Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells

. 2022 Jan 11 ; 14 (1) : . [epub] 20220111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35057061

Grantová podpora
GACR 20-04109J Czech Science Foundation
H1601/16-1 Deutsche Forschungsgemeinschaft
GACR 19-09212S Czech Science Foundation
Heidelberg University Mobility Grant for International Research Cooperation within the excel-lence initiative II of the Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft
DAAD PPP Program for Project related Person exchange, grant no. 57447889 / DAAD-19-03 German Academic Exchange Service
3 + 3 Project Ministry of Education Youth and Sports
Czech Government Plenipotentiary Project Ministry of Education Youth and Sports

Odkazy

PubMed 35057061
PubMed Central PMC8781406
DOI 10.3390/pharmaceutics14010166
PII: pharmaceutics14010166
Knihovny.cz E-zdroje

(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley's distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).

Zobrazit více v PubMed

Atun R., Jaffray D.A., Barton M.B., Bray F., Baumann M., Vikram B., Hanna T.P., Knaul F.M., Lievens Y., Lui T.Y.M., et al. Expanding Global Access to Radiotherapy. Lancet Oncol. 2015;16:1153–1186. doi: 10.1016/S1470-2045(15)00222-3. PubMed DOI

Michaelidesová A., Vachelová J., Puchalska M., Brabcová K.P., Vondráček V., Sihver L., Davídková M. Relative Biological Effectiveness in a Proton Spread-out Bragg Peak Formed by Pencil Beam Scanning Mode. Australas. Phys. Eng. Sci. Med. 2017;40:359–368. doi: 10.1007/s13246-017-0540-8. PubMed DOI

Durante M., Orecchia R., Loeffler J.S. Charged-Particle Therapy in Cancer: Clinical Uses and Future Perspectives. Nat. Rev. Clin. Oncol. 2017;14:483–495. doi: 10.1038/nrclinonc.2017.30. PubMed DOI

Tinganelli W., Durante M. Carbon Ion Radiobiology. Cancers. 2020;12:3022. doi: 10.3390/cancers12103022. PubMed DOI PMC

Haume K., Rosa S., Grellet S., Śmiałek M.A., Butterworth K.T., Solov’yov A.V., Prise K.M., Golding J., Mason N.J. Gold Nanoparticles for Cancer Radiotherapy: A Review. Cancer Nanotechnol. 2016;7:8. doi: 10.1186/s12645-016-0021-x. PubMed DOI PMC

Štefančíková L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., Lux F., Depeš D., Kozubek S., Falk M. Effect of Gadolinium-Based Nanoparticles on Nuclear DNA Damage and Repair in Glioblastoma Tumor Cells. J. Nanobiotechnol. 2016;14:63. doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC

Ngwa W., Boateng F., Kumar R., Irvine D.J., Formenti S., Ngoma T., Herskind C., Veldwijk M.R., Hildenbrand G.L., Hausmann M., et al. Smart Radiation Therapy Biomaterials. Int. J. Radiat. Oncol. Biol. Phys. 2017;97:624–637. doi: 10.1016/j.ijrobp.2016.10.034. PubMed DOI PMC

Ngwa W., Kumar R., Sridhar S., Korideck H., Zygmanski P., Cormack R.A., Berbeco R., Makrigiorgos G.M. Targeted Radiotherapy with Gold Nanoparticles: Current Status and Future Perspectives. Nanomedicine. 2014;9:1063–1082. doi: 10.2217/nnm.14.55. PubMed DOI PMC

Kuncic Z., Lacombe S. Nanoparticle Radio-Enhancement: Principles, Progress and Application to Cancer Treatment. Phys. Med. Biol. 2018;63:02TR01. doi: 10.1088/1361-6560/aa99ce. PubMed DOI

Lux F., Tran V.L., Thomas E., Dufort S., Rossetti F., Martini M., Truillet C., Doussineau T., Bort G., Denat F., et al. AGuIX® from Bench to Bedside-Transfer of an Ultrasmall Theranostic Gadolinium-Based Nanoparticle to Clinical Medicine. Br. J. Radiol. 2019;92:20180365. doi: 10.1259/bjr.20180365. PubMed DOI PMC

Li S., Porcel E., Remita H., Marco S., Réfrégiers M., Dutertre M., Confalonieri F., Lacombe S. Platinum Nanoparticles: An Exquisite Tool to Overcome Radioresistance. Cancer Nanotechnol. 2017;8:4. doi: 10.1186/s12645-017-0028-y. PubMed DOI PMC

Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A., Crémillieux Y., Fries P., Coll J.-L., Rodriguez-Lafrasse C., et al. The Use of Theranostic Gadolinium-Based Nanoprobes to Improve Radiotherapy Efficacy. Br. J. Radiol. 2014;87:20140134. doi: 10.1259/bjr.20140134. PubMed DOI PMC

Pagáčová E., Štefančíková L., Schmidt-Kaler F., Hildenbrand G., Vičar T., Depeš D., Lee J.-H., Bestvater F., Lacombe S., Porcel E., et al. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy. Int. J. Mol. Sci. 2019;20:588. doi: 10.3390/ijms20030588. PubMed DOI PMC

Hildenbrand G., Metzler P., Pilarczyk G., Bobu V., Kriz W., Hosser H., Fleckenstein J., Krufczik M., Bestvater F., Wenz F., et al. Dose Enhancement Effects of Gold Nanoparticles Specifically Targeting RNA in Breast Cancer Cells. PLoS ONE. 2018;13:e0190183. doi: 10.1371/journal.pone.0190183. PubMed DOI PMC

Nikjoo H., Uehara S., Emfietzoglou D., Brahme A. Heavy Charged Particles in Radiation Biology and Biophysics. New J. Phys. 2008;10:075006. doi: 10.1088/1367-2630/10/7/075006. DOI

Hossain M., Su M. Nanoparticle Location and Material Dependent Dose Enhancement in X-Ray Radiation Therapy. J. Phys. Chem. C Nanomater. Interfaces. 2012;116:23047–23052. doi: 10.1021/jp306543q. PubMed DOI PMC

Penninckx S., Heuskin A.-C., Michiels C., Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers. 2020;12:2021. doi: 10.3390/cancers12082021. PubMed DOI PMC

Porcel E., Li S., Usami N., Remita H., Furusawa Y., Kobayashi K., Sech C.L., Lacombe S. Nano-Sensitization under Gamma Rays and Fast Ion Radiation. J. Phys. Conf. Ser. 2012;373:012006. doi: 10.1088/1742-6596/373/1/012006. DOI

Ciccarese F., Raimondi V., Sharova E., Silic-Benussi M., Ciminale V. Nanoparticles as Tools to Target Redox Homeostasis in Cancer Cells. Antioxidants. 2020;9:211. doi: 10.3390/antiox9030211. PubMed DOI PMC

Zygmanski P., Liu B., Tsiamas P., Cifter F., Petersheim M., Hesser J., Sajo E. Dependence of Monte Carlo Microdosimetric Computations on the Simulation Geometry of Gold Nanoparticles. Phys. Med. Biol. 2013;58:7961–7977. doi: 10.1088/0031-9155/58/22/7961. PubMed DOI

Zygmanski P., Hoegele W., Tsiamas P., Cifter F., Ngwa W., Berbeco R., Makrigiorgos M., Sajo E. A Stochastic Model of Cell Survival for High-Z Nanoparticle Radiotherapy: Stochastic Model of Cell Survival for GNPT. Med. Phys. 2013;40:024102. doi: 10.1118/1.4773885. PubMed DOI

Fang J., Nakamura H., Maeda H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI

Maeda H. Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chem. 2010;21:797–802. doi: 10.1021/bc100070g. PubMed DOI

Prabhakar U., Maeda H., Jain R.K., Sevick-Muraca E.M., Zamboni W., Farokhzad O.C., Barry S.T., Gabizon A., Grodzinski P., Blakey D.C. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology. Cancer Res. 2013;73:2412–2417. doi: 10.1158/0008-5472.CAN-12-4561. PubMed DOI PMC

Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C. Cancer Nanotechnology: The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology. Adv. Drug Deliv. Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009. PubMed DOI PMC

Chithrani D.B. Nanoparticles for Improved Therapeutics and Imaging in Cancer Therapy. Recent Pat. Nanotechnol. 2010;4:171–180. doi: 10.2174/187221010792483726. PubMed DOI

Chithrani D.B., Jelveh S., Jalali F., van Prooijen M., Allen C., Bristow R.G., Hill R.P., Jaffray D.A. Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiat. Res. 2010;173:719–728. doi: 10.1667/RR1984.1. PubMed DOI

Moser F., Hildenbrand G., Müller P., Al Saroori A., Biswas A., Bach M., Wenz F., Cremer C., Burger N., Veldwijk M.R., et al. Cellular Uptake of Gold Nanoparticles and Their Behavior as Labels for Localization Microscopy. Biophys. J. 2016;110:947–953. doi: 10.1016/j.bpj.2016.01.004. PubMed DOI PMC

Onaciu A., Jurj A., Moldovan C., Berindan-Neagoe I. Theranostic Nanoparticles and Their Spectrum in Cancer. In: Marius Avramescu S., Akhtar K., Fierascu I., Bahadar Khan S., Ali F., Asiri A., editors. Engineered Nanomaterials—Health and Safety. IntechOpen; London, UK: 2020.

Amina S.J., Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020;15:9823–9857. doi: 10.2147/IJN.S279094. PubMed DOI PMC

Burger N., Biswas A., Barzan D., Kirchner A., Hosser H., Hausmann M., Hildenbrand G., Herskind C., Wenz F., Veldwijk M.R. A Method for the Efficient Cellular Uptake and Retention of Small Modified Gold Nanoparticles for the Radiosensitization of Cells. Nanomed. Nanotechnol. Biol. Med. 2014;10:1365–1373. doi: 10.1016/j.nano.2014.03.011. PubMed DOI

Falk M., Wolinsky M., Veldwijk M.R., Hildenbrand G., Hausmann M. Gold nanoparticle enhanced radiosensitivity of cells: Considerations and contradictions from model systems and basic investigations of cell damaging for radiation therapy. In: Sajo E., Zygmanski P., editors. Nanoparticle Enhanced Radiation Therapy: Principles, Methods and Applications. IOP Publishing; Bristol, UK: 2020.

Hainfeld J.F., Smilowitz H.M., O’Connor M.J., Dilmanian F.A., Slatkin D.N. Gold Nanoparticle Imaging and Radiotherapy of Brain Tumors in Mice. Nanomedicine. 2013;8:1601–1609. doi: 10.2217/nnm.12.165. PubMed DOI PMC

Porcel E., Liehn S., Remita H., Usami N., Kobayashi K., Furusawa Y., Le Sech C., Lacombe S. Platinum Nanoparticles: A Promising Material for Future Cancer Therapy? Nanotechnology. 2010;21:85103. doi: 10.1088/0957-4484/21/8/085103. PubMed DOI

Lacombe S., Porcel E., Scifoni E. Particle Therapy and Nanomedicine: State of Art and Research Perspectives. Cancer Nanotechnol. 2017;8:9. doi: 10.1186/s12645-017-0029-x. PubMed DOI PMC

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A—Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B—Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI

Rittich B., Spanová A., Falk M., Benes M.J., Hrubý M. Cleavage of Double Stranded Plasmid DNA by Lanthanide Complexes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004;800:169–173. doi: 10.1016/j.jchromb.2003.09.011. PubMed DOI

Freneau A., Dos Santos M., Voisin P., Tang N., Bueno Vizcarra M., Villagrasa C., Roy L., Vaurijoux A., Gruel G. Relation between DNA Double-Strand Breaks and Energy Spectra of Secondary Electrons Produced by Different X-ray Energies. Int. J. Radiat. Biol. 2018;94:1075–1084. doi: 10.1080/09553002.2018.1518612. PubMed DOI

Falk M., Hausmann M. A Paradigm Revolution or Just Better Resolution—Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers. 2021;13:18. doi: 10.3390/cancers13010018. PubMed DOI PMC

Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with Similar LET Values Generate DNA Breaks of Different Complexity and Reparability: A High-Resolution Microscopy Analysis of ΓH2AX/53BP1 Foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI

Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., Kulikova E., et al. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018;19:3713. doi: 10.3390/ijms19123713. PubMed DOI PMC

Mladenov E., Magin S., Soni A., Iliakis G. DNA Double-Strand-Break Repair in Higher Eukaryotes and Its Role in Genomic Instability and Cancer: Cell Cycle and Proliferation-Dependent Regulation. Semin. Cancer Biol. 2016;37–38:51–64. doi: 10.1016/j.semcancer.2016.03.003. PubMed DOI

Mladenov E., Magin S., Soni A., Iliakis G. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy. Front. Oncol. 2013;3:113. doi: 10.3389/fonc.2013.00113. PubMed DOI PMC

Cunningham C., de Kock M., Engelbrecht M., Miles X., Slabbert J., Vandevoorde C. Radiosensitization Effect of Gold Nanoparticles in Proton Therapy. Front. Public Health. 2021;9:699822. doi: 10.3389/fpubh.2021.699822. PubMed DOI PMC

Štefančíková L., Porcel E., Eustache P., Li S., Salado D., Marco S., Guerquin-Kern J.-L., Réfrégiers M., Tillement O., Lux F., et al. Cell Localisation of Gadolinium-Based Nanoparticles and Related Radiosensitising Efficacy in Glioblastoma Cells. Cancer Nanotechnol. 2014;5:6. doi: 10.1186/s12645-014-0006-6. PubMed DOI PMC

Rogakou E.P., Pilch D.R., Orr A.H., Ivanova V.S., Bonner W.M. DNA Double-Stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. J. Biol. Chem. 1998;273:5858–5868. doi: 10.1074/jbc.273.10.5858. PubMed DOI

Turinetto V., Giachino C. Multiple Facets of Histone Variant H2AX: A DNA Double-Strand-Break Marker with Several Biological Functions. Nucleic Acids Res. 2015;43:2489–2498. doi: 10.1093/nar/gkv061. PubMed DOI PMC

Löbrich M., Shibata A., Beucher A., Fisher A., Ensminger M., Goodarzi A.A., Barton O., Jeggo P.A. GammaH2AX Foci Analysis for Monitoring DNA Double-Strand Break Repair: Strengths, Limitations and Optimization. Cell Cycle Georget. Tex. 2010;9:662–669. doi: 10.4161/cc.9.4.10764. PubMed DOI

Macphail S.H., BanÁth J.P., Yu T.Y., Chu E.H.M., Lambur H., Olive P.L. Expression of Phosphorylated Histone H2AX in Cultured Cell Lines Following Exposure to X-rays. Int. J. Radiat. Biol. 2003;79:351–359. doi: 10.1080/0955300032000093128. PubMed DOI

Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-Molecule Localization Microscopy as a Promising Tool for ΓH2AX/53BP1 Foci Exploration. Eur. Phys. J. D. 2018;72:158. doi: 10.1140/epjd/e2018-90148-1. DOI

Eryilmaz M., Schmitt E., Krufczik M., Theda F., Lee J.-H., Cremer C., Bestvater F., Schaufler W., Hausmann M., Hildenbrand G. Localization Microscopy Analyses of MRE11 Clusters in 3D-Conserved Cell Nuclei of Different Cell Lines. Cancers. 2018;10:25. doi: 10.3390/cancers10010025. PubMed DOI PMC

Hahn H., Neitzel C., Kopečná O., Heermann D.W., Falk M., Hausmann M. Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-ray Induced DNA Double-Strand Break Repair. Cancers. 2021;13:5561. doi: 10.3390/cancers13215561. PubMed DOI PMC

Falk M., Horakova Z., Svobodova M., Masarik M., Kopecna O., Gumulec J., Raudenka M., Depes D., Bacikova A., Falkova I., et al. ΓH2AX/53BP1 Foci as a Potential Pre-Treatment Marker of HNSCC Tumors Radiosensitivity—Preliminary Methodological Study and Discussion. Eur. Phys. J. D. 2017;71:241. doi: 10.1140/epjd/e2017-80073-2. DOI

Falk M., Falková I., Kopečná O., Bačíková A., Pagáčová E., Šimek D., Golan M., Kozubek S., Pekarová M., Follett S.E., et al. Chromatin Architecture Changes and DNA Replication Fork Collapse Are Critical Features in Cryopreserved Cells That Are Differentially Controlled by Cryoprotectants. Sci. Rep. 2018;8:14694. doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC

Hausmann M., Falk M., Neitzel C., Hofmann A., Biswas A., Gier T., Falkova I., Heermann D.W., Hildenbrand G. Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach. Int. J. Mol. Sci. 2021;22:3636. doi: 10.3390/ijms22073636. PubMed DOI PMC

Cremer C., Masters B.R. Resolution Enhancement Techniques in Microscopy. Eur. Phys. J. H. 2013;38:281–344. doi: 10.1140/epjh/e2012-20060-1. DOI

Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., Smirnova E., Kopečná O., Pagáčová E., Boreyko A., et al. Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected Along Particle Damage Tracks. Front. Phys. 2020;8:578662. doi: 10.3389/fphy.2020.578662. DOI

Hofmann A., Krufczik M., Heermann D., Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of ΓH2AX Foci/Clusters. Int. J. Mol. Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC

Eberle J.P., Rapp A., Krufczik M., Eryilmaz M., Gunkel M., Erfle H., Hausmann M. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics. Volume 1663. Humana Press Inc.; Totowa, NI, USA: 2017. (Methods in Molecular Biology). PubMed

Deschout H., Zanacchi F.C., Mlodzianoski M., Diaspro A., Bewersdorf J., Hess S.T., Braeckmans K. Precisely and Accurately Localizing Single Emitters in Fluorescence Microscopy. Nat. Methods. 2014;11:253–266. doi: 10.1038/nmeth.2843. PubMed DOI

Zhang Y., Máté G., Müller P., Hillebrandt S., Krufczik M., Bach M., Kaufmann R., Hausmann M., Heermann D.W. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory. PLoS ONE. 2015;10:e0128555. doi: 10.1371/journal.pone.0128555. PubMed DOI PMC

Ghrist R. Barcodes: The Persistent Topology of Data. Bull. Am. Math. Soc. 2007;45:61–76. doi: 10.1090/S0273-0979-07-01191-3. DOI

Engel L.W., Young N.A. Human Breast Carcinoma Cells in Continuous Culture: A Review. Cancer Res. 1978;38:4327–4339. PubMed

Hébert E.M., Debouttière P.-J., Lepage M., Sanche L., Hunting D.J. Preferential Tumour Accumulation of Gold Nanoparticles, Visualised by Magnetic Resonance Imaging: Radiosensitisation Studies in Vivo and in Vitro. Int. J. Radiat. Biol. 2010;86:692–700. doi: 10.3109/09553001003746067. PubMed DOI

Lacroix M., Leclercq G. Relevance of Breast Cancer Cell Lines as Models for Breast Tumours: An Update. Breast Cancer Res. Treat. 2004;83:249–289. doi: 10.1023/B:BREA.0000014042.54925.cc. PubMed DOI

Sadeghirizi A., Yazdanparast R., Aghazadeh S. Combating Trastuzumab Resistance by Targeting Thioredoxin-1/PTEN Interaction. Tumor Biol. 2016;37:6737–6747. doi: 10.1007/s13277-015-4424-9. PubMed DOI

Valette O., Tran T.T.T., Cavazza C., Caudeville E., Brasseur G., Dolla A., Talla E., Pieulle L. Biochemical Function, Molecular Structure and Evolution of an Atypical Thioredoxin Reductase from Desulfovibrio Vulgaris. Front. Microbiol. 2017;8:1855. doi: 10.3389/fmicb.2017.01855. PubMed DOI PMC

Penninckx S., Heuskin A.-C., Michiels C., Lucas S. The Role of Thioredoxin Reductase in Gold Nanoparticle Radiosensitization Effects. Nanomedicine. 2018;13:2917–2937. doi: 10.2217/nnm-2018-0171. PubMed DOI

Vicar T., Gumulec J., Kolar R., Kopecna O., Pagacova E., Falkova I., Falk M. DeepFoci: Deep Learning-Based Algorithm for Fast Automatic Analysis of DNA Double-Strand Break Ionizing Radiation-Induced Foci. Comput. Struct. Biotechnol. J. 2021;19:6465–6480. doi: 10.1016/j.csbj.2021.11.019. PubMed DOI PMC

Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N., Hornegger J., Wells W.M., Frangi A.F., editors. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Volume 9351. Springer International Publishing; Cham, Switzerland: 2015. pp. 234–241.

Meyer F., Beucher S. Morphological Segmentation. J. Vis. Commun. Image Represent. 1990;1:21–46. doi: 10.1016/1047-3203(90)90014-M. DOI

Matas J., Chum O., Urban M., Pajdla T. Robust Wide-Baseline Stereo from Maximally Stable Extremal Regions. Image Vis. Comput. 2004;22:761–767. doi: 10.1016/j.imavis.2004.02.006. DOI

Parvati K., Prakasa Rao B.S., Mariya Das M. Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation. Discret. Dyn. Nat. Soc. 2008;2008:384346. doi: 10.1155/2008/384346. DOI

Pearson K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901;2:559–572. doi: 10.1080/14786440109462720. DOI

Gabriel K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika. 1971;58:453–467. doi: 10.1093/biomet/58.3.453. DOI

Thompson R.E., Larson D.R., Webb W.W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophys. J. 2002;82:2775–2783. doi: 10.1016/S0006-3495(02)75618-X. PubMed DOI PMC

Lemmer P., Gunkel M., Baddeley D., Kaufmann R., Urich A., Weiland Y., Reymann J., Müller P., Hausmann M., Cremer C. SPDM: Light Microscopy with Single-Molecule Resolution at the Nanoscale. Appl. Phys. B. 2008;93:1. doi: 10.1007/s00340-008-3152-x. DOI

Lemmer P., Gunkel M., Weiland Y., Müller P., Baddeley D., Kaufmann R., Urich A., Eipel H., Amberger R., Hausmann M., et al. Using Conventional Fluorescent Markers for Far-Field Fluorescence Localization Nanoscopy Allows Resolution in the 10-Nm Range. J. Microsc. 2009;235:163–171. doi: 10.1111/j.1365-2818.2009.03196.x. PubMed DOI

Kaufmann R., Lemmer P., Gunkel M., Weiland Y., Müller P., Hausmann M., Baddeley D., Amberger R., Cremer C. In: SPDM: Single Molecule Superresolution of Cellular Nanostructures. Enderlein J., Gryczynski Z.K., Erdmann R., editors. International Society for Optics and Photonics; San Jose, CA, USA: 2009. p. 71850J.

Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC

Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-Resolution Localization Microscopy of Radiation-Induced Histone H2AX-Phosphorylation in Relation to H3K9-Trimethylation in HeLa Cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI

Stuhlmüller M., Schwarz-Finsterle J., Fey E., Lux J., Bach M., Cremer C., Hinderhofer K., Hausmann M., Hildenbrand G. In Situ Optical Sequencing and Structure Analysis of a Trinucleotide Repeat Genome Region by Localization Microscopy after Specific COMBO-FISH Nano-Probing. Nanoscale. 2015;7:17938–17946. doi: 10.1039/C5NR04141D. PubMed DOI

Ripley B.D. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B Methodol. 1977;39:172–192. doi: 10.1111/j.2517-6161.1977.tb01615.x. DOI

Rasband W.S. ImageJ. National Institutes of Health; Bethesda, MD, USA: 1997. [(accessed on 23 December 2021)]. Available online: http://imagej.nih.gov/ij.

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Buch K., Peters T., Nawroth T., Sänger M., Schmidberger H., Langguth P. Determination of Cell Survival after Irradiation via Clonogenic Assay versus Multiple MTT Assay—A Comparative Study. Radiat. Oncol. 2012;7:1. doi: 10.1186/1748-717X-7-1. PubMed DOI PMC

Murmann-Konda T., Soni A., Stuschke M., Iliakis G. Analysis of Chromatid-Break-Repair Detects a Homologous Recombination to Non-Homologous End-Joining Switch with Increasing Load of DNA Double-Strand Breaks. Mutat. Res. Toxicol. Environ. Mutagen. 2021;867:503372. doi: 10.1016/j.mrgentox.2021.503372. PubMed DOI

Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., Pagáčová E., Štefančíková L., Weiterová L., Angelis K.J., et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J. Med. Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI

Sevcik J., Falk M., Kleiblova P., Lhota F., Stefancikova L., Janatova M., Weiterova L., Lukasova E., Kozubek S., Pohlreich P., et al. The BRCA1 Alternative Splicing Variant Δ14-15 with an in-Frame Deletion of Part of the Regulatory Serine-Containing Domain (SCD) Impairs the DNA Repair Capacity in MCF-7 Cells. Cell. Signal. 2012;24:1023–1030. doi: 10.1016/j.cellsig.2011.12.023. PubMed DOI

Terzoudi G.I., Pantelias G.E. Conversion of DNA Damage into Chromosome Damage in Response to Cell Cycle Regulation of Chromatin Condensation after Irradiation. Mutagenesis. 1997;12:271–276. doi: 10.1093/mutage/12.4.271. PubMed DOI

Perez-Añorve I.X., Gonzalez-De la Rosa C.H., Soto-Reyes E., Beltran-Anaya F.O., Del Moral-Hernandez O., Salgado-Albarran M., Angeles-Zaragoza O., Gonzalez-Barrios J.A., Landero-Huerta D.A., Chavez-Saldaña M., et al. New Insights into Radioresistance in Breast Cancer Identify a Dual Function of MiR-122 as a Tumor Suppressor and OncomiR. Mol. Oncol. 2019;13:1249–1267. doi: 10.1002/1878-0261.12483. PubMed DOI PMC

Pandey A., Vighetto V., Di Marzio N., Ferraro F., Hirsch M., Ferrante N., Mitra S., Grattoni A., Filgueira C.S. Gold Nanoparticles Radio-Sensitize and Reduce Cell Survival in Lewis Lung Carcinoma. Nanomaterials. 2020;10:1717. doi: 10.3390/nano10091717. PubMed DOI PMC

Tremi I., Spyratou E., Souli M., Efstathopoulos E.P., Makropoulou M., Georgakilas A.G., Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT) Cancers. 2021;13:3185. doi: 10.3390/cancers13133185. PubMed DOI PMC

Surapaneni S.K., Bashir S., Tikoo K. Gold Nanoparticles-Induced Cytotoxicity in Triple Negative Breast Cancer Involves Different Epigenetic Alterations Depending upon the Surface Charge. Sci. Rep. 2018;8:12295. doi: 10.1038/s41598-018-30541-3. PubMed DOI PMC

Peng J., Liang X. Progress in Research on Gold Nanoparticles in Cancer Management. Medicine. 2019;98:e15311. doi: 10.1097/MD.0000000000015311. PubMed DOI PMC

Baek K., Patra J.K. Comparative Study of Proteasome Inhibitory, Synergistic Antibacterial, Synergistic Anticandidal, and Antioxidant Activities of Gold Nanoparticles Biosynthesized Using Fruit Waste Materials. Int. J. Nanomed. 2016;11:4691–4705. doi: 10.2147/IJN.S108920. PubMed DOI PMC

Yuan L., Zhang F., Qi X., Yang Y., Yan C., Jiang J., Deng J. Chiral Polymer Modified Nanoparticles Selectively Induce Autophagy of Cancer Cells for Tumor Ablation. J. Nanobiotechnol. 2018;16:55. doi: 10.1186/s12951-018-0383-9. PubMed DOI PMC

Hirn S., Semmler-Behnke M., Schleh C., Wenk A., Lipka J., Schäffler M., Takenaka S., Möller W., Schmid G., Simon U., et al. Particle Size-Dependent and Surface Charge-Dependent Biodistribution of Gold Nanoparticles after Intravenous Administration. Eur. J. Pharm. Biopharm. 2011;77:407–416. doi: 10.1016/j.ejpb.2010.12.029. PubMed DOI PMC

Lim C.T., Goh J.C.H. 13th International Conference on Biomedical Engineering: ICBME 2008 3–6 December 2008, Singapore. Springer; Berlin, Germany: 2009. IFMBE Proceedings.

Taggart L.E., McMahon S.J., Currell F.J., Prise K.M., Butterworth K.T. The Role of Mitochondrial Function in Gold Nanoparticle Mediated Radiosensitisation. Cancer Nanotechnol. 2014;5:5. doi: 10.1186/s12645-014-0005-7. PubMed DOI PMC

Shao X., Schnau P., Qian W., Wang X. Quantitatively Understanding Cellular Uptake of Gold Nanoparticles via Radioactivity Analysis. J. Nanosci. Nanotechnol. 2015;15:3834–3838. doi: 10.1166/jnn.2015.9486. PubMed DOI PMC

Falk M., Lukasova E., Kozubek S. Higher-Order Chromatin Structure in DSB Induction, Repair and Misrepair. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI

Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin Dynamics during DSB Repair. Biochim. Biophys. Acta. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI

Ježková L., Falk M., Falková I., Davídková M., Bačíková A., Štefančíková L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of Chromatin Structure and Dynamics in DNA Damage, Repair and Misrepair: γ-Rays and Protons in Action. Pt BAppl. Radiat. Isot. Data Instrum. Methods Use Agric. Ind. Med. 2014;83:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI

Sanders J.T., Freeman T.F., Xu Y., Golloshi R., Stallard M.A., Hill A.M., San Martin R., Balajee A.S., McCord R.P. Radiation-Induced DNA Damage and Repair Effects on 3D Genome Organization. Nat. Commun. 2020;11:6178. doi: 10.1038/s41467-020-20047-w. PubMed DOI PMC

Jakob B., Splinter J., Conrad S., Voss K.-O., Zink D., Durante M., Löbrich M., Taucher-Scholz G. DNA Double-Strand Breaks in Heterochromatin Elicit Fast Repair Protein Recruitment, Histone H2AX Phosphorylation and Relocation to Euchromatin. Nucleic Acids Res. 2011;39:6489–6499. doi: 10.1093/nar/gkr230. PubMed DOI PMC

Beucher A., Birraux J., Tchouandong L., Barton O., Shibata A., Conrad S., Goodarzi A.A., Krempler A., Jeggo P.A., Löbrich M. ATM and Artemis Promote Homologous Recombination of Radiation-Induced DNA Double-Strand Breaks in G2. EMBO J. 2009;28:3413–3427. doi: 10.1038/emboj.2009.276. PubMed DOI PMC

Nurse P. The Central Role of a CDK in Controlling the Fission Yeast Cell Cycle. Harvey Lect. 1996;92:55–64. PubMed

Abdel-Ghany S., Mahfouz M., Ashraf N., Sabit H., Cevik E., El-Zawahri M. Gold Nanoparticles Induce G2/M Cell Cycle Arrest and Enhance the Expression of E-Cadherin in Breast Cancer Cells. Inorg. Nano-Met. Chem. 2020;50:926–932. doi: 10.1080/24701556.2020.1728553. DOI

Pawlik T.M., Keyomarsi K. Role of Cell Cycle in Mediating Sensitivity to Radiotherapy. Int. J. Radiat. Oncol. 2004;59:928–942. doi: 10.1016/j.ijrobp.2004.03.005. PubMed DOI

Liu C., Nie J., Wang R., Mao W. The Cell Cycle G2/M Block Is an Indicator of Cellular Radiosensitivity. Dose-Response. 2019;17:155932581989100. doi: 10.1177/1559325819891008. PubMed DOI PMC

