic Particle Events. Space Weather 2018, 16, 1291–1316. 10.1029/2018SW001971. DOI

Zhu X.-L.; Chen M.; Weng S.-M.; Yu T.-P.; Wang W.-M.; He F.; Sheng Z.-M.; McKenna P.; Jaroszynski D. A.; Zhang J. Extremely Brilliant GeV γ-Rays from a Two-Stage Laser-Plasma Accelerator. Sci. Adv. 2020, 6, eaaz724010.1126/sciadv.aaz7240. PubMed DOI PMC

Howell C. R.; Ahmed M. W.; Afanasev A.; Alesini D.; Annand J. R. M.; Aprahamian A.; Balabanski D. L.; Benson S. V.; Bernstein A.; Brune C. R.; et al. International Workshop on Next Generation Gamma-Ray Source. J. Phys. G: Nucl. Part. Phys. 2022, 49, 01050210.1088/1361-6471/ac2827. DOI

Wu Y. K.; Vinokurov N. A.; Mikhailov S.; Li J.; Popov V. High-Gain Lasing and Polarization Switch with a Distributed Optical-Klystron Free-Electron Laser. Phys. Rev. Lett. 2006, 96, 22480110.1103/PhysRevLett.96.224801. PubMed DOI

Doerr A. The New XFELs. Nat. Meth. 2018, 15, 33.10.1038/nmeth.4548. DOI

Seddon E. A.; Clarke J. A.; Dunning D. J.; Masciovecchio C.; Milne C. J.; Parmigiani F.; Rugg D.; Spence J. C. H.; Thompson N. R.; Ueda K.; et al. Short-Wavelength Free-Electron Laser Sources and Science: A Review. Rep. Prog. Phys. 2017, 80, 11590110.1088/1361-6633/aa7cca. PubMed DOI

Milne C. J.; Schietinger T.; Aiba M.; Alarcon A.; Alex J.; Anghel A.; Arsov V.; Beard C.; Beaud P.; Bettoni S.; et al. SwissFEL: The Swiss X-ray Free Electron Laser. Appl. Sci. 2017, 7, 720.10.3390/app7070720. DOI

Bostedt C.; Boutet S.; Fritz D. M.; Huang Z.; Lee H. J.; Lemke H. T.; Robert A.; Schlotter W. F.; Turner J. J.; Williams G. J. Linac Coherent Light Source: The First Five Years. Rev. Mod. Phys. 2016, 88, 01500710.1103/RevModPhys.88.015007. DOI

Couprie M. E. New Generation of Light Sources: Present and Future. J. Electr. Spectrosc. Rel. Phenom. 2014, 196, 3–13. 10.1016/j.elspec.2013.12.007. DOI

Tavares P. F.; Leemann S. C.; Sjöström M.; Andersson Å. The MAX IV Storage Ring Project. J. Synchrotron Rad. 2014, 21, 862–877. 10.1107/S1600577514011503. PubMed DOI PMC

Yabashi M.; Tanaka H. The Next Ten Years of X-Ray Science. Nat. Photonics 2017, 11, 12–14. 10.1038/nphoton.2016.251. DOI

Emma P.; Akre R.; Arthur J.; Bionta R.; Bostedt C.; Bozek J.; Brachmann A.; Bucksbaum P.; Coffee R.; Decker F.-J.; et al. First Lasing and Operation of an Ångstrom-Wavelength Free-Electron Laser. Nat. Photonics 2010, 4, 641–647. 10.1038/nphoton.2010.176. DOI

Korol A. V.; Solov’yov A. V.; Greiner W. Coherent Radiation of an Ultrarelativistic Charged Particle Channelled in a Periodically Bent Crystal. J. Phys. G: Nucl. Part. Phys. 1998, 24, L45–L53. 10.1088/0954-3899/24/5/001. DOI

Ayvazyan V.; Baboi N.; Bohnet I.; Brinkmann R.; Castellano M.; Castro P.; Catani L.; Choroba S.; Cianchi A.; Dohlus M.; et al. A New Powerful Source for Coherent VUV Radiation: Demonstration of Exponential Growth and Saturation at the TTF Free-Electron Laser. Eur. Phys. J. D 2002, 20, 149–156. 10.1140/epjd/e2002-00121-4. DOI

Schmüser P.; Dohlus M.; Rossbach J.. Ultraviolet and Soft X-Ray Free-Electron Lasers; Springer, 2009.

