Advanced image-free analysis of the nano-organization of chromatin and other biomolecules by Single Molecule Localization Microscopy (SMLM)

. 2023 ; 21 () : 2018-2034. [epub] 20230309

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36968017
Odkazy

PubMed 36968017
PubMed Central PMC10030913
DOI 10.1016/j.csbj.2023.03.009
PII: S2001-0370(23)00108-3
Knihovny.cz E-zdroje

The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.

Zobrazit více v PubMed

Bizzarri M., Naimark O., Nieto-Villar J., Fedeli V., Giuliani A. Complexity in biological organization: deconstruction (and subsequent restating) of key concepts. Entropy. 2020;22:885. doi: 10.3390/e22080885. PubMed DOI PMC

Erenpreisa J., Giuliani A. Resolution of complex issues in genome regulation and cancer requires non-linear and network-based thermodynamics. IJMS. 2019;21:240. doi: 10.3390/ijms21010240. PubMed DOI PMC

Hausmann M., Hildenbrand G., Pilarczyk G. In: Kloc M., Kubiak J.Z., editors. vol. 70. Springer International Publishing; Cham: 2022. Networks and islands of genome nano-architecture and their potential relevance for radiation biology: (a hypothesis and experimental verification hints). pp. 3–34. (Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine). PubMed DOI

Erenpreisa J., Giuliani A., Yoshikawa K., Falk M., Hildenbrand G., Salmina K., et al. Spatial-temporal genome regulation in stress-response and cell-fate change. IJMS. 2023;24:2658. doi: 10.3390/ijms24032658. PubMed DOI PMC

Erenpreisa J., Krigerts J., Salmina K., Gerashchenko B.I., Freivalds T., Kurg R., et al. Heterochromatin networks: topology, dynamics, and function (a working hypothesis) Cells. 2021;10:1582. doi: 10.3390/cells10071582. PubMed DOI PMC

Kloc M., Kubiak J.Z., editors. Nuclear, chromosomal, and genomic architecture in biology and medicine. Springer; Cham: 2022.

Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. J Cell Biol. 2010;190:165–175. doi: 10.1083/jcb.201002018. PubMed DOI PMC

Cremer C., Masters B.R. Resolution enhancement techniques in microscopy. Eur Phys J H. 2013;38:281–344. doi: 10.1140/epjh/e2012-20060-1. DOI

Baddeley D., Bewersdorf J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem. 2018;87:965–989. doi: 10.1146/annurev-biochem-060815-014801. PubMed DOI

Jacquemet G., Carisey A.F., Hamidi H., Henriques R., Leterrier C. The cell biologist’s guide to super-resolution microscopy. J Cell Sci. 2020;133:jcs240713. doi: 10.1242/jcs.240713. PubMed DOI

Jing Y., Zhang C., Yu B., Lin D., Qu J. Super-resolution microscopy: shedding new light on in vivo imaging. Front Chem. 2021;9 doi: 10.3389/fchem.2021.746900. PubMed DOI PMC

Lorat Y., Fleckenstein J., Görlinger P., Rübe C., Rübe C.E. Assessment of DNA damage by 53PB1 and pKu70 detection in peripheral blood lymphocytes by immunofluorescence and high-resolution transmission electron microscopy. Strahl Onkol. 2020;196:821–833. doi: 10.1007/s00066-020-01576-1. PubMed DOI PMC

Lorat Y., Reindl J., Isermann A., Rübe C., Friedl A.A., Rübe C.E. Focused ion microbeam irradiation induces clustering of DNA double-strand breaks in heterochromatin visualized by nanoscale-resolution electron microscopy. IJMS. 2021;22:7638. doi: 10.3390/ijms22147638. PubMed DOI PMC

Eberle JP, Rapp A, Krufczik M, Eryilmaz M, Gunkel M, Erfle H, et al. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics. In: Erfle H, editor. Super-Resolution Microscopy, vol. 1663, New York, NY: Springer New York; 2017, p. 1–13. https://doi.org/10.1007/978-1-4939-7265-4_1. PubMed

Lambert T.J., Waters J.C. Navigating challenges in the application of superresolution microscopy. J Cell Biol. 2017;216:53–63. doi: 10.1083/jcb.201610011. PubMed DOI PMC

Dankovich T.M., Rizzoli S.O. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. IScience. 2021;24 doi: 10.1016/j.isci.2021.102134. PubMed DOI PMC

