Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy

. 2018 Nov 22 ; 19 (12) : . [epub] 20181122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30469529

Grantová podpora
16-29835A Ministerstvo Zdravotnictví Ceské Republiky
16-12454S Czech Science Foundation

DNA double stranded breaks (DSBs) are the most serious type of lesions introduced into chromatin by ionizing radiation. During DSB repair, cells recruit different proteins to the damaged sites in a manner dependent on local chromatin structure, DSB location in the nucleus, and the repair pathway entered. 53BP1 is one of the important players participating in repair pathway decision of the cell. Although many molecular biology details have been investigated, the architecture of 53BP1 repair foci and its development during the post-irradiation time, especially the period of protein recruitment, remains to be elucidated. Super-resolution light microscopy is a powerful new tool to approach such studies in 3D-conserved cell nuclei. Recently, we demonstrated the applicability of single molecule localization microscopy (SMLM) as one of these highly resolving methods for analyses of dynamic repair protein distribution and repair focus internal nano-architecture in intact cell nuclei. In the present study, we focused our investigation on 53BP1 foci in differently radio-resistant cell types, moderately radio-resistant neonatal human dermal fibroblasts (NHDF) and highly radio-resistant U87 glioblastoma cells, exposed to high-LET 15N-ion radiation. At given time points up to 24 h post irradiation with doses of 1.3 Gy and 4.0 Gy, the coordinates and spatial distribution of fluorescently tagged 53BP1 molecules was quantitatively evaluated at the resolution of 10⁻20 nm. Clusters of these tags were determined as sub-units of repair foci according to SMLM parameters. The formation and relaxation of such clusters was studied. The higher dose generated sufficient numbers of DNA breaks to compare the post-irradiation dynamics of 53BP1 during DSB processing for the cell types studied. A perpendicular (90°) irradiation scheme was used with the 4.0 Gy dose to achieve better separation of a relatively high number of particle tracks typically crossing each nucleus. For analyses along ion-tracks, the dose was reduced to 1.3 Gy and applied in combination with a sharp angle irradiation (10° relative to the cell plane). The results reveal a higher ratio of 53BP1 proteins recruited into SMLM defined clusters in fibroblasts as compared to U87 cells. Moreover, the speed of foci and thus cluster formation and relaxation also differed for the cell types. In both NHDF and U87 cells, a certain number of the detected and functionally relevant clusters remained persistent even 24 h post irradiation; however, the number of these clusters again varied for the cell types. Altogether, our findings indicate that repair cluster formation as determined by SMLM and the relaxation (i.e., the remaining 53BP1 tags no longer fulfill the cluster definition) is cell type dependent and may be functionally explained and correlated to cell specific radio-sensitivity. The present study demonstrates that SMLM is a highly appropriate method for investigations of spatiotemporal protein organization in cell nuclei and how it influences the cell decision for a particular repair pathway at a given DSB site.

Zobrazit více v PubMed

Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: A high-resolution microscopy analysis of γH2AX/53BP1 foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining OMICS spatiotemporal dimensions using exciting new nanoscopy techniques to asses complex cell responses to DNA damage—PART A (Radiomics) Crit. Rev. Eukaryot. Gene Exp. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining OMICS spatiotemporal dimensions using exciting new nanoscopy techniques to asses complex cell responses to DNA damage—PART B (Structuromics) Crit. Rev. Eukaryot. Gene Exp. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI

Nikitaki Z., Nikolov V., Mavragani I.V., Mladenov E., Mangelis A., Laskaratou D.A., Fragkoulis G.I., Hellweg C.E., Martin O.A., Emfietzoglou D., et al. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET) Free Radic. Res. 2016;50:S64–S78. doi: 10.1080/10715762.2016.1232484. PubMed DOI

Schipler A., Iliakis G. DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 2013;41:7589–7605. doi: 10.1093/nar/gkt556. PubMed DOI PMC

Mladenov E., Magin S., Soni A., Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin. Cancer Biol. 2016;37–38:51–64. doi: 10.1016/j.semcancer.2016.03.003. PubMed DOI

Ceccaldi R., Rondinelli B., Andrea A.D.D. Repair pathway choices and consequences at the double-strand break. Trends Biol. 2016;26:52–64. doi: 10.1016/j.tcb.2015.07.009. PubMed DOI PMC

Dueva R., Iliakis G. Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. Transl. Cancer Res. 2013;2:163–177.