Bessonov E. G. Theory of Parametric Free-Electron Lasers. Sov. J. Quantum Electron. 1986, 16, 1056–1063. 10.1070/QE1986v016n08ABEH007238. DOI

McNeil B. W. J.; Thompson N. R. X-Ray Free-Electron Lasers. Nat. Photonics 2010, 4, 814–821. 10.1038/nphoton.2010.239. DOI

Gover A.; Ianconescu R.; Friedman A.; Emma C.; Sudar N.; Musumeci P.; Pellegrini C. Superradiant and Stimulated-Superradiant Emission of Bunched Electron Beams. Rev. Mod. Phys. 2019, 91, 03500310.1103/RevModPhys.91.035003. DOI

Greiner W.; Korol A. V.; Kostyuk A.; Solov’yov A. V.. Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung. DE 102010023632 A1, 2011.

Kostyuk A.; Korol A. V.; Solov’yov A. V.; Greiner W. Stable Propagation of a Modulated Positron Beam in a Bent Crystal Channel. J. Phys. B: At. Mol. Opt. Phys. 2010, 43, 15100110.1088/0953-4075/43/15/151001. DOI

Ledingham K. W. D.; McKenna P.; Singhal R. P. Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers. Science 2003, 300, 1107–1111. 10.1126/science.1080552. PubMed DOI

ur Rehman H.; Lee J.; Kim Y. Optimization of the Laser-Compton Scattering Spectrum for the Transmutation of High-Toxicity and Long-Living Nuclear Waste. Ann. Nucl. Energy 2017, 105, 150–160. 10.1016/j.anucene.2017.03.014. DOI

ur Rehman H.; Lee J.; Kim Y. Comparison of the Laser-Compton Scattering and the Conventional Bremsstrahlung X-Rays for Photonuclear Transmutation. Int. J. Energy Res. 2018, 42, 236–244. 10.1002/er.3904. DOI

Weon B. M.; Je J. H.; Hwu Y.; Margaritondo G. Decreased Surface Tension of Water by Hard-X-Ray Irradiation. Phys. Rev. Lett. 2008, 100, 21740310.1103/PhysRevLett.100.217403. PubMed DOI

Vanraes P.; Venugopalan S. P.; Bogaerts A. Multiscale Modeling of Plasma–Surface Interaction – General Picture and a Case Study of Si and SiO2 Etching by Fluorocarbon-Based Plasmas. Appl. Phys. Rev. 2021, 8, 04130510.1063/5.0058904. DOI

Bonitz M.; Filinov A.; Abraham J.-W.; Balzer K.; Kählert H.; Pehlke E.; Bronold F. X.; Pamperin M.; Becker M.; Loffhagen D.; Fehske H. Towards an Integrated Modeling of the Plasma-Solid Interface. Front. Chem. Sci. Eng. 2019, 13, 201–237. 10.1007/s11705-019-1793-4. DOI

Ebert U.; Montijn C.; Briels T. M. P.; Hundsdorfer W.; Meulenbroek B.; Rocco A.; van Veldhuizen E. M. The Multiscale Nature of Streamers. Plasma Sources Sci. Technol. 2006, 15, S118–S129. 10.1088/0963-0252/15/2/S14. DOI

Brault P. Multiscale Molecular Dynamics Simulation of Plasma Processing: Application to Plasma Sputtering. Front. Phys. 2018, 6, 59.10.3389/fphy.2018.00059. DOI

Crose M.; Zhang W.; Tran A.; Christofides P. D. Multiscale Three-Dimensional CFD Modeling for PECVD of Amorphous Silicon Thin Films. Comput. Chem. Eng. 2018, 113, 184–195. 10.1016/j.compchemeng.2018.03.011. DOI

Zhu G.; Han M.; Xiao B.; Gan Z. Influence of Sputtering Pressure on the Micro-Topography of Sputtered Cu/Si Films: Integrated Multiscale Simulation. Processes 2023, 11, 1649.10.3390/pr11061649. DOI

Adamovich I.; Agarwal S.; Ahedo E.; Alves L. L.; Baalrud S.; Babaeva N.; Bogaerts A.; Bourdon A.; Bruggeman P. J.; Canal C.; et al. The 2022 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. D: Appl. Phys. 2022, 55, 37300110.1088/1361-6463/ac5e1c. DOI

