Advanced image-free analysis of the nano-organization of chromatin and other biomolecules by Single Molecule Localization Microscopy (SMLM)
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36968017
PubMed Central
PMC10030913
DOI
10.1016/j.csbj.2023.03.009
PII: S2001-0370(23)00108-3
Knihovny.cz E-zdroje
- Klíčová slova
- Application of mathematical analysis tools to chromatin organization and DNA repair processes, DSB, DNA double-strand break, HR, homologous recombination, IRIF, ionizing radiation induced foci, LET, linear energy transfer, NHEJ, non-homologous end joining, NN, nearest neighbor, PCA, principal component analysis, Persistent homology, Persistent image, Principal component analysis, Ripley distance frequency histograms, SMLM, single molecule localization microscopy, Single molecule localization microscopy (SMLM),
- Publikační typ
- časopisecké články MeSH
The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.
Zobrazit více v PubMed
Bizzarri M., Naimark O., Nieto-Villar J., Fedeli V., Giuliani A. Complexity in biological organization: deconstruction (and subsequent restating) of key concepts. Entropy. 2020;22:885. doi: 10.3390/e22080885. PubMed DOI PMC
Erenpreisa J., Giuliani A. Resolution of complex issues in genome regulation and cancer requires non-linear and network-based thermodynamics. IJMS. 2019;21:240. doi: 10.3390/ijms21010240. PubMed DOI PMC
Hausmann M., Hildenbrand G., Pilarczyk G. In: Kloc M., Kubiak J.Z., editors. vol. 70. Springer International Publishing; Cham: 2022. Networks and islands of genome nano-architecture and their potential relevance for radiation biology: (a hypothesis and experimental verification hints). pp. 3–34. (Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine). PubMed DOI
Erenpreisa J., Giuliani A., Yoshikawa K., Falk M., Hildenbrand G., Salmina K., et al. Spatial-temporal genome regulation in stress-response and cell-fate change. IJMS. 2023;24:2658. doi: 10.3390/ijms24032658. PubMed DOI PMC
Erenpreisa J., Krigerts J., Salmina K., Gerashchenko B.I., Freivalds T., Kurg R., et al. Heterochromatin networks: topology, dynamics, and function (a working hypothesis) Cells. 2021;10:1582. doi: 10.3390/cells10071582. PubMed DOI PMC
Kloc M., Kubiak J.Z., editors. Nuclear, chromosomal, and genomic architecture in biology and medicine. Springer; Cham: 2022.
Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. J Cell Biol. 2010;190:165–175. doi: 10.1083/jcb.201002018. PubMed DOI PMC
Cremer C., Masters B.R. Resolution enhancement techniques in microscopy. Eur Phys J H. 2013;38:281–344. doi: 10.1140/epjh/e2012-20060-1. DOI
Baddeley D., Bewersdorf J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem. 2018;87:965–989. doi: 10.1146/annurev-biochem-060815-014801. PubMed DOI
Jacquemet G., Carisey A.F., Hamidi H., Henriques R., Leterrier C. The cell biologist’s guide to super-resolution microscopy. J Cell Sci. 2020;133:jcs240713. doi: 10.1242/jcs.240713. PubMed DOI
Jing Y., Zhang C., Yu B., Lin D., Qu J. Super-resolution microscopy: shedding new light on in vivo imaging. Front Chem. 2021;9 doi: 10.3389/fchem.2021.746900. PubMed DOI PMC
Lorat Y., Fleckenstein J., Görlinger P., Rübe C., Rübe C.E. Assessment of DNA damage by 53PB1 and pKu70 detection in peripheral blood lymphocytes by immunofluorescence and high-resolution transmission electron microscopy. Strahl Onkol. 2020;196:821–833. doi: 10.1007/s00066-020-01576-1. PubMed DOI PMC
Lorat Y., Reindl J., Isermann A., Rübe C., Friedl A.A., Rübe C.E. Focused ion microbeam irradiation induces clustering of DNA double-strand breaks in heterochromatin visualized by nanoscale-resolution electron microscopy. IJMS. 2021;22:7638. doi: 10.3390/ijms22147638. PubMed DOI PMC
Eberle JP, Rapp A, Krufczik M, Eryilmaz M, Gunkel M, Erfle H, et al. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics. In: Erfle H, editor. Super-Resolution Microscopy, vol. 1663, New York, NY: Springer New York; 2017, p. 1–13. https://doi.org/10.1007/978-1-4939-7265-4_1. PubMed
Lambert T.J., Waters J.C. Navigating challenges in the application of superresolution microscopy. J Cell Biol. 2017;216:53–63. doi: 10.1083/jcb.201610011. PubMed DOI PMC
Dankovich T.M., Rizzoli S.O. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. IScience. 2021;24 doi: 10.1016/j.isci.2021.102134. PubMed DOI PMC
Zheng X., Zhou J., Wang L., Wang M., Wu W., Chen J., et al. Current challenges and solutions of super-resolution structured illumination microscopy. APL Photonics. 2021;6 doi: 10.1063/5.0038065. DOI
Lemmer P., Gunkel M., Baddeley D., Kaufmann R., Urich A., Weiland Y., et al. SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B. 2008;93:1–12. doi: 10.1007/s00340-008-3152-x. DOI
Lemmer P., Gunkel M., Weiland Y., Müller P., Baddeley D., Kaufmann R., et al. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc. 2009;235:163–171. doi: 10.1111/j.1365-2818.2009.03196.x. PubMed DOI
Kaufmann R., Lemmer P., Gunkel M., Weiland Y., Müller P., Hausmann M., et al. SPDM: single molecule superresolution of cellular nanostructures. In: Enderlein J, Gryczynski ZK, Erdmann R, editors., San Jose, CA: 2009, p. 71850J. https://doi.org/10.1117/12.809109.