Mladenov E., Magin S., Soni A., Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front. Oncol. 2013;3:113. doi: 10.3389/fonc.2013.00113. PubMed DOI PMC

Bhattacharjee S., Nandi S. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life. 2017;69:929–937. doi: 10.1002/iub.1696. PubMed DOI

Jeggo P.A., Loebrich M. How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem. J. 2015;471:1–11. doi: 10.1042/BJ20150582. PubMed DOI

Durante M., Orecchia R., Loeffler J.S. Charged-particle therapy in cancer: Clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 2017;14:483–495. doi: 10.1038/nrclinonc.2017.30. PubMed DOI

Kennedy A.R. A Review: Biological effects of space radiation and developments of effective countermeasures. Life Sci. Space Res. 2014;1:10–43. doi: 10.1016/j.lssr.2014.02.004. PubMed DOI PMC

Rogakou E.P., Pilch D.R., Orr A.H., Ivanova V.S., Bonner W.M. DNA double-starnd breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998;273:5858–5868. doi: 10.1074/jbc.273.10.5858. PubMed DOI

Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC

Iliakis G., Murmann T., Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015;793:166–175. doi: 10.1016/j.mrgentox.2015.07.001. PubMed DOI

Jasin M., Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 2013;5:a012740. doi: 10.1101/cshperspect.a012740. PubMed DOI PMC

Falk M., Lukasova E., Stefancikova L., Baranova E., Falkova I., Jezkova L., Davidkova M., Bacikova A., Vachelova J., Michaelidesova A., et al. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl. Radiat. Isotopes. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI

Majidinia M., Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair. 2017;54:22–29. doi: 10.1016/j.dnarep.2017.03.009. PubMed DOI

Tang L., Wei F., Wu Y., He Y., Shi L., Xiong F., Gong Z., Guo C., Li X., Deng H., et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res. 2018;37:87. doi: 10.1186/s13046-018-0758-7. PubMed DOI PMC

Antonelli F., Campa A., Esposito G., Giardullo P., Belli M., Dini V., Meschini S., Simone G., Sorrentino E., Gerardi S., et al. Induction and repair of DNA DSB as revealed by H2AX phosphorylation foci in human fibroblasts exposed to low- and high-LET radiation: Relationship with early and delayed reproductive cell death. Radiat. Res. 2015;183:417–431. doi: 10.1667/RR13855.1. PubMed DOI

Hildenbrand G., Metzler P., Pilarczyk G., Bobu V., Kriz W., Hosser H., Fleckenstein J., Krufczik M., Bestvater F., Wenz F., et al. Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells. PLoS ONE. 2018;13:e0190183. doi: 10.1371/journal.pone.0190183. PubMed DOI PMC

Rothkamm K., Barnard S., Moquet J., Ellender M., Rana Z., Burdak-Rothkamm S. DNA damage foci: Meaning and significance. Environ. Mol. Mutagen. 2015;56:491–504. doi: 10.1002/em.21944. PubMed DOI

Van Veelen L.R., Cervelli T., van de Rakt M.W., Theil A.F., Essers J., Kanaar R. Analysis of ionizing radiation-induced foci of DNA damage repair proteins. Mutat. Res. 2005;574:22–33. doi: 10.1016/j.mrfmmm.2005.01.019. PubMed DOI

Eberlein U., Peper M., Fernandez M., Lassmann M., Scherthan H. Calibration of the γ-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS ONE. 2015;10:e0123174. doi: 10.1371/journal.pone.0123174. PubMed DOI PMC

Hauptner A., Friedland W., Dietzel S., Drexler G.A., Greubel C., Hable V., Strickfaden H., Cremer T., Friedl A.A., Krücken R., et al. Ion Beam Science: Solved and Unsolved Problems. Royal Danish Academy of Sciences and Letters; Copenhagen, Denmark: 2006. Spatial distribution of DNA double-strand breaks from ion tracks; pp. 59–85.

Costes S.V., Boissière A., Ravani S., Romano R., Parvin B., Barcellos-Hoff M.H. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat. Res. 2006;165:505–515. doi: 10.1667/RR3538.1. PubMed DOI

Natale F., Rapp A., Yu W., Maiser A., Harz H., Schall A., Grulich S., Anton T., Hörl D., Chen W., et al. Identification of the elementary structural units of the DNA damage response. Nat. Commun. 2017;8:15760. doi: 10.1038/ncomms15760. PubMed DOI PMC

Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-resolution microscopy of radiation-induced histone H2AX phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI

Lorat Y., Bunner C.U., Schanz S., Jacob B., Taucher-Scholz G., Rübe C.E. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy—The heavy burden to repair. DNA Repair. 2015;28:93–106. doi: 10.1016/j.dnarep.2015.01.007. PubMed DOI

Lorat Y., Timm S., Jacob B., Taucher-Scholz G., Rübe C.E. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother. Oncol. 2016;121:427–437. doi: 10.1016/j.radonc.2016.08.028. PubMed DOI

Lopez Perez R., Best G., Nicolay N.H., Greubel C., Rossberger S., Reindl J., Dollinger G., Weber K.-J., Cremer C., Huber P.E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. FASEB J. 2016;30:2767–2776. doi: 10.1096/fj.201500106R. PubMed DOI

Sisario D., Memmel S., Doose S., Neubauer J., Zimmermann H., Flentje M., Djuzenova C.S., Sauer M., Sukhorukov V.L. Nanostructure of DNA repair foci revealed by superresolution microscopy. FASEB J. 2018;12:fj201701435. doi: 10.1096/fj.201701435. PubMed DOI

Eryilmaz M., Schmitt E., Krufczik M., Theda F., Lee J.-H., Cremer C., Bestvater F., Schaufler W., Hausmann M., Hildenbrand G. Localization microscopy analyses of MRE11 clusters in 3D-conserved cell nuclei of different cell lines. Cancers. 2018;10:25. doi: 10.3390/cancers10010025. PubMed DOI PMC

Reindl J.S., Girst S., Walsh D.W.M., Geubel C., Schwarz B., Siebenwirth C., Drexler G.A., Friedl A.A., Dollinger G. Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Sci. Rep. 2017;7:40616. doi: 10.1038/srep40616. PubMed DOI PMC

Hable V., Drexler G.A., Brüning T., Burgdorf C., Greubel C., Derer A., Seel J., Strickfaden H., Cremer T., Friedl A.A., et al. Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity. PLoS ONE. 2012;7:e41943. doi: 10.1371/journal.pone.0041943. PubMed DOI PMC

Iliakis G. Sustainable Risk Management. Springer; Berlin, Germany: 2018. The Biological Foundations of Risks from Ionizing Radiation Exposures: How an Understanding of Associated Effects Will Help Their Quantification and Mitigation; pp. 149–158.

Hofmann A., Krufczik M., Heermann D.W., Hausmann M. Using persistent homology as a new approach for super-resolution localization microscopy data analysis and classification of γH2AX foci/clusters. Int. J. Mol. Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC

Kakarougkas A., Ismail A., Klement K., Goodarzi A.A., Conrad S., Freire R., Shibata A., Löbrich M., Jeggo P.A. Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res. 2013;41:9719–9731. doi: 10.1093/nar/gkt729. PubMed DOI PMC

Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur. Phys. J. D. 2018;72:158. doi: 10.1140/epjd/e2018-90148-1. DOI

Ochs F., Somyajit K., Altmeyer M., Rask M.B., Lukas J., Lukas C. 53BP1 fosters fidelity of homology-directed DNA repair. Nat. Struct. Mol. Biol. 2016;23:714–721. doi: 10.1038/nsmb.3251. PubMed DOI

Chapman J.R., Sossick A.J., Boulton S.J., Jackson S.P. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J. Cell Sci. 2012;125:3529–3534. doi: 10.1242/jcs.105353. PubMed DOI PMC

Reindl J., Drexler G.A., Girst S., Greubel C., Siebenwirth C., Drexler S.E., Dollinger G., Friedl A.A. Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells. Phys. Biol. 2015;12:066005. doi: 10.1088/1478-3975/12/6/066005. PubMed DOI

Pilarczyk G., Nesnidal I., Gunkel M., Bach M., Bestvater F., Hausmann M. Localisation microscopy of breast epithelial ErbB-2 receptors and gap junctions: Trafficking after gamma-irradiation, Neuregulin-1b and Herceptin application. Int. J. Mol. Sci. 2017;18:362. doi: 10.3390/ijms18020362. PubMed DOI PMC

Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A.P., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC

Lemmer P., Gunkel M., Baddeley D., Kaufmann R., Urich A., Weiland Y., Reymann J., Müller P., Hausmann M., Cremer C. SPDM—Light microscopy with single molecule resolution at the nanoscale. Appl. Phys. B. 2018;93:1–12. doi: 10.1007/s00340-008-3152-x. DOI

Lemmer P., Gunkel M., Weiland Y., Müller P., Baddeley D., Kaufmann R., Urich A., Eipel H., Amberger R., Hausmann M., et al. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10 nm range. J. Microsc. 2009;235:163–171. doi: 10.1111/j.1365-2818.2009.03196.x. PubMed DOI

Bach M., Savini C., Krufczik M., Cremer C., Rösl F., Hausmann M. Super-resolution localization microscopy of γ-H2AX and heterochromatin after folate deficiency. Int. J. Mol. Sci. 2017;18:1726. doi: 10.3390/ijms18081726. PubMed DOI PMC

Cremer C., Kaufmann R., Gunkel M., Pres S., Weiland Y., Müller P., Ruckelshausen T., Lemmer P., Geiger F., Degenhard M., et al. Superresolution imaging of biological nanostructures by Spectral Precision Distance Microscopy (SPDM) Biotechnol. J. 2011;6:1037–1051. doi: 10.1002/biot.201100031. PubMed DOI

Williams J.R., Gridley D.S., Slater J.M. Advances in the Biology, Imaging and Therapies for Glioblastoma. In: Cheng C., editor. Radiobiology of Radioresistant Glioblastoma. IntechOPEN; London, UK: 2011. pp. 3–22.

Krufczik M., Sievers A., Hausmann A., Lee J.-H., Hildenbrand G., Schaufler W., Hausmann M. Combining low temperature fluorescence DNA-hybridization, immunostaining, and super-resolution localization microscopy for nano-structure analysis of ALU elements and their influence on chromatin structure. Int. J. Mol. Sci. 2017;18:1005. doi: 10.3390/ijms18051005. PubMed DOI PMC

Deckbar D., Jeggo P.A., Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. Biochem. Mol. Biol. 2011;46:271–283. doi: 10.3109/10409238.2011.575764. PubMed DOI PMC

Scholz M., Kraft-Weyrather W., Ritter S., Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells. Int. J. Radiat. Biol. 1994;66:59–75. doi: 10.1080/09553009414550951. PubMed DOI