Dollet A. Multiscale Modeling of CVD Film Growth – A Review of Recent Works. Surf. Coat. Technol. 2004, 177–178, 245–251. 10.1016/j.surfcoat.2003.09.040. DOI

Schleder G. R.; Padilha A. C. M.; Acosta C. M.; Costa M.; Fazzio A. From DFT to Machine Learning: Recent Approaches to Materials Science – A Review. J. Phys.: Materials 2019, 2, 03200110.1088/2515-7639/ab084b. DOI

Neyts E. C.; Brault P. Molecular Dynamics Simulations for Plasma-Surface Interactions. Plasma Proc. Polym. 2017, 14, 160014510.1002/ppap.201600145. DOI

Brault P.; Thomann A.-L.; Cavarroc M. Theory and Molecular Simulations of Plasma Sputtering, Transport and Deposition Processes. Eur. Phys. J. D 2023, 77, 19.10.1140/epjd/s10053-023-00592-x. DOI

Yang Z.; Lively M. A.; Allain J. P. Kinetic Monte Carlo Simulation of Self-Organized Pattern Formation Induced by Ion Beam Sputtering Using Crater Functions. Phys. Rev. B 2015, 91, 07542710.1103/PhysRevB.91.075427. DOI

Verboncoeur J. P. Particle Simulation of Plasmas: Review and Advances. Plasma Phys. Controlled Fusion 2005, 47, A231–A260. 10.1088/0741-3335/47/5A/017. DOI

Benilov M. S. Modeling the Physics of Interaction of High-Pressure Arcs with Their Electrodes: Advances and Challenges. J. Phys. D: Appl. Phys. 2020, 53, 01300210.1088/1361-6463/ab47be. DOI

Murphy A. B.; Park H. Modeling of Thermal Plasma Processes: The Importance of Two-Way Plasma-Surface Interactions. Plasma Proc. Polym. 2017, 14, 160017710.1002/ppap.201600177. DOI

Murphy A. B.; Boulos M. I.; Colombo V.; Fauchais P.; Ghedini E.; Gleizes A.; Proulx P.; Schram D. C. Avanced Thermal Plasma Modelling. High Temp. Mater. Proc. 2008, 12, 255–336. 10.1615/HighTempMatProc.v12.i3-4.30. DOI

Trelles J. P. Advances and Challenges in Computational Fluid Dynamics of Atmospheric Pressure Plasmas. Plasma Sources Sci. Technol. 2018, 27, 09300110.1088/1361-6595/aac9fa. DOI

Kadlec S. Simulation of Neutral Particle Flow During High Power Magnetron Impulse. Plasma Proc. Polym. 2007, 4, S419–S423. 10.1002/ppap.200731101. DOI

Kushner M. J. Hybrid Modelling of Low Temperature Plasmas for Fundamental Investigations and Equipment Design. J. Phys. D: Appl. Phys. 2009, 42, 19401310.1088/0022-3727/42/19/194013. DOI

Kim H. C.; Iza F.; Yang S. S.; Radmilović-Radjenović M.; Lee J. K. Particle and Fluid Simulations of Low-Temperature Plasma Discharges: Benchmarks and Kinetic Effects. J. Phys. D: Appl. Phys. 2005, 38, R283–R301. 10.1088/0022-3727/38/19/R01. DOI

Economou D. J. Hybrid Simulation of Low Temperature Plasmas: A Brief Tutorial. Plasma Proc. Polym. 2017, 14, 160015210.1002/ppap.201600152. DOI

Nijdam S.; Teunissen J.; Ebert U. The Physics of Streamer Discharge Phenomena. Plasma Sources Sci. Technol. 2020, 29, 10300110.1088/1361-6595/abaa05. DOI

Ebert U.; Sentman D. D. Streamers, Sprites, Leaders, Lightning: From Micro- to Macroscales. J. Phys. D: Appl. Phys. 2008, 41, 23030110.1088/0022-3727/41/23/230301. DOI

Ebert U.; Nijdam S.; Li C.; Luque A.; Briels T.; van Veldhuizen E. Review of Recent Results on Streamer Discharges and Discussion of Their Relevance for Sprites and Lightning. J. Geophys. Res. Space Phys. 2010, 115, A00E4310.1029/2009JA014867. DOI