Cremer C., Kaufmann R., Gunkel M., Pres S., Weiland Y., Müller P., et al. Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol J. 2011;6:1037–1051. doi: 10.1002/biot.201100031. PubMed DOI
Nieves D.J., Owen D.M. Analysis methods for interrogating spatial organisation of single molecule localisation microscopy data. Int J Biochem Cell Biol. 2020;123 doi: 10.1016/j.biocel.2020.105749. PubMed DOI
Nicovich P.R., Owen D.M., Gaus K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat Protoc. 2017;12:453–460. doi: 10.1038/nprot.2016.166. PubMed DOI
van Leeuwen J.M.J., Groeneveld J., de Boer J. New method for the calculation of the pair correlation function. I. Physica. 1959;25:792–808. doi: 10.1016/0031-8914(59)90004-7. DOI
Khater I.M., Nabi I.R., Hamarneh G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns. 2020;1 doi: 10.1016/j.patter.2020.100038. PubMed DOI PMC
Pike J.A., Khan A.O., Pallini C., Thomas S.G., Mund M., Ries J., et al. Topological data analysis quantifies biological nano-structure from single molecule localization microscopy. Bioinformatics. 2019:btz788. doi: 10.1093/bioinformatics/btz788. PubMed DOI PMC
Khater I.M., Meng F., Wong T.H., Nabi I.R., Hamarneh G. Super resolution network analysis defines the molecular architecture of caveolae and caveolin-1 scaffolds. Sci Rep. 2018;8:9009. doi: 10.1038/s41598-018-27216-4. PubMed DOI PMC
Sieben C., Banterle N., Douglass K.M., Gönczy P., Manley S. Multicolor single-particle reconstruction of protein complexes. Nat Methods. 2018;15:777–780. doi: 10.1038/s41592-018-0140-x. PubMed DOI PMC
Levet F., Hosy E., Kechkar A., Butler C., Beghin A., Choquet D., et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods. 2015;12:1065–1071. doi: 10.1038/nmeth.3579. PubMed DOI
Andronov L., Orlov I., Lutz Y., Vonesch J.-L., Klaholz B.P. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci Rep. 2016;6:24084. doi: 10.1038/srep24084. PubMed DOI PMC
Dlasková A., Engstová H., Špaček T., Kahancová A., Pavluch V., Smolková K., et al. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim Et Biophys Acta (BBA) - Bioenerg. 2018;1859:829–844. doi: 10.1016/j.bbabio.2018.04.013. PubMed DOI
Baddeley D., Cannell M.B., Soeller C. Visualization of localization microscopy data. Microsc Micro. 2010;16:64–72. doi: 10.1017/S143192760999122X. PubMed DOI
Chapman K.B., Filipsky F., Peschke N., Gelléri M., Weinhardt V., Braun A., et al. A comprehensive method to study the DNA’s association with lamin and chromatin compaction in intact cell nuclei at super resolution. Nanoscale. 2023;15:742–756. doi: 10.1039/D2NR02684H. PubMed DOI PMC
Zhang Y., Máté G., Müller P., Hillebrandt S., Krufczik M., Bach M., et al. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0128555. PubMed DOI PMC
Máté G., Hofmann A., Wenzel N., Heermann D.W. A topological similarity measure for proteins. Biochim Et Biophys Acta (BBA) - Biomembr. 2014;1838:1180–1190. doi: 10.1016/j.bbamem.2013.08.019. PubMed DOI
Hofmann A., Krufczik M., Heermann D., Hausmann M. Using persistent homology as a new approach for super-resolution localization microscopy data analysis and classification of γH2AX foci/clusters. Int J Mol Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC
Pearson K.L., III On lines and planes of closest fit to systems of points in space. Lond, Edinb, Dublin Philos Mag J Sci. 1901;2:559–572. doi: 10.1080/14786440109462720. DOI
Hausmann M., Neitzel C., Hahn H., Winter R., Falkova I., Heermann D.W., et al. Space and Time in the Universe of the Cell Nucleus after Ionizing Radiation Attacks: A Comparison of Cancer and Non-Cancer Cell Response. The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response, MDPI; 2021, p. 15. https://doi.org/10.3390/IECC2021–09219.