Sora S., Hamada N., Hara T., Funayama T., Sakashita T., Yokota Y., Nakano T., Kobayashi Y. Exposure of normal human fibroblasts to heavy-ion radiation promotes their morphological differentiation. Biol. Sci. Space. 2008;22:54–58. doi: 10.2187/bss.22.54. DOI

Tsuboi K., Moritake T., Tsuchida Y., Tokuuye K., Matsumura A., Ando K. Cell cycle checkpoint and apoptosis induction in glioblastoma cells and fibroblasts irradiated with carbon beam. J. Radiat. Res. 2007;48:317–325. doi: 10.1269/jrr.06081. PubMed DOI

Nakajima N.I., Brunton H., Watanabe R., Shrikhande A., Hirayama R., Matsufuji N., Fujimori A., Murakami T., Okayasu R., Jeggo P., et al. Visualisation of γH2AX foci caused by heavy ion particle traversal; distinction between core track versus non-track damage. PLoS ONE. 2013;8:e70107. doi: 10.1371/journal.pone.0070107. PubMed DOI PMC

Lobachevsky P., Leong T., Daly P., Smith J., Best N., Tomaszewski J., Thompson E.R., Li N., Campbell I.G., Martin R.F., et al. Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett. 2016;383:212–219. doi: 10.1016/j.canlet.2016.09.010. PubMed DOI PMC

DiBiase S.J., Zeng Z.C., Chen R., Hyslop T., Curran W.J., Jr., Iliakis G. DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res. 2000;60:1245–1253. PubMed

Schwarz-Finsterle J., Scherthan H., Huna A., González P., Müller P., Schmitt E., Erenpreisa J., Hausmann M. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat. Res. 2013;756:56–65. doi: 10.1016/j.mrgentox.2013.05.004. PubMed DOI

Tsao D., Kalogerinis P., Tabrizi I., Dingfelder M., Stewart R.D., Georgakilas A.G. Induction and processing of oxidative clustered DNA lesions in 56Fe-ion-irradiated human monocytes. Radiat. Res. 2007;168:87–97. doi: 10.1667/RR0865.1. PubMed DOI

Short S.C., Martindale C., Bourne S., Brand G., Woodcock M., Johnston P. DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol. 2007;9:404–411. doi: 10.1215/15228517-2007-030. PubMed DOI PMC

Bezbakh A.A., Zager V.B., Kaminski G., Krylov A.I., Krylov V.A., Teterev Y.G., Timoshenko G.N. Upgrading the genome facility for radiobiological experiments with heavy-ion beams. Phys. Part. Nuclei Lett. 2013;10:175–178. doi: 10.1134/S1547477113020039. DOI

Tarasov O.B., Bazin D. LISE++: Radioactive beam production with in-flight separators. Nucl. Instrum. Meth. B. 2008;266:4657–4666. doi: 10.1016/j.nimb.2008.05.110. DOI

Stuhlmüller M., Schwarz-Finsterle J., Fey E., Lux J., Bach M., Cremer C., Hinderhofer K., Hausmann M., Hildenbrand G. In situ optical sequencing and nano-structure analysis of a trinucleotide expansion region by localization microscopy after specific COMBO-FISH labelling. Nanoscale. 2015;7:17938–17946. doi: 10.1039/C5NR04141D. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment

. 2024 Jul 10 ; 124 (13) : 8014-8129. [epub] 20240606

Advanced image-free analysis of the nano-organization of chromatin and other biomolecules by Single Molecule Localization Microscopy (SMLM)

. 2023 ; 21 () : 2018-2034. [epub] 20230309

Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change

. 2023 Jan 31 ; 24 (3) : . [epub] 20230131

Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells

. 2022 Jan 11 ; 14 (1) : . [epub] 20220111

DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci

. 2021 ; 19 () : 6465-6480. [epub] 20211118

Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach

. 2021 Mar 31 ; 22 (7) : . [epub] 20210331

A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation?

. 2020 Dec 23 ; 13 (1) : . [epub] 20201223

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...