Cadwell K.K., Curwen G.B., Tawn E.J., Winther J.F., Boice J.D. G2 Checkpoint Control and G2 Chromosomal Radiosensitivity in Cancer Survivors and Their Families. Mutagenesis. 2011;26:291–294. doi: 10.1093/mutage/geq087. PubMed DOI PMC

Gallud A., Klöditz K., Ytterberg J., Östberg N., Katayama S., Skoog T., Gogvadze V., Chen Y.-Z., Xue D., Moya S., et al. Cationic Gold Nanoparticles Elicit Mitochondrial Dysfunction: A Multi-Omics Study. Sci. Rep. 2019;9:4366. doi: 10.1038/s41598-019-40579-6. PubMed DOI PMC

Kodiha M., Wang Y.M., Hutter E., Maysinger D., Stochaj U. Off to the Organelles—Killing Cancer Cells with Targeted Gold Nanoparticles. Theranostics. 2015;5:357–370. doi: 10.7150/thno.10657. PubMed DOI PMC

Rai Y., Pathak R., Kumari N., Sah D.K., Pandey S., Kalra N., Soni R., Dwarakanath B.S., Bhatt A.N. Mitochondrial Biogenesis and Metabolic Hyperactivation Limits the Application of MTT Assay in the Estimation of Radiation Induced Growth Inhibition. Sci. Rep. 2018;8:1531. doi: 10.1038/s41598-018-19930-w. PubMed DOI PMC

Alomari M., Jermy B.R., Ravinayagam V., Akhtar S., Almofty S.A., Rehman S., Bahmdan H., AbdulAzeez S., Borgio J.F. Cisplatin-Functionalized Three-Dimensional Magnetic SBA-16 for Treating Breast Cancer Cells (MCF-7) Artif. Cells Nanomed. Biotechnol. 2019;47:3079–3086. doi: 10.1080/21691401.2019.1645155. PubMed DOI

Huo S., Jin S., Ma X., Xue X., Yang K., Kumar A., Wang P.C., Zhang J., Hu Z., Liang X.-J. Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry. ACS Nano. 2014;8:5852–5862. doi: 10.1021/nn5008572. PubMed DOI PMC

Wu M., Guo H., Liu L., Liu Y., Xie L. Size-Dependent Cellular Uptake and Localization Profiles of Silver Nanoparticles. Int. J. Nanomed. 2019;14:4247–4259. doi: 10.2147/IJN.S201107. PubMed DOI PMC

Tremi I., Havaki S., Georgitsopoulou S., Lagopati N., Georgakilas V., Gorgoulis V.G., Georgakilas A.G. A Guide for Using Transmission Electron Microscopy for Studying the Radiosensitizing Effects of Gold Nanoparticles In Vitro. Nanomaterials. 2021;11:859. doi: 10.3390/nano11040859. PubMed DOI PMC

Ahlinder L., Ekstrand-Hammarström B., Geladi P., Österlund L. Large Uptake of Titania and Iron Oxide Nanoparticles in the Nucleus of Lung Epithelial Cells as Measured by Raman Imaging and Multivariate Classification. Biophys. J. 2013;105:310–319. doi: 10.1016/j.bpj.2013.06.017. PubMed DOI PMC

Sousa A. mRNA, Nanolipid Particles and PEG: A Triad Never Used in Clinical Vaccines Is Going to Be Tested on Hundreds of Millions of People. Biomed. J. Sci. Tech. Res. 2021;34:26444–26451. doi: 10.26717/BJSTR.2021.34.005501. DOI

Zhang J., Cai X., Zhang Y., Li X., Li W., Tian Y., Li A., Yu X., Fan C., Huang Q. Imaging Cellular Uptake and Intracellular Distribution of TiO2 Nanoparticles. Anal. Methods. 2013;5:6611. doi: 10.1039/c3ay41121d. DOI

Turnbull T., Douglass M., Williamson N.H., Howard D., Bhardwaj R., Lawrence M., Paterson D.J., Bezak E., Thierry B., Kempson I.M. Cross-Correlative Single-Cell Analysis Reveals Biological Mechanisms of Nanoparticle Radiosensitization. ACS Nano. 2019;13:5077–5090. doi: 10.1021/acsnano.8b07982. PubMed DOI PMC

Penninckx S., Heuskin A.-C., Michiels C., Lucas S. Thioredoxin Reductase Activity Predicts Gold Nanoparticle Radiosensitization Effect. Nanomaterials. 2019;9:295. doi: 10.3390/nano9020295. PubMed DOI PMC

Shibamoto Y., Nakamura H. Overview of Biological, Epidemiological, and Clinical Evidence of Radiation Hormesis. Int. J. Mol. Sci. 2018;19:2387. doi: 10.3390/ijms19082387. PubMed DOI PMC

Carriere M., Sauvaigo S., Douki T., Ravanat J.-L. Impact of Nanoparticles on DNA Repair Processes: Current Knowledge and Working Hypotheses. Mutagenesis. 2017;32:203–213. doi: 10.1093/mutage/gew052. PubMed DOI

Yasui H., Takeuchi R., Nagane M., Meike S., Nakamura Y., Yamamori T., Ikenaka Y., Kon Y., Murotani H., Oishi M., et al. Radiosensitization of Tumor Cells through Endoplasmic Reticulum Stress Induced by PEGylated Nanogel Containing Gold Nanoparticles. Cancer Lett. 2014;347:151–158. doi: 10.1016/j.canlet.2014.02.005. PubMed DOI

Liang R.-Y., Tu H.-F., Tan X., Yeh Y.-S., Chueh P.J., Chuang S.-M. A Gene Signature for Gold Nanoparticle-Exposed Human Cell Lines. Toxicol. Res. 2015;4:365–375. doi: 10.1039/C4TX00181H. DOI

Lim H.K., Asharani P.V., Hande M.P. Enhanced Genotoxicity of Silver Nanoparticles in DNA Repair Deficient Mammalian Cells. Front. Genet. 2012;3:104. doi: 10.3389/fgene.2012.00104. PubMed DOI PMC

Wei H. A Neural Dynamic Model Based on Activation Diffusion and a Micro-Explanation for Cognitive Operations. arXiv. 2020 doi: 10.4018/jcini.2012040101.2012.00104 DOI

Smith H.L., Southgate H., Tweddle D.A., Curtin N.J. DNA Damage Checkpoint Kinases in Cancer. Expert Rev. Mol. Med. 2020;22:e2. doi: 10.1017/erm.2020.3. PubMed DOI

Schutte M., Seal S., Barfoot R., Meijers-Heijboer H., Wasielewski M., Evans D.G., Eccles D., Meijers C., Lohman F., Klijn J., et al. Variants in CHEK2 Other than 1100delC Do Not Make a Major Contribution to Breast Cancer Susceptibility. Am. J. Hum. Genet. 2003;72:1023–1028. doi: 10.1086/373965. PubMed DOI PMC

Lechtman E., Mashouf S., Chattopadhyay N., Keller B.M., Lai P., Cai Z., Reilly R.M., Pignol J.-P. A Monte Carlo-Based Model of Gold Nanoparticle Radiosensitization Accounting for Increased Radiobiological Effectiveness. Phys. Med. Biol. 2013;58:3075–3087. doi: 10.1088/0031-9155/58/10/3075. PubMed DOI

McMahon S.J., Hyland W.B., Muir M.F., Coulter J.A., Jain S., Butterworth K.T., Schettino G., Dickson G.R., Hounsell A.R., O’Sullivan J.M., et al. Biological Consequences of Nanoscale Energy Deposition near Irradiated Heavy Atom Nanoparticles. Sci. Rep. 2011;1:18. doi: 10.1038/srep00018. PubMed DOI PMC

Srinivasan K., Jabaseelan Samuel E.J., Poopathi V., Grace A.N. Investigation on Energy Dependency of Dose Enhancement Factor Produced by Gold Nanoparticle. Mater. Today Proc. 2019;9:446–449. doi: 10.1016/j.matpr.2019.02.174. DOI

Gagliardi F.M., Franich R.D., Geso M. Nanoparticle Dose Enhancement of Synchrotron Radiation in PRESAGE Dosimeters. J. Synchrotron Radiat. 2020;27:1590–1600. doi: 10.1107/S1600577520012849. PubMed DOI

Schuemann J., Berbeco R., Chithrani D.B., Cho S.H., Kumar R., McMahon S.J., Sridhar S., Krishnan S. Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. Int. J. Radiat. Oncol. 2016;94:189–205. doi: 10.1016/j.ijrobp.2015.09.032. PubMed DOI PMC

Tsiamas P., Liu B., Cifter F., Ngwa W.F., Berbeco R.I., Kappas C., Theodorou K., Marcus K., Makrigiorgos M.G., Sajo E., et al. Impact of Beam Quality on Megavoltage Radiotherapy Treatment Techniques Utilizing Gold Nanoparticles for Dose Enhancement. Phys. Med. Biol. 2013;58:451–464. doi: 10.1088/0031-9155/58/3/451. PubMed DOI

Berbeco R.I., Korideck H., Ngwa W., Kumar R., Patel J., Sridhar S., Johnson S., Price B.D., Kimmelman A., Makrigiorgos G.M. DNA Damage Enhancement from Gold Nanoparticles for Clinical MV Photon Beams. Radiat. Res. 2012;178:604–608. doi: 10.1667/RR3001.1. PubMed DOI PMC

Surdutovich E., Solov’yov A.V. Multiscale Approach to the Physics of Radiation Damage with Ions. Eur. Phys. J. D. 2014;68:353. doi: 10.1140/epjd/e2014-50004-0. DOI

Surdutovich E., Solov’yov A.V. Multiscale Modeling for Cancer Radiotherapies. Cancer Nanotechnol. 2019;10:6. doi: 10.1186/s12645-019-0051-2. DOI

Falk M., Hausmann M. Advances in Research of DNA Damage and Repair in Cells Exposed to Various Types of Ionizing Radiation in the Era of Super-Resolution Optical Microscopy. Cas Lek Cesk. 2020;159:286–297. PubMed

Li Q., Huang C., Liu L., Hu R., Qu J. Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression. Nanomaterials. 2018;8:1063. doi: 10.3390/nano8121063. PubMed DOI PMC

Jeyaraj M., Arun R., Sathishkumar G., MubarakAli D., Rajesh M., Sivanandhan G., Kapildev G., Manickavasagam M., Thajuddin N., Ganapathi A. An Evidence on G2/M Arrest, DNA Damage and Caspase Mediated Apoptotic Effect of Biosynthesized Gold Nanoparticles on Human Cervical Carcinoma Cells (HeLa) Mater. Res. Bull. 2014;52:15–24. doi: 10.1016/j.materresbull.2013.12.060. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...