Pancaldi V. Chromatin network analyses: towards structure-function relationships in epigenomics. Front Bioinform. 2021;1 doi: 10.3389/fbinf.2021.742216. PubMed DOI PMC
Lohia R., Fox N., Gillis J. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Genome Biol. 2022;23:238. doi: 10.1186/s13059-022-02790-z. PubMed DOI PMC
van Mierlo G., Pushkarev O., Kribelbauer J.F., Deplancke B. Chromatin modules and their implication in genomic organization and gene regulation. Trends Genet. 2023;39:140–153. doi: 10.1016/j.tig.2022.11.003. PubMed DOI
Krigerts J., Salmina K., Freivalds T., Zayakin P., Rumnieks F., Inashkina I., et al. Differentiating cancer cells reveal early large-scale genome regulation by pericentric domains. Biophys J. 2021;120:711–724. doi: 10.1016/j.bpj.2021.01.002. PubMed DOI PMC
Tsuchyia M., Wong S.T., Yeo Z.X., Colosimo A., Palumbo M.C., Farina L., et al. Gene expression waves: Cell cycle independent collective dynamics in cultured cells. FEBS J. 2007;274:2878–2886. doi: 10.1111/j.1742-4658.2007.05822.x. PubMed DOI
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin dynamics during DSB repair. Biochim Biophys Acta Mol Cell Res. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Sanders J.T., Freeman T.F., Xu Y., Golloshi R., Stallard M.A., Hill A.M., et al. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat Commun. 2020;11:6178. doi: 10.1038/s41467-020-20047-w. PubMed DOI PMC
Noon A.T., Shibata A., Rief N., Löbrich M., Stewart G.S., Jeggo P.A., et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol. 2010;12:177–184. doi: 10.1038/ncb2017. PubMed DOI
Goodarzi A.A., Jeggo P.A. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. IJMS. 2012;13:11844–11860. doi: 10.3390/ijms130911844. PubMed DOI PMC
Kumar R., Horikoshi N., Singh M., Gupta A., Misra H.S., Albuquerque K., et al. Chromatin modifications and the DNA damage response to ionizing radiation. Front Oncol. 2012;2:214. doi: 10.3389/fonc.2012.00214. PubMed DOI PMC
Nair N., Shoaib M., Sørensen C.S. Chromatin Dynamics in genome stability: roles in suppressing endogenous dna damage and facilitating DNA repair. IJMS. 2017;18:1486. doi: 10.3390/ijms18071486. PubMed DOI PMC
Falk M., Lukášová E., Štefančíková L., Baranová E., Falková I., Ježková L., et al. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl Radiat Isot. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI
Sanghi A., Gruber J.J., Metwally A., Jiang L., Reynolds W., Sunwoo J., et al. Chromatin accessibility associates with protein-RNA correlation in human cancer. Nat Commun. 2021;12:5732. doi: 10.1038/s41467-021-25872-1. PubMed DOI PMC
Baskar R., Chen A.F., Favaro P., Reynolds W., Mueller F., Borges L., et al. Integrating transcription-factor abundance with chromatin accessibility in human erythroid lineage commitment. Cell Rep Methods. 2022;2 doi: 10.1016/j.crmeth.2022.100188. PubMed DOI PMC
Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., et al. Recruitment of 53BP1 proteins for DNA repair and persistence of repair clusters differ for cell types as detected by single molecule localization microscopy. Int J Mol Sci. 2018:19. doi: 10.3390/ijms19123713. PubMed DOI PMC
Hahn H., Neitzel Charlotte, Kopečná Olga, Heermann W.Dieter, Falk Martin, Hausmann A. Topological analysis of γH2AXand MRE11 clusters detected by localization microscopy during X-ray induced DNA double- strand break repair. Cancers. 2021;13:5561. doi: 10.3390/cancers13215561. PubMed DOI PMC