Jimenez F. J.; Dew S. K. Comprehensive Computer Model for Magnetron Sputtering. I. Gas Heating and Rarefaction. J. Vac. Sci. Technol. A 2012, 30, 04130210.1116/1.4712534. DOI

Gudmundsson J. T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29, 11300110.1088/1361-6595/abb7bd. DOI

Anders A. A Review Comparing Cathodic Arcs and High Power Impulse Magnetron Sputtering (HiPIMS). Surf. Coat. Technol. 2014, 257, 308–325. 10.1016/j.surfcoat.2014.08.043. DOI

Brenning N.; Lundin D.; Minea T.; Costin C.; Vitelaru C. Spokes and Charged Particle Transport in HiPIMS Magnetrons. J. Phys. D: Appl. Phys. 2013, 46, 08400510.1088/0022-3727/46/8/084005. DOI

Kadlec S.; Čapek J. Return of Target Material Ions Leads to a Reduced Hysteresis in Reactive High Power Impulse Magnetron Sputtering: Model. J. Appl. Phys. 2017, 121, 17191010.1063/1.4977815. DOI

Anders A.Cathodic Arcs From Fractal Spots to Energetic Condensation; Springer, 2008.

Schneider R. Plasma–Wall Interaction: A Multiscale Problem. Phys. Scr. 2006, T124, 76–79. 10.1088/0031-8949/2006/T124/015. DOI

Cheimarios N.; Kokkoris G.; Boudouvis A. G. Multiscale Modeling in Chemical Vapor Deposition Processes: Models and Methodologies. Arch. Comput. Methods Eng. 2021, 28, 637–672. 10.1007/s11831-019-09398-w. DOI

Kambara M.; Kawaguchi S.; Lee H. J.; Ikuse K.; Hamaguchi S.; Ohmori T.; Ishikawa K. Science-Based, Data-Driven Developments in Plasma Processing for Material Synthesis and Device-Integration Technologies. Jpn. J. Appl. Phys. 2023, 62, SA080310.35848/1347-4065/ac9189. DOI

Gunasegaram D. R.; Murphy A. B.; Barnard A.; DebRoy T.; Matthews M. J.; Ladani L.; Gu D. Towards Developing Multiscale-Multiphysics Models and Their Surrogates for Digital Twins of Metal Additive Manufacturing. Addit. Manuf. 2021, 46, 10208910.1016/j.addma.2021.102089. DOI

Jetly V.; Chaudhury B. Extracting Electron Scattering Cross Sections from Swarm Data using Deep Neural Networks. Mach. Learn.: Sci. Technol. 2021, 2, 03502510.1088/2632-2153/abf15a. DOI

Nam J.; Yong H.; Hwang J.; Choi J. Training an Artificial Neural Network for Recognizing Electron Collision Patterns. Phys. Lett. A 2021, 387, 12700510.1016/j.physleta.2020.127005. DOI

Krüger F.; Gergs T.; Trieschmann J. Machine Learning Plasma-Surface Interface for Coupling Sputtering and Gas-Phase Transport Simulations. Plasma Sources Sci. Technol. 2019, 28, 03500210.1088/1361-6595/ab0246. DOI

Raissi M.; Perdikaris P.; Karniadakis G. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. 10.1016/j.jcp.2018.10.045. DOI

Karniadakis G. E.; Kevrekidis I. G.; Lu L.; Perdikaris P.; Wang S.; Yang L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. 10.1038/s42254-021-00314-5. DOI

Spears B. K.; Brase J.; Bremer P.-T.; Chen B.; Field J.; Gaffney J.; Kruse M.; Langer S.; Lewis K.; Nora R.; Peterson J. L.; Thiagarajan J. J.; Van Essen B.; Humbird K. Deep Learning: A Guide for Practitioners in the Physical Sciences. Phys. Plasmas 2018, 25, 08090110.1063/1.5020791. DOI

Cuomo S.; Di Cola V. S.; Giampaolo F.; Rozza G.; Raissi M.; Piccialli F. Scientific Machine Learning Through Physics – Informed Neural Networks: Where We Are and What’s Next. J. Sci. Comput. 2022, 92, 88.10.1007/s10915-022-01939-z. DOI

Markidis S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?. Front. Big Data 2021, 4, 66909710.3389/fdata.2021.669097. PubMed DOI PMC

Park S.; Jang Y.; Cha T.; Noh Y.; Choi Y.; Lee J.; Seong J.; Kim B.; Cho T.; Park Y.; Seo R.; Yang J.-H.; Kim G.-H. Predictive Control of the Plasma Processes in the OLED Display Mass Production Referring to the Discontinuity Qualifying PI-VM. Phys. Plasmas 2020, 27, 08350710.1063/1.5135312. DOI

Bonzanini A. D.; Shao K.; Graves D. B.; Hamaguchi S.; Mesbah A. Foundations of Machine Learning for Low-Temperature Plasmas: Methods and Case Studies. Plasma Sources Sci. Technol. 2023, 32, 02400310.1088/1361-6595/acb28c. DOI

Kawaguchi S.; Murakami T. Physics-Informed Neural Networks for Solving the Boltzmann Equation of the Electron Velocity Distribution Function in Weakly Ionized Plasmas. Jpn. J. Appl. Phys. 2022, 61, 08600210.35848/1347-4065/ac7afb. DOI

Cai S.; Wang Z.; Wang S.; Perdikaris P.; Karniadakis G. E. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transfer 2021, 143, 06080110.1115/1.4050542. DOI

Zeng X.; Zhang S.; Ren C.; Shao T. Physics Informed Neural Networks for Electric Field Distribution Characteristics Analysis. J. Phys. D: Appl. Phys. 2023, 56, 16520210.1088/1361-6463/acbec3. DOI

Zhong L.; Wu B.; Wang Y. Accelerating Physics-Informed Neural Network Based 1D Arc Simulation by Meta Learning. J. Phys. D: Appl. Phys. 2023, 56, 07400610.1088/1361-6463/acb604. DOI

Carbone E.; Graef W.; Hagelaar G.; Boer D.; Hopkins M. M.; Stephens J. C.; Yee B. T.; Pancheshnyi S.; van Dijk J.; Pitchford L. Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial. Atoms 2021, 9, 16.10.3390/atoms9010016. DOI

The HITRAN Database. https://hitran.org/ (accessed 2023-10-18).

Buehler S. A.; Brath M.; Lemke O.; Hodnebrog Øi.; Pincus R.; Eriksson P.; Gordon I.; Larsson R. A New Halocarbon Absorption Model Based on HITRAN Cross-Section Data and New Estimates of Halocarbon Instantaneous Clear-Sky Radiative Forcing. J. Adv. Model. Earth Syst. 2022, 14, e2022MS00323910.1029/2022MS003239. DOI

ALADDIN. International Atomic Energy Agency: Vienna, Austria. https://www.iaea.org/resources/databases/aladdin (accessed 2023-10-18).

Celiberto R.; Armenise I.; Cacciatore M.; Capitelli M.; Esposito F.; Gamallo P.; Janev R. K.; Laganà A.; Laporta V.; Laricchiuta A.; et al. Atomic and Molecular Data for Spacecraft Re-entry Plasmas. Plasma Sources Sci. Technol. 2016, 25, 03300410.1088/0963-0252/25/3/033004. DOI

Song M.-Y.; Kwon D.-C.; Jhang W.-S.; Kwang S.-H.; Park J.-H.; Kang Y.-K.; Yoon J.-S.. Atomic and Molecular Data for Industrial Application Plasmas. In Atomic Processes in Basic and Applied Physics; Shevelko V., Tawara H., Eds.; Springer Series on Atomic, Optical, and Plasma Physics, Vol. 68; Springer, 2012; pp 357–391.

Samukawa S.; Hori M.; Rauf S.; Tachibana K.; Bruggeman P.; Kroesen G.; Whitehead J. C.; Murphy A. B.; Gutsol A. F.; Starikovskaia S.; et al. The 2012 Plasma Roadmap. J. Phys. D: Appl. Phys. 2012, 45, 25300110.1088/0022-3727/45/25/253001. DOI

Adamovich I.; Baalrud S. D.; Bogaerts A.; Bruggeman P. J.; Cappelli M.; Colombo V.; Czarnetzki U.; Ebert U.; Eden J. G.; Favia P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D: Appl. Phys. 2017, 50, 32300110.1088/1361-6463/aa76f5. DOI

Anirudh R.; Archibald R.; Asif M. S.; Becker M. M.; Benkadda S.; Bremer P.-T.; Budé R. H. S.; Chang C. S.; Chen L.; Churchill R. M.; et al. 2022 Review of Data-Driven Plasma Science. IEEE Trans. Plasma Sci. 2023, 51, 1750–1838. 10.1109/TPS.2023.3268170. DOI

Databases for Atomic and Plasma Physics. Plasma Laboratory - Weizmann Institute of Science. https://plasma-gate.weizmann.ac.il/directories/databases (accessed 2023-10-18).

ExoMol Homepage. https://www.exomol.com/ (accessed 2023-10-18).

RADAM (RAdiation DAMage) Database Portal. https://radamdb.mbnresearch.com/ (accessed 2023-10-18).

Denifl S.; Garcia G.; Huber B. A.; Marinković B. P.; Mason N. J.; Postler J.; Rabus H.; Rixon G.; Solov’yov A. V.; Suraud E.; Yakubovich A. V. Radiation Damage of Biomolecules (RADAM) Database Development: Current Status. J. Phys.: Conf. Ser. 2013, 438, 01201610.1088/1742-6596/438/1/012016. DOI

Channeling Database. MBN Research Center. https://mbnresearch.com/databases (accessed 2023-10-18).

Quantemol Homepage. http://www.quantemol.com/ (accessed 2023-10-18).

Joshipura K. N.; Mason N. J.. Atomic–Molecular Ionization by Electron Scattering: Theory and Applications; Cambridge University Press: Cambridge, UK, 2018.

Del Zanna G.; Fernández-Menchero L.; Badnell N. R. Uncertainties on Atomic data. A case study: N IV. Mon. Not. R. Astron. Soc. 2019, 484, 4754–4759. 10.1093/mnras/stz206. DOI

Chung H.-K.; Braams B. J.; Bartschat K.; Császár A. G.; Drake G. W. F.; Kirchner T.; Kokoouline V.; Tennyson J. Uncertainty Estimates for Theoretical Atomic and Molecular Data. J. Phys. D: Appl. Phys. 2016, 49, 36300210.1088/0022-3727/49/36/363002. DOI

Liu J.; Byggmästar J.; Fan Z.; Qian P.; Su Y. Large-scale Machine-learning Molecular Dynamics Simulation of Primary Radiation Damage in Tungsten. Phys. Rev. B 2023, 108, 05431210.1103/PhysRevB.108.054312. DOI

Alber M.; Buganza Tepole A.; Cannon W. R.; De S.; Dura-Bernal S.; Garikipati K.; Karniadakis G.; Lytton W. W.; Perdikaris P.; Petzold L.; Kuhl E. Integrating Machine Learning and Multiscale Modelling – Perspectives, Challenges, and Opportunities in the Biological, Biomedical, and Behavioral Sciences. NPJ. Digit. Med. 2019, 2, 115.10.1038/s41746-019-0193-y. PubMed DOI PMC

Morgan D.; Pilania G.; Couet A.; Uberuaga B. P.; Sun C.; Li J. Machine Learning in Nuclear Materials Research. Curr. Opin. Solid State Mater. Sci. 2022, 26, 10097510.1016/j.cossms.2021.100975. DOI

Castin N.; Pascuet M. I.; Messina L.; Domain C.; Olsson P.; Pasianot R. C.; Malerba L. Advanced Atomistic Models for Radiation Damage in Fe-based Alloys: Contributions and Future Perspectives from Artificial Neural Networks. Comput. Mater. Sci. 2018, 148, 116–130. 10.1016/j.commatsci.2018.02.025. DOI

Kløve M.; Sommer S.; Iversen B. B.; Hammer B.; Dononelli W. A. Machine-Learning-Based Approach for Solving Atomic Structures of Nanomaterials Combining Pair Distribution Functions with Density Functional Theory. Adv. Mater. 2023, 35, 220822010.1002/adma.202208220. PubMed DOI

Acharya A.; Prajapati J. D.; Kleinekathöfer U. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. J. Phys. Chem. B 2022, 126, 3995–4008. 10.1021/acs.jpcb.2c01173. PubMed DOI

Maity S.; Kleinekathöfer U. Recent Progress in Atomistic Modelling of Light-Harvesting Complexes: A Mini Review. Photosynth. Res. 2023, 156, 147–162. 10.1007/s11120-022-00969-w. PubMed DOI PMC

Bishara D.; Xie Y.; Liu W. K.; Li S. A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials. Arch. Comput. Methods Eng. 2023, 30, 191–222. 10.1007/s11831-022-09795-8. DOI

Alshehri A. S.; You F. Machine Learning for Multiscale Modelling in Computational Molecular Design. Curr. Opin. Chem. Eng. 2022, 36, 10075210.1016/j.coche.2021.100752. DOI

Nguyen P. C.; Choi J. B.; Udaykumar H. S.; Baek S. Challenges and Opportunities for Machine Learning in Multiscale Computational Modeling. J. Comput. Inf. Sci. Eng. 2023, 23, 06080810.1115/1.4062495. DOI

Gilbert M. R.; Arakawa K.; Bergstrom Z.; Caturla M. J.; Dudarev S. L.; Gao F.; Goryaeva A. M.; Hu S. Y.; Hu X.; Kurtz R. J.; et al. Perspectives on Multiscale Modelling and Experiments to Accelerate Materials Development for Fusion. J. Nucl. Mater. 2021, 554, 15311310.1016/j.jnucmat.2021.153113. DOI

Balabin R. M.; Lomakina E. I. Support Vector Machine Regression (LS-SVM) – An Alternative to Artificial Neural Networks (ANNs) for the Analysis of Quantum Chemistry Data?. Phys. Chem. Chem. Phys. 2011, 13, 11710–11718. 10.1039/c1cp00051a. PubMed DOI

Fárník M. Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters. J. Phys. Chem. Lett. 2023, 14, 287–294. 10.1021/acs.jpclett.2c03417. PubMed DOI PMC

Mason N. J.; Drage E. A.; Webb S. M.; Dawes A.; McPheat R.; Hayes G. The Spectroscopy and Chemical Dynamics of Microparticles Explored Using an Ultrasonic Trap. Faraday Discuss. 2008, 137, 367–376. 10.1039/B702726P. PubMed DOI

Dangi B. B.; Dickerson D. J. Design and Performance of an Acoustic Levitator System Coupled with a Tunable Monochromatic Light Source and a Raman Spectrometer for In Situ Reaction Monitoring. ACS Omega 2021, 6, 10447–10453. 10.1021/acsomega.1c00921. PubMed DOI PMC

Rafferty A.; Vennes B.; Bain A.; Preston T. C. Optical Trapping and Light Scattering in Atmospheric Aerosol Science. Phys. Chem. Chem. Phys. 2023, 25, 7066–7089. 10.1039/D2CP05301B. PubMed DOI

Nomura S.; Tsuchida H.; Kajiwara A.; Yoshida S.; Majima T.; Saito M. Dissociation of Biomolecules in Liquid Environments During Fast Heavy-Ion Irradiation. J. Chem. Phys. 2017, 147, 22510310.1063/1.5009367. PubMed DOI

Haume K.; Rosa S.; Grellet S.; Śmiałek M. A.; Butterworth K. T.; Solov’yov A. V.; Prise K. M.; Golding J.; Mason N. J. Gold Nanoparticles for Cancer Radiotherapy: A Review. Cancer Nanotechnol 2016, 7, 8.10.1186/s12645-016-0021-x. PubMed DOI PMC

COST Action “Multiscale Irradiation and Chemistry Driven Processes and Related Technologies” (MultIChem). MBN Research Center. http://mbnresearch.com/ca20129-multichem/main (accessed 2023-11-15).

Horizon 2020 RISE-RADON Project. MBN Research Center. http://mbnresearch.com/radon/main (accessed 2023-11-15).

H2020 RISE-N-LIGHT Project. MBN Research Center. http://mbnresearch.com/N-Light/main (accessed 2023-11-15).

Graphene Flagship Homepage. https://graphene-flagship.eu/ (accessed 2023-11-15).

Human Brain Project Homepage. https://www.humanbrainproject.eu/en/ (accessed 2023-11-15).

Quantum Technologies Flagship. European Commission. https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship (accessed 2023-11-15).

Quantum Flagship Homepage. https://qt.eu/ (accessed 2023-11-15).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...