Zheng X., Zhou J., Wang L., Wang M., Wu W., Chen J., et al. Current challenges and solutions of super-resolution structured illumination microscopy. APL Photonics. 2021;6 doi: 10.1063/5.0038065. DOI

Lemmer P., Gunkel M., Baddeley D., Kaufmann R., Urich A., Weiland Y., et al. SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B. 2008;93:1–12. doi: 10.1007/s00340-008-3152-x. DOI

Lemmer P., Gunkel M., Weiland Y., Müller P., Baddeley D., Kaufmann R., et al. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc. 2009;235:163–171. doi: 10.1111/j.1365-2818.2009.03196.x. PubMed DOI

Kaufmann R., Lemmer P., Gunkel M., Weiland Y., Müller P., Hausmann M., et al. SPDM: single molecule superresolution of cellular nanostructures. In: Enderlein J, Gryczynski ZK, Erdmann R, editors., San Jose, CA: 2009, p. 71850J. https://doi.org/10.1117/12.809109.

Cremer C., Kaufmann R., Gunkel M., Pres S., Weiland Y., Müller P., et al. Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol J. 2011;6:1037–1051. doi: 10.1002/biot.201100031. PubMed DOI

Nieves D.J., Owen D.M. Analysis methods for interrogating spatial organisation of single molecule localisation microscopy data. Int J Biochem Cell Biol. 2020;123 doi: 10.1016/j.biocel.2020.105749. PubMed DOI

Nicovich P.R., Owen D.M., Gaus K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat Protoc. 2017;12:453–460. doi: 10.1038/nprot.2016.166. PubMed DOI

van Leeuwen J.M.J., Groeneveld J., de Boer J. New method for the calculation of the pair correlation function. I. Physica. 1959;25:792–808. doi: 10.1016/0031-8914(59)90004-7. DOI

Khater I.M., Nabi I.R., Hamarneh G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns. 2020;1 doi: 10.1016/j.patter.2020.100038. PubMed DOI PMC

Pike J.A., Khan A.O., Pallini C., Thomas S.G., Mund M., Ries J., et al. Topological data analysis quantifies biological nano-structure from single molecule localization microscopy. Bioinformatics. 2019:btz788. doi: 10.1093/bioinformatics/btz788. PubMed DOI PMC

Khater I.M., Meng F., Wong T.H., Nabi I.R., Hamarneh G. Super resolution network analysis defines the molecular architecture of caveolae and caveolin-1 scaffolds. Sci Rep. 2018;8:9009. doi: 10.1038/s41598-018-27216-4. PubMed DOI PMC

Sieben C., Banterle N., Douglass K.M., Gönczy P., Manley S. Multicolor single-particle reconstruction of protein complexes. Nat Methods. 2018;15:777–780. doi: 10.1038/s41592-018-0140-x. PubMed DOI PMC

Levet F., Hosy E., Kechkar A., Butler C., Beghin A., Choquet D., et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods. 2015;12:1065–1071. doi: 10.1038/nmeth.3579. PubMed DOI

Andronov L., Orlov I., Lutz Y., Vonesch J.-L., Klaholz B.P. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci Rep. 2016;6:24084. doi: 10.1038/srep24084. PubMed DOI PMC

Dlasková A., Engstová H., Špaček T., Kahancová A., Pavluch V., Smolková K., et al. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim Et Biophys Acta (BBA) - Bioenerg. 2018;1859:829–844. doi: 10.1016/j.bbabio.2018.04.013. PubMed DOI

Baddeley D., Cannell M.B., Soeller C. Visualization of localization microscopy data. Microsc Micro. 2010;16:64–72. doi: 10.1017/S143192760999122X. PubMed DOI

Chapman K.B., Filipsky F., Peschke N., Gelléri M., Weinhardt V., Braun A., et al. A comprehensive method to study the DNA’s association with lamin and chromatin compaction in intact cell nuclei at super resolution. Nanoscale. 2023;15:742–756. doi: 10.1039/D2NR02684H. PubMed DOI PMC

Zhang Y., Máté G., Müller P., Hillebrandt S., Krufczik M., Bach M., et al. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0128555. PubMed DOI PMC

Máté G., Hofmann A., Wenzel N., Heermann D.W. A topological similarity measure for proteins. Biochim Et Biophys Acta (BBA) - Biomembr. 2014;1838:1180–1190. doi: 10.1016/j.bbamem.2013.08.019. PubMed DOI

Hofmann A., Krufczik M., Heermann D., Hausmann M. Using persistent homology as a new approach for super-resolution localization microscopy data analysis and classification of γH2AX foci/clusters. Int J Mol Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC

Pearson K.L., III On lines and planes of closest fit to systems of points in space. Lond, Edinb, Dublin Philos Mag J Sci. 1901;2:559–572. doi: 10.1080/14786440109462720. DOI

Hausmann M., Neitzel C., Hahn H., Winter R., Falkova I., Heermann D.W., et al. Space and Time in the Universe of the Cell Nucleus after Ionizing Radiation Attacks: A Comparison of Cancer and Non-Cancer Cell Response. The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response, MDPI; 2021, p. 15. https://doi.org/10.3390/IECC2021–09219.

Pancaldi V. Chromatin network analyses: towards structure-function relationships in epigenomics. Front Bioinform. 2021;1 doi: 10.3389/fbinf.2021.742216. PubMed DOI PMC

Lohia R., Fox N., Gillis J. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Genome Biol. 2022;23:238. doi: 10.1186/s13059-022-02790-z. PubMed DOI PMC

van Mierlo G., Pushkarev O., Kribelbauer J.F., Deplancke B. Chromatin modules and their implication in genomic organization and gene regulation. Trends Genet. 2023;39:140–153. doi: 10.1016/j.tig.2022.11.003. PubMed DOI

Krigerts J., Salmina K., Freivalds T., Zayakin P., Rumnieks F., Inashkina I., et al. Differentiating cancer cells reveal early large-scale genome regulation by pericentric domains. Biophys J. 2021;120:711–724. doi: 10.1016/j.bpj.2021.01.002. PubMed DOI PMC

Tsuchyia M., Wong S.T., Yeo Z.X., Colosimo A., Palumbo M.C., Farina L., et al. Gene expression waves: Cell cycle independent collective dynamics in cultured cells. FEBS J. 2007;274:2878–2886. doi: 10.1111/j.1742-4658.2007.05822.x. PubMed DOI

Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin dynamics during DSB repair. Biochim Biophys Acta Mol Cell Res. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI

Sanders J.T., Freeman T.F., Xu Y., Golloshi R., Stallard M.A., Hill A.M., et al. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat Commun. 2020;11:6178. doi: 10.1038/s41467-020-20047-w. PubMed DOI PMC

Noon A.T., Shibata A., Rief N., Löbrich M., Stewart G.S., Jeggo P.A., et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol. 2010;12:177–184. doi: 10.1038/ncb2017. PubMed DOI

Goodarzi A.A., Jeggo P.A. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. IJMS. 2012;13:11844–11860. doi: 10.3390/ijms130911844. PubMed DOI PMC

Kumar R., Horikoshi N., Singh M., Gupta A., Misra H.S., Albuquerque K., et al. Chromatin modifications and the DNA damage response to ionizing radiation. Front Oncol. 2012;2:214. doi: 10.3389/fonc.2012.00214. PubMed DOI PMC

Nair N., Shoaib M., Sørensen C.S. Chromatin Dynamics in genome stability: roles in suppressing endogenous dna damage and facilitating DNA repair. IJMS. 2017;18:1486. doi: 10.3390/ijms18071486. PubMed DOI PMC

Falk M., Lukášová E., Štefančíková L., Baranová E., Falková I., Ježková L., et al. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl Radiat Isot. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI

Sanghi A., Gruber J.J., Metwally A., Jiang L., Reynolds W., Sunwoo J., et al. Chromatin accessibility associates with protein-RNA correlation in human cancer. Nat Commun. 2021;12:5732. doi: 10.1038/s41467-021-25872-1. PubMed DOI PMC

Baskar R., Chen A.F., Favaro P., Reynolds W., Mueller F., Borges L., et al. Integrating transcription-factor abundance with chromatin accessibility in human erythroid lineage commitment. Cell Rep Methods. 2022;2 doi: 10.1016/j.crmeth.2022.100188. PubMed DOI PMC

Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., et al. Recruitment of 53BP1 proteins for DNA repair and persistence of repair clusters differ for cell types as detected by single molecule localization microscopy. Int J Mol Sci. 2018:19. doi: 10.3390/ijms19123713. PubMed DOI PMC

Hahn H., Neitzel Charlotte, Kopečná Olga, Heermann W.Dieter, Falk Martin, Hausmann A. Topological analysis of γH2AXand MRE11 clusters detected by localization microscopy during X-ray induced DNA double- strand break repair. Cancers. 2021;13:5561. doi: 10.3390/cancers13215561. PubMed DOI PMC

Falk M., Hausmann M. A paradigm revolution or just better resolution – will newly emerging superresolution techniques identify chromatin architecture as a key factor in radiation-induced DNA damage and repair regulation. Cancers. 2021;18:1–30. doi: 10.3390/cancers13010018. 13:article. PubMed DOI PMC

Uversky V.N., Giuliani A. Networks of networks: an essay on multi-level biological organization. Front Genet. 2021;12 doi: 10.3389/fgene.2021.706260. PubMed DOI PMC

Zimatore G., Tsuchiya M., Hashimoto M., Kasperski A., Giuliani A. Self-organization of whole-gene expression through coordinated chromatin structural transition. Biophys Rev. 2021;2 doi: 10.1063/5.0058511. PubMed DOI PMC

Schmidt U., Guigas G., Weiss M. Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys Rev Lett. 2008;101 doi: 10.1103/PhysRevLett.101.128104. PubMed DOI

Guigas G., Weiss M. Membrane protein mobility depends on the length of extra-membrane domains and on the protein concentration. Soft Matter. 2015;11:33–37. doi: 10.1039/C4SM01846J. PubMed DOI

Boyd P.S., Struve N., Bach M., Eberle J.P., Gote M., Schock F., et al. Clustered localization of EGFRvIII in glioblastoma cells as detected by high precision localization microscopy. Nanoscale. 2016;8:20037–20047. doi: 10.1039/c6nr05880a. PubMed DOI

Pilarczyk G., Nesnidal I., Gunkel M., Bach M., Bestvater F., Hausmann M. Localisation microscopy of breast epithelial ErbB-2 receptors and gap junctions: Trafficking after γ-irradiation, neuregulin-1β, and trastuzumab application. Int J Mol Sci. 2017;18:362. doi: 10.3390/ijms18020362. PubMed DOI PMC

Pilarczyk G., Papenfuß F., Bestvater F., Hausmann M. Spatial arrangements of connexin43 in cancer related cells and re-arrangements under treatment conditions: investigations on the nano-scale by super-resolution localization light microscopy. Cancers. 2019;11:301. doi: 10.3390/cancers11030301. PubMed DOI PMC

Bartosova M., Herzog R., Ridinger D., Levai E., Jenei H., Zhang C., et al. Alanyl-glutamine restores tight junction organization after disruption by a conventional peritoneal dialysis fluid. Biomolecules. 2020;10:1178. doi: 10.3390/biom10081178. PubMed DOI PMC

Krufczik M., Sievers A., Hausmann A., Lee J.-H., Hildenbrand G., Schaufler W., et al. Combining low temperature fluorescence DNA-hybridization, immunostaining, and super-resolution localization microscopy for nano-structure analysis of ALU elements and their influence on chromatin structure. Int J Mol Sci. 2017;18:1005. doi: 10.3390/ijms18051005. PubMed DOI PMC

Hausmann M., Lee J.-H., Sievers A., Krufczik M., Hildenbrand G. COMBinatorial Oligonucleotide FISH (COMBO-FISH) with Uniquely Binding Repetitive DNA Probes. In: Hancock R, editor. The Nucleus, vol. 2175, New York, NY: Springer US; 2020, p. 65–77. https://doi.org/10.1007/978–1-0716–0763-3_6. PubMed

Grüll F., Kirchgessner M., Kaufmann R., Hausmann M., Kebschull U. Accelerating image analysis for localization microscopy with FPGAs. Proc. - Int. Conf. Field Program. Logic Appl., FPL, 2011, p. 1–5. https://doi.org/10.1109/FPL.2011.11.

Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A.P., et al. Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int J Mol Sci. 2017:18. doi: 10.3390/ijms18102066. PubMed DOI PMC

Hausmann M., Falk M., Neitzel C., Hofmann A., Biswas A., Gier T., et al. Elucidation of the clustered nano-architecture of radiation-induced DNA damage sites and surrounding chromatin in cancer cells: a single molecule localization microscopy approach. Int J Mol Sci. 2021;22:3636. doi: 10.3390/ijms22073636. PubMed DOI PMC

Scipy community. scipy.spatial.ConvexHull. Website. Accessed on 2020–04-01. 2017. url: 〈https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.spatial.ConvexHull.html〉.

Scipy community. scipy.spatial.distance.cdist. Website. Accessed on 2020–04-01. 2019. url: 〈https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html〉.

Ripley B.D. Modelling spatial patterns. J R Stat Soc: Ser B (Methodol) 1977;39:172–192. doi: 10.1111/j.2517-6161.1977.tb01615.x. DOI

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). Simoudis E, Han J, Fayyad UM (eds.), AAAI Press; n.d., p. 226–31.

Lagache T., Lang G., Sauvonnet N., Olivo-Marin J.-C. Analysis of the spatial organization of molecules with robust statistics. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0080914. PubMed DOI PMC

Baumgärtner A., Binder K. Monte Carlo studies on the freely jointed polymer chain with excluded volume interaction. J Chem Phys. 1979;71:2541–2545. doi: 10.1063/1.438608. DOI

Valle F., Favre M., De Los Rios P., Rosa A., Dietler G. Scaling exponents and probability distributions of DNA end-to-end distance. Phys Rev Lett. 2005;95 doi: 10.1103/PhysRevLett.95.158105. PubMed DOI

Krufczik M. Reaktionen der Genomarchitektur auf ionisierende Strahlung: Quantitative Analyse mittels neuer Konzepte zur hochauflösenden Lokalisationsmikroskopie. Dissertation. 2017. DOI

Kaufmann R., Müller P., Hildenbrand G., Hausmann M., Cremer C. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy: ANALYSIS OF HER2/neu MEMBRANE PROTEIN CLUSTERS. J Microsc. 2011;242:46–54. doi: 10.1111/j.1365-2818.2010.03436.x. PubMed DOI

Kaufmann R., Müller P., Hausmann M., Cremer C. Imaging label-free intracellular structures by localisation microscopy. Micron. 2011;42:348–352. doi: 10.1016/j.micron.2010.03.006. PubMed DOI

Nakamura A.J., Rao V.A., Pommier Y., Bonner W.M. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle. 2010;9:389–397. doi: 10.4161/cc.9.2.10475. PubMed DOI PMC

Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., et al. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/c7nr08145f. PubMed DOI

Scherthan H., Lee J.-H., Maus E., Schumann S., Muhtadi R., Chojowski R., et al. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers (Basel) 2019;11:1877. doi: 10.3390/cancers11121877. PubMed DOI PMC

Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γh2AX/53BP1 foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/c7nr06829h. PubMed DOI

Zadneprianetc M., Boreyko A., Jezkova L., Falk M., Ryabchenko A., Hramco T., et al. Clustered DNA damage formation in human cells after exposure to low- and intermediate-energy accelerated heavy ions. Phys Part Nucl Lett. 2022;19:440–450. doi: 10.1134/S1547477122040227. DOI

Falk M., Hausmann M., Lukasova E., Biswas A., Hildenbrand G., Davidkova M., et al. Determining omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part - structuromics. Crit Rev Eukaryot Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI

Dobešová L., Gier T., Kopečná O., Pagáčová E., Vičar T., Bestvater F., et al. Incorporation of low concentrations of gold nanoparticles: complex effects on radiation response and fate of cancer cells. Pharmaceutics. 2022;14:166. doi: 10.3390/pharmaceutics14010166. PubMed DOI PMC

Lukášová E., Kořistek Z., Klabusay M., Ondřej V., Grigoryev S., Bačíková A., et al. Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes. Biochim Biophys Acta Mol Cell Res. 2013;1833:767–779. doi: 10.1016/j.bbamcr.2012.12.012. PubMed DOI

Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., et al. Two new faces of amifostine: protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J Med Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI

Štefanciková L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., et al. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J Nanobiotechnol. 2016;14:63. doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC

Pagáčová E., Štefančíková L., Schmidt-Kaler F., Hildenbrand G., Vičar T., Depeš D., et al. Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy. Int J Mol Sci. 2019;20:588. doi: 10.3390/ijms20030588. PubMed DOI PMC

Natale F., Rapp A., Yu W., Maiser A., Harz H., Scholl A., et al. Identification of the elementary structural units of the DNA damage response. Nat Commun. 2017:8. doi: 10.1038/ncomms15760. PubMed DOI PMC

Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., et al. Single molecule localization microscopy analyses of DNA-repair foci and clusters detected along particle damage tracks. Front Phys. 2020;8 doi: 10.3389/fphy.2020.578662. DOI

Eryilmaz M., Schmitt E., Krufczik M., Theda F., Lee J.-H., Cremer C., et al. Localization microscopy analyses of MRE11 clusters in 3D-conserved cell nuclei of different cell lines. Cancers. 2018;10:25. doi: 10.3390/cancers10010025. PubMed DOI PMC

Lee Y., Wang Q., Shuryak I., Brenner D.J., Turner H.C. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol. 2019;14:150. doi: 10.1186/s13014-019-1344-7. PubMed DOI PMC

Bach M., Savini C., Krufczik M., Cremer C., Rösl F., Hausmann M. Super-resolution localization microscopy of γ-H2AX and heterochromatin after folate deficiency. Int J Mol Sci. 2017;18:1726. doi: 10.3390/ijms18081726. PubMed DOI PMC

Chazal F., Michel B. An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front Artif Intell. 2021;4 doi: 10.3389/frai.2021.667963. PubMed DOI PMC

Tinarrage R. Barcodes of the Čech filtration of a point cloud in tuclideanean plane 2021. https://www.youtube.com/watch?v=fKEBb190KQo&ab_channel=Rapha%C3%ABlTinarrage.

Adams H., Chepushtanova S., Emerson T., Hanson E., Kirby M., Motta F., et al. Persistence images: a stable vector representation of persistent homology. J Mach Learn Res. 2017;18:1–35. doi: 10.48550/ARXIV.1507.06217. DOI

Cohen-Steiner D., Edelsbrunner H., Harer J., Mileyko Y. Lipschitz functions have L p -stable persistence. Found Comput Math. 2010;10:127–139. doi: 10.1007/s10208-010-9060-6. DOI

Jaccard P. Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaud Sci Nat. 1901;37:547–579.

Wang B. Lecture 16: Tda, kernels, classification iii 2021. 〈https://www.youtube.com/watch?v=9V3iWrXTqLs&t=307s&ab_channel=UtahSoCComputationalTopology〉.

Bubenik P. Statistical topological data analysis using persistence landscapes. J Mach Learn Res. 2015;16(1):77–102. doi: 10.48550/ARXIV.1207.6437. DOI

Bubenik P. Vol 15. Springer; 2020. The persistence landscape and some of its properties; pp. 97–117. (Topological Data Analysis Abel Symposia). DOI

Cohen-Steiner D., Edelsbrunner H., Harer J. Stability of persistence diagrams. Discret Comput Geom. 2007;37:103–120. doi: 10.1007/s00454-006-1276-5. DOI

Vicar T., Gumulec J., Kolar R., Kopecna O., Pagacova E., Falkova I., et al. DeepFoci: deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput Struct Biotechnol J. 2021;19:6465–6480. doi: 10.1016/j.csbj.2021.11.019. PubMed DOI PMC

Aschenbrenner K.P., Butzek S., Guthier C.V., Krufczik M., Hausmann M., Bestvater F., et al. Compressed sensing denoising for segmentation of localization microscopy data. 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Chiang Mai, Thailand: IEEE; 2016, p. 1–5. https://doi.org/10.1109/CIBCB.2016.7758097.

Ovesný M., Křížek P., Borkovec J., Švindrych Z., Hagen G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC

Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur Phys J D. 2018;72(9):158. doi: 10.1140/epjd/e2018-90148-1. DOI

Schubert E., Sander J., Ester M., Kriegel H.P., Xu X. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans Database Syst. 2017;42:1–21. doi: 10.1145/3068335. DOI

Falk M., Lukásová E., Kozubek S. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI

Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Local changes of higher-order chromatin structure during DSB-repair. J Phys Conf Ser. 2008;101 doi: 10.1088/1742-6596/101/1/012018. DOI

Müller P., Lemmermann N.A., Kaufmann R., Gunkel M., Paech D., Hildenbrand G., et al. Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy. Histochem Cell Biol. 2014;142:61–67. doi: 10.1007/s00418-014-1185-2. PubMed DOI

Tobin S.J., Wakefield D.L., Jones V., Liu X., Schmolze D., Jovanović-Talisman T. Single molecule localization microscopy coupled with touch preparation for the quantification of trastuzumab-bound HER2. Sci Rep. 2018;8:15154. doi: 10.1038/s41598-018-33225-0. PubMed DOI PMC

Deschout H., Zanacchi F.C., Mlodzianoski M., Diaspro A., Bewersdorf J., Hess S.T., et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods. 2014;11:253–266. doi: 10.1038/nmeth.2843. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment

. 2024 Jul 10 ; 124 (13) : 8014-8129. [epub] 20240606

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...