Falk M., Hausmann M. A paradigm revolution or just better resolution – will newly emerging superresolution techniques identify chromatin architecture as a key factor in radiation-induced DNA damage and repair regulation. Cancers. 2021;18:1–30. doi: 10.3390/cancers13010018. 13:article. PubMed DOI PMC
Uversky V.N., Giuliani A. Networks of networks: an essay on multi-level biological organization. Front Genet. 2021;12 doi: 10.3389/fgene.2021.706260. PubMed DOI PMC
Zimatore G., Tsuchiya M., Hashimoto M., Kasperski A., Giuliani A. Self-organization of whole-gene expression through coordinated chromatin structural transition. Biophys Rev. 2021;2 doi: 10.1063/5.0058511. PubMed DOI PMC
Schmidt U., Guigas G., Weiss M. Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys Rev Lett. 2008;101 doi: 10.1103/PhysRevLett.101.128104. PubMed DOI
Guigas G., Weiss M. Membrane protein mobility depends on the length of extra-membrane domains and on the protein concentration. Soft Matter. 2015;11:33–37. doi: 10.1039/C4SM01846J. PubMed DOI
Boyd P.S., Struve N., Bach M., Eberle J.P., Gote M., Schock F., et al. Clustered localization of EGFRvIII in glioblastoma cells as detected by high precision localization microscopy. Nanoscale. 2016;8:20037–20047. doi: 10.1039/c6nr05880a. PubMed DOI
Pilarczyk G., Nesnidal I., Gunkel M., Bach M., Bestvater F., Hausmann M. Localisation microscopy of breast epithelial ErbB-2 receptors and gap junctions: Trafficking after γ-irradiation, neuregulin-1β, and trastuzumab application. Int J Mol Sci. 2017;18:362. doi: 10.3390/ijms18020362. PubMed DOI PMC
Pilarczyk G., Papenfuß F., Bestvater F., Hausmann M. Spatial arrangements of connexin43 in cancer related cells and re-arrangements under treatment conditions: investigations on the nano-scale by super-resolution localization light microscopy. Cancers. 2019;11:301. doi: 10.3390/cancers11030301. PubMed DOI PMC
Bartosova M., Herzog R., Ridinger D., Levai E., Jenei H., Zhang C., et al. Alanyl-glutamine restores tight junction organization after disruption by a conventional peritoneal dialysis fluid. Biomolecules. 2020;10:1178. doi: 10.3390/biom10081178. PubMed DOI PMC
Krufczik M., Sievers A., Hausmann A., Lee J.-H., Hildenbrand G., Schaufler W., et al. Combining low temperature fluorescence DNA-hybridization, immunostaining, and super-resolution localization microscopy for nano-structure analysis of ALU elements and their influence on chromatin structure. Int J Mol Sci. 2017;18:1005. doi: 10.3390/ijms18051005. PubMed DOI PMC
Hausmann M., Lee J.-H., Sievers A., Krufczik M., Hildenbrand G. COMBinatorial Oligonucleotide FISH (COMBO-FISH) with Uniquely Binding Repetitive DNA Probes. In: Hancock R, editor. The Nucleus, vol. 2175, New York, NY: Springer US; 2020, p. 65–77. https://doi.org/10.1007/978–1-0716–0763-3_6. PubMed
Grüll F., Kirchgessner M., Kaufmann R., Hausmann M., Kebschull U. Accelerating image analysis for localization microscopy with FPGAs. Proc. - Int. Conf. Field Program. Logic Appl., FPL, 2011, p. 1–5. https://doi.org/10.1109/FPL.2011.11.
Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A.P., et al. Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int J Mol Sci. 2017:18. doi: 10.3390/ijms18102066. PubMed DOI PMC
Hausmann M., Falk M., Neitzel C., Hofmann A., Biswas A., Gier T., et al. Elucidation of the clustered nano-architecture of radiation-induced DNA damage sites and surrounding chromatin in cancer cells: a single molecule localization microscopy approach. Int J Mol Sci. 2021;22:3636. doi: 10.3390/ijms22073636. PubMed DOI PMC
Scipy community. scipy.spatial.ConvexHull. Website. Accessed on 2020–04-01. 2017. url: 〈https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.spatial.ConvexHull.html〉.
Scipy community. scipy.spatial.distance.cdist. Website. Accessed on 2020–04-01. 2019. url: 〈https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html〉.
Ripley B.D. Modelling spatial patterns. J R Stat Soc: Ser B (Methodol) 1977;39:172–192. doi: 10.1111/j.2517-6161.1977.tb01615.x. DOI
Ester, M., Kriegel, H.-P., Sander, J., Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). Simoudis E, Han J, Fayyad UM (eds.), AAAI Press; n.d., p. 226–31.
Lagache T., Lang G., Sauvonnet N., Olivo-Marin J.-C. Analysis of the spatial organization of molecules with robust statistics. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0080914. PubMed DOI PMC
Baumgärtner A., Binder K. Monte Carlo studies on the freely jointed polymer chain with excluded volume interaction. J Chem Phys. 1979;71:2541–2545. doi: 10.1063/1.438608. DOI
Valle F., Favre M., De Los Rios P., Rosa A., Dietler G. Scaling exponents and probability distributions of DNA end-to-end distance. Phys Rev Lett. 2005;95 doi: 10.1103/PhysRevLett.95.158105. PubMed DOI
Krufczik M. Reaktionen der Genomarchitektur auf ionisierende Strahlung: Quantitative Analyse mittels neuer Konzepte zur hochauflösenden Lokalisationsmikroskopie. Dissertation. 2017. DOI
Kaufmann R., Müller P., Hildenbrand G., Hausmann M., Cremer C. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy: ANALYSIS OF HER2/neu MEMBRANE PROTEIN CLUSTERS. J Microsc. 2011;242:46–54. doi: 10.1111/j.1365-2818.2010.03436.x. PubMed DOI
Kaufmann R., Müller P., Hausmann M., Cremer C. Imaging label-free intracellular structures by localisation microscopy. Micron. 2011;42:348–352. doi: 10.1016/j.micron.2010.03.006. PubMed DOI
Nakamura A.J., Rao V.A., Pommier Y., Bonner W.M. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle. 2010;9:389–397. doi: 10.4161/cc.9.2.10475. PubMed DOI PMC
Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., et al. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/c7nr08145f. PubMed DOI
Scherthan H., Lee J.-H., Maus E., Schumann S., Muhtadi R., Chojowski R., et al. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers (Basel) 2019;11:1877. doi: 10.3390/cancers11121877. PubMed DOI PMC
Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γh2AX/53BP1 foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/c7nr06829h. PubMed DOI
Zadneprianetc M., Boreyko A., Jezkova L., Falk M., Ryabchenko A., Hramco T., et al. Clustered DNA damage formation in human cells after exposure to low- and intermediate-energy accelerated heavy ions. Phys Part Nucl Lett. 2022;19:440–450. doi: 10.1134/S1547477122040227. DOI
Falk M., Hausmann M., Lukasova E., Biswas A., Hildenbrand G., Davidkova M., et al. Determining omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part - structuromics. Crit Rev Eukaryot Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI
Dobešová L., Gier T., Kopečná O., Pagáčová E., Vičar T., Bestvater F., et al. Incorporation of low concentrations of gold nanoparticles: complex effects on radiation response and fate of cancer cells. Pharmaceutics. 2022;14:166. doi: 10.3390/pharmaceutics14010166. PubMed DOI PMC
Lukášová E., Kořistek Z., Klabusay M., Ondřej V., Grigoryev S., Bačíková A., et al. Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes. Biochim Biophys Acta Mol Cell Res. 2013;1833:767–779. doi: 10.1016/j.bbamcr.2012.12.012. PubMed DOI
Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., et al. Two new faces of amifostine: protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J Med Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI
Štefanciková L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., et al. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J Nanobiotechnol. 2016;14:63. doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC
Pagáčová E., Štefančíková L., Schmidt-Kaler F., Hildenbrand G., Vičar T., Depeš D., et al. Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy. Int J Mol Sci. 2019;20:588. doi: 10.3390/ijms20030588. PubMed DOI PMC
Natale F., Rapp A., Yu W., Maiser A., Harz H., Scholl A., et al. Identification of the elementary structural units of the DNA damage response. Nat Commun. 2017:8. doi: 10.1038/ncomms15760. PubMed DOI PMC
Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., et al. Single molecule localization microscopy analyses of DNA-repair foci and clusters detected along particle damage tracks. Front Phys. 2020;8 doi: 10.3389/fphy.2020.578662. DOI
Eryilmaz M., Schmitt E., Krufczik M., Theda F., Lee J.-H., Cremer C., et al. Localization microscopy analyses of MRE11 clusters in 3D-conserved cell nuclei of different cell lines. Cancers. 2018;10:25. doi: 10.3390/cancers10010025. PubMed DOI PMC
Lee Y., Wang Q., Shuryak I., Brenner D.J., Turner H.C. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol. 2019;14:150. doi: 10.1186/s13014-019-1344-7. PubMed DOI PMC
Bach M., Savini C., Krufczik M., Cremer C., Rösl F., Hausmann M. Super-resolution localization microscopy of γ-H2AX and heterochromatin after folate deficiency. Int J Mol Sci. 2017;18:1726. doi: 10.3390/ijms18081726. PubMed DOI PMC
Chazal F., Michel B. An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front Artif Intell. 2021;4 doi: 10.3389/frai.2021.667963. PubMed DOI PMC
Tinarrage R. Barcodes of the Čech filtration of a point cloud in tuclideanean plane 2021. https://www.youtube.com/watch?v=fKEBb190KQo&ab_channel=Rapha%C3%ABlTinarrage.
Adams H., Chepushtanova S., Emerson T., Hanson E., Kirby M., Motta F., et al. Persistence images: a stable vector representation of persistent homology. J Mach Learn Res. 2017;18:1–35. doi: 10.48550/ARXIV.1507.06217. DOI
Cohen-Steiner D., Edelsbrunner H., Harer J., Mileyko Y. Lipschitz functions have L p -stable persistence. Found Comput Math. 2010;10:127–139. doi: 10.1007/s10208-010-9060-6. DOI
Jaccard P. Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaud Sci Nat. 1901;37:547–579.
Wang B. Lecture 16: Tda, kernels, classification iii 2021. 〈https://www.youtube.com/watch?v=9V3iWrXTqLs&t=307s&ab_channel=UtahSoCComputationalTopology〉.
Bubenik P. Statistical topological data analysis using persistence landscapes. J Mach Learn Res. 2015;16(1):77–102. doi: 10.48550/ARXIV.1207.6437. DOI
Bubenik P. Vol 15. Springer; 2020. The persistence landscape and some of its properties; pp. 97–117. (Topological Data Analysis Abel Symposia). DOI
Cohen-Steiner D., Edelsbrunner H., Harer J. Stability of persistence diagrams. Discret Comput Geom. 2007;37:103–120. doi: 10.1007/s00454-006-1276-5. DOI
Vicar T., Gumulec J., Kolar R., Kopecna O., Pagacova E., Falkova I., et al. DeepFoci: deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput Struct Biotechnol J. 2021;19:6465–6480. doi: 10.1016/j.csbj.2021.11.019. PubMed DOI PMC
Aschenbrenner K.P., Butzek S., Guthier C.V., Krufczik M., Hausmann M., Bestvater F., et al. Compressed sensing denoising for segmentation of localization microscopy data. 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Chiang Mai, Thailand: IEEE; 2016, p. 1–5. https://doi.org/10.1109/CIBCB.2016.7758097.
Ovesný M., Křížek P., Borkovec J., Švindrych Z., Hagen G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC
Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur Phys J D. 2018;72(9):158. doi: 10.1140/epjd/e2018-90148-1. DOI
Schubert E., Sander J., Ester M., Kriegel H.P., Xu X. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans Database Syst. 2017;42:1–21. doi: 10.1145/3068335. DOI
Falk M., Lukásová E., Kozubek S. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Local changes of higher-order chromatin structure during DSB-repair. J Phys Conf Ser. 2008;101 doi: 10.1088/1742-6596/101/1/012018. DOI
Müller P., Lemmermann N.A., Kaufmann R., Gunkel M., Paech D., Hildenbrand G., et al. Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy. Histochem Cell Biol. 2014;142:61–67. doi: 10.1007/s00418-014-1185-2. PubMed DOI
Tobin S.J., Wakefield D.L., Jones V., Liu X., Schmolze D., Jovanović-Talisman T. Single molecule localization microscopy coupled with touch preparation for the quantification of trastuzumab-bound HER2. Sci Rep. 2018;8:15154. doi: 10.1038/s41598-018-33225-0. PubMed DOI PMC
Deschout H., Zanacchi F.C., Mlodzianoski M., Diaspro A., Bewersdorf J., Hess S.T., et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods. 2014;11:253–266. doi: 10.1038/nmeth.2843. PubMed DOI
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment