From survival of irradiated mice to modern molecular insights: a seventy-year journey in radiobiology at the institute of biophysics, Czech academy of sciences
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
DAAD-24-08
German Academic Exchange Service
COST MultiChem (CA20129)
European Cooperation in Science and Technology
GACR-20-04109J / DFG-H1601/16-1
Grantová Agentura České Republiky
PubMed
40512188
DOI
10.1007/s00249-025-01765-9
PII: 10.1007/s00249-025-01765-9
Knihovny.cz E-zdroje
- Klíčová slova
- Biological effects of ionizing radiation, Chromatin architecture at micro- and nano-scale, DNA damage and repair, Densely ionizing (high-LET) particle radiation, Institute of biophysics of the Czech academy of sciences, Microscopy, Photon radiation, Radiobiological research, Single molecule localization microscopy (SMLM),
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper has been prepared to commemorate the 70th anniversary of the Institute of Biophysics of the Czech Academy of Sciences (IBP CAS), which has a long-standing tradition in researching the biological effects of ionizing radiation (IR). Radiobiology has recently gained renewed importance due to several compelling factors. The demand for a better understanding of the biological effects of both low and high doses of various types of ionizing radiation, along with improved radiation protection, is increasing-particularly in the context of critical ongoing human activities such as medical diagnostics, radiotherapy, and the operation of nuclear power plants. This demand also extends to newly emerging scenarios, including the development of hadron and FLASH radiotherapy, as well as mixed radiation field exposures related to planned manned missions to Mars. Unfortunately, there is also an urgent need to address the heightened risk of nuclear materials and weapons misuse by terrorists or even rogue states. Additionally, nuclear energy is currently the only viable alternative that can provide efficient, sustainable, and ecological coverage for the dramatically increasing current and future energy demands. Understanding the risks of IR exposure necessitates exploring how different types of IR interact with living organisms at the most fundamental level of complexity, specifically at the level of molecules and their complexes. The rising interest in radiobiology is, therefore, also driven by new experimental opportunities that enable research at previously unimaginable levels of detail and complexity. In this manuscript, we will address the important questions in radiobiology, focusing specifically on the mechanisms of radiation-induced DNA damage and repair within the context of chromatin architecture. We will emphasize the differing effects of photon and high-LET particle radiation on chromatin and DNA. Both forms of IR are encountered on Earth but are particularly significant in space.
Zobrazit více v PubMed
Abáigar M, Robledo C, Benito R et al (2016) Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes. PLOS ONE 11:e0164370. https://doi.org/10.1371/journal.pone.0164370 PubMed DOI PMC
Afifi MM, Crncec A, Cornwell JA et al (2023) Irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation. Cell Rep 42:113079. https://doi.org/10.1016/j.celrep.2023.113079 PubMed DOI PMC
Akram S, Chowdhury YS (2025) Radiation exposure of medical imaging. StatPearls Publishing, Treasure Island (FL) StatPearls
Alhaddad L, Nofal Z, Pustovalova M et al (2023) Long-term cultured human glioblastoma multiforme cells demonstrate increased radiosensitivity and senescence-associated secretory phenotype in response to irradiation. Int J Mol Sci 24:2002. https://doi.org/10.3390/ijms24032002 PubMed DOI PMC
Allshire RC, Madhani HD (2018) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19:229–244. https://doi.org/10.1038/nrm.2017.119 PubMed DOI
Amarh V, Arthur PK (2019) DNA double-strand break formation and repair as targets for novel antibiotic combination chemotherapy. Future Sci OA 5:FSO411. https://doi.org/10.2144/fsoa-2019-0034 PubMed DOI PMC
Amrenova A, Ainsbury E, Baudin C et al (2024) Consideration of hereditary effects in the radiological protection system: evolution and current status. Int J Radiat Biol 100:1240–1252. https://doi.org/10.1080/09553002.2023.2295289 PubMed DOI
Amrichová J, Lukásová E, Kozubek S, Kozubek M (2003) Nuclear and territorial topography of chromosome telomeres in human lymphocytes. Exp Cell Res 289:11–26. https://doi.org/10.1016/s0014-4827(03)00208-8 PubMed DOI
Anderson L, Henderson C, Adachi Y (2001) Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol 21:1719–1729. https://doi.org/10.1128/MCB.21.5.1719-1729.2001 PubMed DOI PMC
Asaithamby A, Hu B, Delgado O et al (2011) Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture. Nucleic Acids Res 39:5474–5488. https://doi.org/10.1093/nar/gkr149 PubMed DOI PMC
Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453:682–686. https://doi.org/10.1038/nature06875 PubMed DOI
Baatout S (ed) (2023) Radiobiology Textbook. Springer International Publishing, Cham
Bach M, Savini C, Krufczik M et al (2017) Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after folate deficiency. Int J Mol Sci 18(8):1726. https://doi.org/10.3390/ijms18081726 PubMed DOI PMC
Baldock RA, Day M, Wilkinson OJ et al (2015) ATM Localization and heterochromatin repair depend on direct interaction of the 53BP1-BRCT2 Domain with γH2AX. Cell Rep 13:2081–2089. https://doi.org/10.1016/j.celrep.2015.10.074 PubMed DOI PMC
Bannister AJ, Zegerman P, Partridge JF et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124. https://doi.org/10.1038/35065138 PubMed DOI
Barendsen GW (1994) RBE—LET Relationships for different types of lethal radiation damage in mammalian cells: comparison with DNA Dsb and an interpretation of differences in radiosensitivity. Int J Radiat Biol 66:433–436. https://doi.org/10.1080/09553009414551411 PubMed DOI
Bártová E, Kozubek S, Jirsová P et al (2001) Higher-order chromatin structure of human granulocytes. Chromosoma 110:360–370. https://doi.org/10.1007/s004120100141 PubMed DOI
Bártová E, Legartová S, Dundr M, Suchánková J (2019) A role of the 53BP1 protein in genome protection structural and functional characteristics of 53BP1-dependent DNA repair. Aging 11:2488–2511. https://doi.org/10.18632/aging.101917 PubMed DOI PMC
Baverstock K, Williams D (2006) The chernobyl accident 20 years on: an assessment of the health consequences and the international response. Environ Health Perspect 114:1312–1317. https://doi.org/10.1289/ehp.9113 PubMed DOI PMC
Belli M, Indovina L (2020) The response of living organisms to low radiation environment and its implications in radiation protection. Front Public Health 8:601711. https://doi.org/10.3389/fpubh.2020.601711 PubMed DOI PMC
Bobkova E, Depes D, Lee J-H et al (2018) Recruitment of 53BP1 proteins for dna repair and persistence of repair clusters differ for cell types as detected by single molecule localization microscopy. Int J Mol Sci 19(12):3713. https://doi.org/10.3390/ijms19123713 PubMed DOI PMC
Bouleftour W, Rowinski E, Louati S et al (2021) A Review of the role of hypoxia in radioresistance in cancer therapy. Med Sci Monit 27:e934116. https://doi.org/10.12659/MSM.934116 PubMed DOI
Bretscher HS, Fox DT (2016) Proliferation of double-strand break-resistant polyploid cells requires drosophila FANCD2. Dev Cell 37:444–457. https://doi.org/10.1016/j.devcel.2016.05.004 PubMed DOI PMC
Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192. https://doi.org/10.1038/nrc2344 PubMed DOI
Bromet EJ, Havenaar JM, Guey LT (2011) A 25 year retrospective review of the psychological consequences of the chernobyl accident. Clin Oncol 23:297–305. https://doi.org/10.1016/j.clon.2011.01.501 DOI
Broughton E (2005) The Bhopal disaster and its aftermath: a review. Environ Health 4:6. https://doi.org/10.1186/1476-069X-4-6 PubMed DOI PMC
Bunting SF, Callén E, Wong N et al (2010) 53BP1 inhibits homologous recombination in brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254. https://doi.org/10.1016/j.cell.2010.03.012 PubMed DOI PMC
Caron H, Schaik BV, Mee MVD et al (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291:1289–1292. https://doi.org/10.1126/science.1056794 PubMed DOI
Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506. https://doi.org/10.1038/nrm.2017.48 PubMed DOI PMC
Cherkezyan L, Stypula-Cyrus Y, Subramanian H et al (2014) Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study. BMC Cancer 14:189. https://doi.org/10.1186/1471-2407-14-189 PubMed DOI PMC
Cheutin T, McNairn AJ, Jenuwein T et al (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299:721–725. https://doi.org/10.1126/science.1078572 PubMed DOI
Collier H, Albanese A, Kwok C-S et al (2023) Functional crosstalk between chromatin and hypoxia signalling. Cell Signal 106:110660. https://doi.org/10.1016/j.cellsig.2023.110660 PubMed DOI
Comfort N (2015) Genetics: we are the 98%. Nature 520:615–616. https://doi.org/10.1038/520615a DOI
Committee on the Evaluation of Radiation Shielding for Space Exploration Aeronautics and Space Engineering Board Physical Sciences (2008) Managing space radiation risk in the new era of space exploration. National Academies Press, Washington, D.C.
Cremer T, Cremer C, Schneider T et al (1982) Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet 62:201–209. https://doi.org/10.1007/BF00333519 PubMed DOI
Cremer T, Cremer M, Hübner B et al (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589:2931–2943. https://doi.org/10.1016/j.febslet.2015.05.037 PubMed DOI
Cronin KA, Scott S, Firth AU et al (2022) Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer 128:4251–4284. https://doi.org/10.1002/cncr.34479 PubMed DOI
Cruz C, Castroviejo-Bermejo M, Gutiérrez-Enríquez S et al (2018) RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann Oncol. 29(5):1203–1210. https://doi.org/10.1093/annonc/mdy099 PubMed DOI PMC
Daguenet E, Louati S, Wozny A-S et al (2020) Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer 123:339–348. https://doi.org/10.1038/s41416-020-0942-3 PubMed DOI PMC
Daly MJ, Gaidamakova EK, Matrosova VY et al (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92. https://doi.org/10.1371/journal.pbio.0050092 PubMed DOI PMC
Danforth JM, Provencher L, Goodarzi AA (2022) Chromatin and the cellular response to particle radiation-induced oxidative and clustered DNA Damage. Front Cell Dev Biol 10:910440. https://doi.org/10.3389/fcell.2022.910440 PubMed DOI PMC
Darafsheh A, Hao Y, Zhao X et al (2021) Spread-out bragg peak proton FLASH irradiation using a clinical synchrocyclotron: proof of concept and ion chamber characterization. Med Phys 48:4472–4484. https://doi.org/10.1002/mp.15021 PubMed DOI
Datta K, Suman S, Kallakury BVS, Fornace AJ (2012) Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS ONE 7:e42224. https://doi.org/10.1371/journal.pone.0042224 PubMed DOI PMC
David E, Wolfson M, Fraifeld VE (2021) Background radiation impacts human longevity and cancer mortality: reconsidering the linear no-threshold paradigm. Biogerontology 22(2):189–195. https://doi.org/10.1007/s10522-020-09909-4 PubMed DOI
Davis AJ, Chen DJ (2014) Complex DSBs: a need for resection. Cell Cycle 13:3796–3797. https://doi.org/10.4161/15384101.2014.986630 PubMed DOI PMC
de Groot D, Spanjaard A, Hogenbirk MA, Jacobs H (2023) Chromosomal rearrangements and chromothripsis: the alternative end generation model. Int J Mol Sci 24:794. https://doi.org/10.3390/ijms24010794 PubMed DOI PMC
De Oliveira DS, Rosa MT, Vieira C, Loreto ELS (2021) Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. J Evol Biol 34:628–638. https://doi.org/10.1111/jeb.13762 PubMed DOI
Depes D, Lee J-H, Bobkova E et al (2018) Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur Phys J D 72(9):158. https://doi.org/10.1140/epjd/e2018-90148-1 DOI
Dhara VR, Dhara R (2002) The union carbide disaster in bhopal: a review of health effects. Arch Environ Health Int J 57:391–404. https://doi.org/10.1080/00039890209601427 DOI
Dickey JS, Redon CE, Nakamura AJ et al (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692. https://doi.org/10.1007/s00412-009-0234-4 PubMed DOI PMC
Dobešová L, Gier T, Kopečná O et al (2022) Incorporation of low concentrations of gold nanoparticles: complex effects on radiation response and fate of cancer cells. Pharmaceutics 14:166. https://doi.org/10.3390/pharmaceutics14010166 PubMed DOI PMC
Dokic I, Mairani A, Niklas M et al (2016) Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget 7(35):56676–56689. https://doi.org/10.18632/oncotarget.10996 PubMed DOI PMC
Donaubauer A-J, Becker I, Klein G et al (2024) Effects of serial radon spa therapy on pain and peripheral immune status in patients suffering from musculoskeletal disorders– results from a prospective, randomized, placebo-controlled trial. Front Immunol 15:1307769. https://doi.org/10.3389/fimmu.2024.1307769 PubMed DOI PMC
Dong J, Fu C, Li M et al (2025) Radiation from frequent whole-body CT scans induces systemic immunosuppression and immune activation of tumor tissue. Transl Oncol 54:102326. https://doi.org/10.1016/j.tranon.2025.102326 PubMed DOI PMC
Dos Santos M, Clairand I, Gruel G et al (2014) Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code. Radiat Prot Dosimetry 161:469–473. https://doi.org/10.1093/rpd/ncu029 PubMed DOI
Drozdovitch V, Bouville A, Chobanova N et al (2007) Radiation exposure to the population of Europe following the Chernobyl accident. Radiat Prot Dosimetry 123:515–528. https://doi.org/10.1093/rpd/ncl528 PubMed DOI
Du J, Kageyama S-I, Yamashita R et al (2023) Transposable elements potentiate radiotherapy-induced cellular immune reactions via RIG-I-mediated virus-sensing pathways. Commun Biol 6:818. https://doi.org/10.1038/s42003-023-05080-x PubMed DOI PMC
Durante M (2019) Proton beam therapy in Europe: more centres need more research. Br J Cancer 120:777–778. https://doi.org/10.1038/s41416-018-0329-x PubMed DOI
Durante M, Orecchia R, Loeffler JS (2017) Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol 14:483–495. https://doi.org/10.1038/nrclinonc.2017.30 PubMed DOI
Durante M, Debus J, Loeffler JS (2021) Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nat Rev Phys 3:777–790. https://doi.org/10.1038/s42254-021-00368-5 PubMed DOI PMC
Ebner DK, Kamada T (2016) The emerging role of carbon-ion radiotherapy. Front. Oncol. 6:140. https://doi.org/10.3389/fonc.2016.0014010.3389/fonc.2016.00140 PubMed DOI PMC
Ebner DK, Frank SJ, Inaniwa T et al (2021) The Emerging potential of multi-ion radiotherapy. Front Oncol 11:624786. https://doi.org/10.3389/fonc.2021.624786 PubMed DOI PMC
Erenpreisa J, Krigerts J, Salmina K et al (2021) Heterochromatin networks: topology, dynamics, and function (a working hypothesis). Cells 10:1582. https://doi.org/10.3390/cells10071582 PubMed DOI PMC
Erenpreisa J, Giuliani A, Yoshikawa K et al (2023) Spatial-temporal genome regulation in stress-response and cell-fate change. Int J Mol Sci 24:2658. https://doi.org/10.3390/ijms24032658 PubMed DOI PMC
Falk M, Falkova I (2020) Účinky ionizujícího záření na subcelulární a celulární úrovni, mechanizmy reparace DNA. Klinická radiobiologie, 1st edn. Grada Publishing, a.s., Praha, pp 67–102
Falk M, Hausmann M (2020) Advances in research of DNA damage and repair in cells exposed to various types of ionizing radiation in the era of super-resolution optical microscopy. Cas Lek Cesk. 159(7–8):286–297 PubMed
Falk M, Hausmann M (2020) A paradigm revolution or just better resolution—will newly emerging superresolution techniques identify chromatin architecture as a key factor in radiation-induced DNA damage and repair regulation? Cancers 13(1):18. https://doi.org/10.3390/cancers13010018 PubMed DOI PMC
Falk M, Lukásová E, Kozubek S, Kozubek M (2002) Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes. Gene 292:13–24 PubMed DOI
Falk M, Lukasova E, Gabrielova B et al (2007) Chromatin dynamics during DSB repair. Biochim Biophys Acta BBA - Mol Cell Res 1773:1534–1545. https://doi.org/10.1016/j.bbamcr.2007.07.002 DOI
Falk M, Lukasova E, Gabrielova B et al (2008) Local changes of higher-order chromatin structure during DSB-repair. J Phys Conf Ser 101:012018. https://doi.org/10.1088/1742-6596/101/1/012018 DOI
Falk M, Lukášová E, Kozubek S (2008) Chromatin structure influences the sensitivity of DNA to γ-radiation. Biochim Biophys Acta - Mol Cell Res 1783:2398–2414. https://doi.org/10.1016/j.bbamcr.2008.07.010 DOI
Falk M, Lukasova E, Kozubek S (2010) Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res Mutat Res 704:88–100. https://doi.org/10.1016/j.mrrev.2010.01.013 PubMed DOI
Falk M, Hausmann M, Lukasova E et al (2014) Determining omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part a-radiomics. Crit Rev Eukaryot Gene Expr 24:205–223. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2014010313 PubMed DOI
Falk M, Hausmann M, Lukasova E et al (2014) Determining omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to dna damage: part - structuromics. Crit Rev Eukaryot Gene Expr 24:225–247. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v24.i3.40 PubMed DOI
Falk M, Lukášová E, Štefančíková L et al (2014) Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl Radiat Isot 83:177–185. https://doi.org/10.1016/j.apradiso.2013.01.029 PubMed DOI
Falk M, Falková I, Kopečná O et al (2018) Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci Rep 8:14694. https://doi.org/10.1038/s41598-018-32939-5 PubMed DOI PMC
Falk M, Schäfer M, Weidner J, et al (2025a) Understanding Radiation Induced DNA Damage and Repair in a Multiscale Chromatin Landscape - Past Insights, Current Understanding and Future Complexities. In: Advances in Atomic and Molecular Physics at the interfaces with Natural Sciences Technology and Medicine, World Scientific, Singapore
Falk M, Hausmann M, Schäfer M et al (2025b) Deciphering chromosomal translocation mechanisms: the influence of radiation type and chromatin architecture. In: Chromosomal Abnormalities - From DNA Damage to Chromosome Aberrations [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.1010246
Fernando M, Duijf PHG, Proctor M et al (2021) Dysregulated G2 phase checkpoint recovery pathway reduces DNA repair efficiency and increases chromosomal instability in a wide range of tumours. Oncogenesis 10:41. https://doi.org/10.1038/s41389-021-00329-8 PubMed DOI PMC
Finn EH, Pegoraro G, Shachar S, Misteli T (2017) Comparative analysis of 2D and 3D distance measurements to study spatial genome organization. Methods 123:47–55. https://doi.org/10.1016/j.ymeth.2017.01.007 PubMed DOI PMC
Firat E, Gaedicke S, Tsurumi C et al (2011) Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells. Radiat Oncol 6:71. https://doi.org/10.1186/1748-717X-6-71 PubMed DOI PMC
Fischer EF, Pilarczyk G, Hausmann M (2023) Microscopic analysis of heterochromatin, Euchromatin and Cohesin in cancer cell models and under anti-cancer treatment. Curr Issues Mol Biol 45:8152–8172. https://doi.org/10.3390/cimb45100515 PubMed DOI PMC
Friedlander M (2012) A century of cosmic rays. Nature 483:400–401. https://doi.org/10.1038/483400a PubMed DOI
Frigerio C, Di Nisio E, Galli M et al (2023) The chromatin landscape around DNA double-strand breaks in yeast and its influence on DNA repair pathway choice. Int J Mol Sci 24:3248. https://doi.org/10.3390/ijms24043248 PubMed DOI PMC
Funabashi Y, Kitazawa K (2012) Fukushima in review: a complex disaster, a disastrous response. Bull At Sci 68:9–21. https://doi.org/10.1177/0096340212440359 DOI
Furukawa S, Nagamatsu A, Nenoi M et al (2020) Space radiation biology for “Living in Space.” BioMed Res Int 2020:1–25. https://doi.org/10.1155/2020/4703286 DOI
Goodarzi AA, Jeggo PA (2012) The Heterochromatic barrier to DNA Double strand break repair: how to get the entry visa. Int J Mol Sci 13:11844–11860. https://doi.org/10.3390/ijms130911844 PubMed DOI PMC
Goodarzi AA, Jeggo P, Lobrich M (2010) The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair 9:1273–1282. https://doi.org/10.1016/j.dnarep.2010.09.013 PubMed DOI
Gridina M, Fishman V (2022) Multilevel view on chromatin architecture alterations in cancer. Front Genet 13:1059617. https://doi.org/10.3389/fgene.2022.1059617 PubMed DOI PMC
Grimston MC (2002) Chernobyl and Bhopal Ten Years on. In: Lewins J, Becker M (eds) Advances in Nuclear Science and Technology. Kluwer Academic Publishers, Boston, pp 1–45
Gruber JJ, Chen J, Geller B et al (2019) Chromatin remodeling in response to BRCA2-Crisis. Cell Rep 28:2182-2193.e6. https://doi.org/10.1016/j.celrep.2019.07.057 PubMed DOI PMC
Grzywa-Celińska A, Krusiński A, Mazur J et al (2020) Radon—the element of risk. The impact of radon exposure on human health. Toxics 8:120. https://doi.org/10.3390/toxics8040120 PubMed DOI PMC
Guan F, Bronk L, Kerr M et al (2024) Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum? Sci Rep 14:25181. https://doi.org/10.1038/s41598-024-73619-x PubMed DOI PMC
Gupta S, Harper A, Ruan Y et al (2020) International trends in the incidence of cancer among adolescents and young adults. JNCI J Natl Cancer Inst 112:1105–1117. https://doi.org/10.1093/jnci/djaa007 PubMed DOI
Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M (2021) Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev 50:8355–8360. https://doi.org/10.1039/D1CS00044F PubMed DOI PMC
Hasegawa A, Ohira T, Maeda M et al (2016) Emergency responses and health consequences after the fukushima accident; evacuation and relocation. Clin Oncol 28:237–244. https://doi.org/10.1016/j.clon.2016.01.002
Hausmann M, Ilić N, Pilarczyk G et al (2017) Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int J Mol Sci 18(10):2066. https://doi.org/10.3390/ijms18102066 PubMed DOI PMC
Hausmann M, Wagner E, Lee J-H et al (2018) Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale 10:4320–4331. https://doi.org/10.1039/C7NR08145F PubMed DOI
Hausmann M, Falk M, Neitzel C et al (2021) Elucidation of the clustered nano-architecture of radiation-induced DNA damage sites and surrounding chromatin in cancer cells: a single molecule localization microscopy approach. Int J Mol Sci 22:3636. https://doi.org/10.3390/ijms22073636 PubMed DOI PMC
Hausmann M, Hildenbrand G, Pilarczyk G (2022) Networks and Islands of Genome Nano-architecture and Their Potential Relevance for Radiation Biology: (A Hypothesis and Experimental Verification Hints). In: Kloc M, Kubiak JZ (eds) Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine. Springer International Publishing, Cham, pp 3–34 DOI
Hausmann M, Neitzel C, Hahn H, et al (2021b) Space and Time in the Universe of the Cell Nucleus after Ionizing Radiation Attacks: A Comparison of Cancer and Non-Cancer Cell Response. In: The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response. MDPI, pp 15
Havránková R et al (2020) Klinická radiobiologie. Prague, Czech Republic, GRADA
Hellweg CE, Arena C, Baatout S et al (2023) Space Radiobiology. In: Baatout S (ed) Radiobiology Textbook. Springer International Publishing, Cham, pp 503–569 DOI
Herate C, Sabatier L (2019) Retrospective biodosimetry techniques: focus on cytogenetics assays for individuals exposed to ionizing radiation. Mutat Res Mutat Res 783:108287. https://doi.org/10.1016/j.mrrev.2019.108287 DOI
Heylmann D, Ponath V, Kindler T, Kaina B (2021) Comparison of DNA repair and radiosensitivity of different blood cell populations. Sci Rep 11:2478. https://doi.org/10.1038/s41598-021-81058-1 PubMed DOI PMC
Hill RM, Rocha S, Parsons JL (2022) Overcoming the impact of hypoxia in driving radiotherapy resistance in head and neck squamous cell carcinoma. Cancers 14:4130. https://doi.org/10.3390/cancers14174130 PubMed DOI PMC
Hofer M, Falk M, Komůrková D et al (2016) Two new faces of amifostine: protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J Med Chem 59:3003–3017. https://doi.org/10.1021/acs.jmedchem.5b01628 PubMed DOI
Hofer M, Hoferová Z, Depeš D, Falk M (2017) Combining pharmacological countermeasures to attenuate the acute radiation syndrome-a concise review. Mol Basel Switz 22(5):834. https://doi.org/10.3390/molecules22050834 DOI
Hofer M, Hoferová Z, Falk M (2017) Pharmacological modulation of radiation damage. Does it exist a chance for other substances than hematopoietic growth factors and cytokines? Int J Mol Sci 18(7):1385. https://doi.org/10.3390/ijms18071385 PubMed DOI PMC
Hosoda M, Nugraha ED, Akata N et al (2021) A unique high natural background radiation area – Dose assessment and perspectives. Sci Total Environ 750:142346. https://doi.org/10.1016/j.scitotenv.2020.142346 PubMed DOI
Hu Q, Espejo Valle-Inclán J, Dahiya R et al (2024) Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. Nat Commun 15:5611. https://doi.org/10.1038/s41467-024-49985-5 PubMed DOI PMC
Huang Y (2024) Nuclear proliferation and international security: challenges and perspectives. Int J Soc Sci Public Adm 4:395–402. https://doi.org/10.62051/ijsspa.v4n2.52 DOI
Hughes T, Harper A, Gupta S et al (2024) The current and future global burden of cancer among adolescents and young adults: a population-based study. Lancet Oncol 25:1614–1624. https://doi.org/10.1016/S1470-2045(24)00523-0 PubMed DOI
IARC Monogr Eval Carcinog Risks Hum (2000) Ionizing radiation part 1 X- and gamma-radiation, and neutrons. Overall introduction. IARC Monogr Eval Carcinog Risks Hum 75(Pt. 1):35–115
Inturi S, Tewari-Singh N, Agarwal C et al (2014) Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes. Mutat Res Mol Mech Mutagen 763–764:53–63. https://doi.org/10.1016/j.mrfmmm.2014.04.002 DOI
Jachimowicz RD, Goergens J, Reinhardt HC (2019) DNA double-strand break repair pathway choice - from basic biology to clinical exploitation. Cell Cycle 18:1423–1434. https://doi.org/10.1080/15384101.2019.1618542 PubMed DOI PMC
Jan Y-H, Heck DE, Laskin DL, Laskin JD (2020) DNA damage signaling in the cellular responses to mustard vesicants. Toxicol Lett 326:78–82. https://doi.org/10.1016/j.toxlet.2020.03.008 PubMed DOI PMC
Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. https://doi.org/10.3322/caac.20107 PubMed DOI
Ježková L, Falk M, Falková I et al (2014) Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl Radiat Isot 83:128–136. https://doi.org/10.1016/j.apradiso.2013.01.022 PubMed DOI
Jezkova L, Zadneprianetc M, Kulikova E et al (2018) Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γh2AX/53BP1 foci. Nanoscale 10:1162–1179. https://doi.org/10.1039/c7nr06829h PubMed DOI
Johnson AB, Barton MC (2007) Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res Mol Mech Mutagen 618:149–162. https://doi.org/10.1016/j.mrfmmm.2006.10.007 DOI
Joiner MC (2009) Linear energy transfer and relative biological effectiveness. In: Joiner MC, van der Kogel A (eds) Basic Clinical Radiobiology, 4th edn. CRC Press, London DOI
Kakarougkas A, Ismail A, Klement K et al (2013) Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res 41:9719–9731. https://doi.org/10.1093/nar/gkt729 PubMed DOI PMC
Kamstra JH, Hurem S, Martin LM et al (2018) Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci Rep 8:15373. https://doi.org/10.1038/s41598-018-33817-w PubMed DOI PMC
Kanavos P (2006) The rising burden of cancer in the developing world. Ann Oncol. https://doi.org/10.1093/annonc/mdl983 PubMed DOI
Karotki AV, Baverstock K (2012) What mechanisms/processes underlie radiation-induced genomic instability? Cell Mol Life Sci 69:3351–3360. https://doi.org/10.1007/s00018-012-1148-5 PubMed DOI PMC
Katugampola S, Hobbs RF, Howell RW (2024) Generalized methods for predicting biological response to mixed radiation types and calculating equieffective doses (EQD X). Med Phys 51:637–649. https://doi.org/10.1002/mp.16650 PubMed DOI
Kiffer F, Boerma M, Allen A (2019) Behavioral effects of space radiation: a comprehensive review of animal studies. Life Sci Space Res 21:1–21. https://doi.org/10.1016/j.lssr.2019.02.004 DOI
Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694. https://doi.org/10.1093/nar/gkn550 PubMed DOI PMC
Knudsen L (1991) Legally-induced abortions in Denmark after Chernobyl. Biomed Pharmacother 45:229–231. https://doi.org/10.1016/0753-3322(91)90022-L PubMed DOI
Kochanova D, Gulati S, Durdik M et al (2023) Effects of low-dose ionizing radiation on genomic instability in interventional radiology workers. Sci Rep 13:15525. https://doi.org/10.1038/s41598-023-42139-5 PubMed DOI PMC
Koltsova AS, Pendina AA, Efimova OA et al (2019) On the complexity of mechanisms and consequences of chromothripsis: an update. Front Genet 10:393. https://doi.org/10.3389/fgene.2019.00393 PubMed DOI PMC
König L, Haering P, Lang C et al (2020) Secondary malignancy risk following proton vs X-ray treatment of mediastinal malignant lymphoma: a comparative modeling study of thoracic organ-specific cancer risk. Front Oncol 10:989. https://doi.org/10.3389/fonc.2020.00989 PubMed DOI PMC
Kostin DV, Shipatov ÉT (1999) Generation of bremsstrahlung with a continuous spectrum by electrons in two-layer targets. At Energy 86:132–135. https://doi.org/10.1007/BF02673534 DOI
Kozubek S, Lukásová E, Jirsová P et al (2002) 3D structure of the human genome: order in randomness. Chromosoma 111:321–331. https://doi.org/10.1007/s00412-002-0210-8 PubMed DOI
Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:a012765–a012765. https://doi.org/10.1101/cshperspect.a012765 PubMed DOI PMC
Kumar K, Kumar S, Datta K et al (2023) High-LET-radiation-induced persistent DNA damage response signaling and gastrointestinal cancer development. Curr Oncol 30:5497–5514. https://doi.org/10.3390/curroncol30060416 PubMed DOI PMC
Kumari N, Kaur E, Raghavan SC, Sengupta S (2025) Regulation of pathway choice in DNA repair after double-strand breaks. Curr Opin Pharmacol 80:102496. https://doi.org/10.1016/j.coph.2024.102496 PubMed DOI
Le Caër S (2011) Water radiolysis: influence of oxide surfaces on h2 production under ionizing radiation. Water 3:235–253. https://doi.org/10.3390/w3010235 DOI
Lee M, Norman EB, Akindele OA et al (2022) Fast neutron activation of ubiquitous materials. Appl Radiat Isot 181:110098. https://doi.org/10.1016/j.apradiso.2022.110098 PubMed DOI
Li X, Heyer W-D (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113. https://doi.org/10.1038/cr.2008.1 PubMed DOI
Li Z, Wang Y (2023) Short double-stranded DNA (≤40-bp) affects repair pathway choice. Int J Mol Sci 24:11836. https://doi.org/10.3390/ijms241411836 PubMed DOI PMC
Lopez Perez R, Best G, Nicolay NH et al (2016) Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. FASEB J Off Publ Fed Am Soc Exp Biol 30:2767–2776. https://doi.org/10.1096/fj.201500106R DOI
Lorat Y, Timm S, Jakob B et al (2016) Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol 121:154–161. https://doi.org/10.1016/j.radonc.2016.08.028 PubMed DOI
Lorenzo-González M, Ruano-Ravina A, Torres-Durán M et al (2019) Lung cancer and residential radon in never-smokers: a pooling study in the Northwest of Spain. Environ Res 172:713–718. https://doi.org/10.1016/j.envres.2019.03.011 PubMed DOI
Lukásová E, Kozubek S, Kozubek M et al (2002) The 3D structure of human chromosomes in cell nuclei. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol 10:535–548 DOI
Lukasova E, Kozubek S, Falk M et al (2004) Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium. Chromosoma 112:221–230. https://doi.org/10.1007/s00412-003-0263-3 PubMed DOI
Lukasova E, Koristek Z, Falk M et al (2005) Methylation of histones in myeloid leukemias as a potential marker of granulocyte abnormalities. J Leukoc Biol 77:100–111. https://doi.org/10.1189/jlb.0704388 PubMed DOI
Lumniczky K, Impens N, Armengol G et al (2021) Low dose ionizing radiation effects on the immune system. Environ Int 149:106212. https://doi.org/10.1016/j.envint.2020.106212 PubMed DOI
Maier A, Wiedemann J, Rapp F et al (2020) radon exposure—therapeutic effect and cancer risk. Int J Mol Sci 22:316. https://doi.org/10.3390/ijms22010316 PubMed DOI PMC
Mancuso M, Pasquali E, Giardullo P et al (2012) The radiation bystander effect and its potential implications for human health. Curr Mol Med 12:613–624. https://doi.org/10.2174/156652412800620011 PubMed DOI
Mavragani IV, Laskaratou DA, Frey B et al (2016) Key mechanisms involved in ionizing radiation-induced systemic effects A current review. Toxicol Res 5:12–33. https://doi.org/10.1039/c5tx00222b DOI
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG (2019) Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance. Cancers 11:1789. https://doi.org/10.3390/cancers11111789 PubMed DOI PMC
Mehnati P, Morimoto S, Yatagai F et al (2005) Exploration of `Over Kill Effect’ of High-LET Ar- and Fe-ions by Evaluating the Fraction of Non-hit Cell and Interphase Death. J Radiat Res (Tokyo) 46:343–350. https://doi.org/10.1269/jrr.46.343 PubMed DOI
Michaelidesová A, Vachelová J, Klementová J et al (2020) In Vitro comparison of passive and active clinical proton beams. Int J Mol Sci 21:5650. https://doi.org/10.3390/ijms21165650 PubMed DOI PMC
Missiaggia M (2024) On the radiation quality characterization in radiation therapy: from linear energy transfer to experimental microdosimetry. Eur Phys J Plus 139:625. https://doi.org/10.1140/epjp/s13360-024-05318-5 DOI
Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183:28–45. https://doi.org/10.1016/j.cell.2020.09.014 PubMed DOI PMC
Mladenov E, Mladenova V, Stuschke M, Iliakis G (2023) New facets of DNA double strand break repair: radiation dose as key determinant of HR versus c-NHEJ engagement. Int J Mol Sci 24:14956. https://doi.org/10.3390/ijms241914956 PubMed DOI PMC
Mladenova V, Mladenov E, Chaudhary S et al (2022) The high toxicity of DSB-clusters modelling high-LET-DNA damage derives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Front Cell Dev Biol 10:1016951. https://doi.org/10.3389/fcell.2022.1016951 PubMed DOI PMC
Mladenova V, Mladenov E, Stuschke M, Iliakis G (2022) DNA damage clustering after ionizing radiation and consequences in the processing of chromatin breaks. Molecules 27:1540. https://doi.org/10.3390/molecules27051540 PubMed DOI PMC
Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33:261–274. https://doi.org/10.1046/j.1365-2184.2000.00191.x PubMed DOI
Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159:567–580. https://doi.org/10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 PubMed DOI
Morgan WF, Day JP, Kaplan MI et al (1996) Genomic instability induced by ionizing radiation. Radiat Res 146:247. https://doi.org/10.2307/3579454 PubMed DOI
Morgan A, Ohira T, Maeda M et al (2016) Emergency responses and health consequences after the fukushima accident; evacuation and relocation. Clin Oncol 28:237–244. https://doi.org/10.1016/j.clon.2016.01.002 DOI
Morgan M, Vajuhudeen Z (2020) Radiation weighting factor. Radiopaedia.org. Radiopaedia.org
Mori E, Takahashi A, Yamakawa N et al (2009) High LET heavy ion radiation induces p53-independent apoptosis. J Radiat Res (Tokyo) 50:37–42. https://doi.org/10.1269/jrr.08075 PubMed DOI
Mott JHL, West NS (2021) Essentials of depth dose calculations for clinical oncologists. Clin Oncol 33:5–11. https://doi.org/10.1016/j.clon.2020.06.021 DOI
Nagashima K, Yasuda N (2020) Study on the decision-making of the protective action for residents at the early phase of nuclear disaster. J Nucl Sci Technol 57:1035–1045. https://doi.org/10.1080/00223131.2020.1753595 DOI
Nagashima K, Yasuda N (2021) Study on description of plant status at fukushima accident by emergency action level. J Nucl Eng Radiat Sci 7:011701. https://doi.org/10.1115/1.4046841 DOI
Nelson GA (2016) Space radiation and human exposures, a primer. Radiat Res 185:349–358. https://doi.org/10.1667/RR14311.1 PubMed DOI
Newhauser WD, Durante M (2011) Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 11:438–448. https://doi.org/10.1038/nrc3069 PubMed DOI PMC
Nickoloff JA, Sharma N, Taylor L (2020) Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes 11:99. https://doi.org/10.3390/genes11010099 PubMed DOI PMC
Noda A (2018) Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry. J Radiat Res (Tokyo). https://doi.org/10.1093/jrr/rrx074 PubMed DOI
Noon AT, Shibata A, Rief N et al (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12:177–184. https://doi.org/10.1038/ncb2017 PubMed DOI
Pagáčová E, Falk M, Falková I et al (2014) Frequent chromatin rearrangements in myelodysplastic syndromes–what stands behind? Folia Biol (Praha) 60(Suppl 1):1–7 PubMed
Pagáčová E, Štefančíková L, Schmidt-Kaler F et al (2019) Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy. Int J Mol Sci 20(3):588. https://doi.org/10.3390/ijms20030588 PubMed DOI PMC
Paganetti H (2023) A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front Oncol 13:1201500. https://doi.org/10.3389/fonc.2023.1201500 PubMed DOI PMC
Palmqvist T, Lopez-Riego M, Bucher M et al (2025) Biological effectiveness of combined exposure to neutrons and gamma radiation applied in two orders of sequence: relevance for biological dosimetry after nuclear emergencies. Radiat Med Prot 6:1–10. https://doi.org/10.1016/j.radmp.2024.10.004 DOI
Pavey S, Spoerri L, Haass NK, Gabrielli B (2013) DNA repair and cell cycle checkpoint defects as drivers and therapeutic targets in melanoma. Pigment Cell Melanoma Res 26:805–816. https://doi.org/10.1111/pcmr.12136 PubMed DOI
Pawelczak KS, Bennett SM, Turchi JJ (2011) Coordination of DNA–PK activation and nuclease processing of DNA termini in NHEJ. Antioxid Redox Signal 14:2531–2543. https://doi.org/10.1089/ars.2010.3368 PubMed DOI PMC
Pennock M, Wei S, Cheng C et al (2023) Proton bragg peak flash enables organ sparing and ultra-high dose-rate delivery: proof of principle in recurrent head and neck cancer. Cancers 15:3828. https://doi.org/10.3390/cancers15153828 PubMed DOI PMC
Perucchi M, Domenighetti G (1990) The Chernobyl accident and induced abortions: only one-way information. Scand J Work Environ Health 16:443–444. https://doi.org/10.5271/sjweh.1761 PubMed DOI
Pouikli A, Maleszewska M, Parekh S et al (2022) Hypoxia promotes osteogenesis by facilitating acetyl-CoA mediated mitochondrial–nuclear communication. EMBO J 41:e111239. https://doi.org/10.15252/embj.2022111239 PubMed DOI PMC
Prorok P, Grin IR, Matkarimov BT et al (2021) Evolutionary origins of DNA Repair pathways: role of oxygen catastrophe in the emergence of DNA glycosylases. Cells 10:1591. https://doi.org/10.3390/cells10071591 PubMed DOI PMC
Reindl J, Drexler GA, Girst S et al (2015) Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells. Phys Biol 12:066005. https://doi.org/10.1088/1478-3975/12/6/066005 PubMed DOI
Rittich B, Španová A, Falk M et al (2004) Cleavage of double stranded plasmid DNA by lanthanide complexes. J Chromatogr B Analyt Technol Biomed Life Sci 800:169–173. https://doi.org/10.1016/j.jchromb.2003.09.011 PubMed DOI
Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868. https://doi.org/10.1074/jbc.273.10.5858 PubMed DOI
Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916. https://doi.org/10.1083/jcb.146.5.905 PubMed DOI PMC
Roobol SJ, Van Den Bent I, Van Cappellen WA et al (2020) Comparison of high- and ;ow-LET radiation-induced dna double-strand break processing in living cells. Int J Mol Sci 21:6602. https://doi.org/10.3390/ijms21186602 PubMed DOI PMC
Santa Cruz GA (2016) Microdosimetry: principles and applications. Rep Pract Oncol Radiother 21:135–139. https://doi.org/10.1016/j.rpor.2014.10.006 PubMed DOI
Saunders W, Castro JR, Chen GTY et al (1985) Helium-Ion radiation therapy at the Lawrence Berkeley laboratory: recent results of a northern California oncology group clinical trial. Radiat Res 104:S227. https://doi.org/10.2307/3576652 DOI
Schäfer M, Hildenbrand G, Hausmann M (2024) Impact of gold nanoparticles and ionizing radiation on whole chromatin organization as detected by single-molecule localization microscopy. Int J Mol Sci 25:12843. https://doi.org/10.3390/ijms252312843 PubMed DOI PMC
Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys 82:383. https://doi.org/10.1103/RevModPhys.82.383
Schaub L, Harrabi SB, Debus J (2020) Particle therapy in the future of precision therapy. Br J Radiol 93:20200183. https://doi.org/10.1259/bjr.20200183 PubMed DOI PMC
Schipler A, Iliakis G (2013) DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res 41:7589–7605. https://doi.org/10.1093/nar/gkt556 PubMed DOI PMC
Schwarz B, Friedl AA, Girst S et al (2019) Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutat Res Mol Mech Mutagen 816–818:111675. https://doi.org/10.1016/j.mrfmmm.2019.111675 DOI
Scully R, Panday A, Elango R, Willis NA (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20:698–714. https://doi.org/10.1038/s41580-019-0152-0 PubMed DOI PMC
Sedelnikova OA, Pilch DR, Redon C, Bonner WM (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2:233–235. https://doi.org/10.4161/cbt.2.3.373 PubMed DOI
Sethi TK, El-Ghamry MN, Kloecker GH (2012) Radon and lung cancer. Clin Adv Hematol Oncol 2012:157–64
Sevcik J, Falk M, Kleiblova P et al (2012) The BRCA1 alternative splicing variant Δ14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cell Signal 24:1023–1030. https://doi.org/10.1016/j.cellsig.2011.12.023 PubMed DOI
Sevcik J, Falk M, Macurek L et al (2013) Expression of human BRCA1δ17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell Signal 25:1186–1193. https://doi.org/10.1016/j.cellsig.2013.02.008 PubMed DOI
Shantyr II, Nikiforov AM, Romanovich IK et al (1997) Estimation of radiation exposures of “liquidators” of the chernobyl nuclear power station: identification of risk groups. Int J Occup Environ Health 3:45–50. https://doi.org/10.1179/oeh.1997.3.1.45 PubMed DOI
Shen H, Hau E, Joshi S et al (2015) Sensitization of Glioblastoma cells to irradiation by modulating the glucose metabolism. Mol Cancer Ther 14:1794–1804. https://doi.org/10.1158/1535-7163.MCT-15-0247 PubMed DOI
Shibata A, Jeggo PA (2020) Canonical DNA non-homologous end-joining; capacity versus fidelity. Br J Radiol 93:20190966. https://doi.org/10.1259/bjr.20190966 PubMed DOI PMC
Shibata A, Conrad S, Birraux J et al (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase: DSB repair pathway choice in G2 phase. EMBO J 30:1079–1092. https://doi.org/10.1038/emboj.2011.27 PubMed DOI PMC
Siblini Y, Chéry C, Rouyer P et al (2021) Ionizing radiations induce shared epigenomic signatures unraveling adaptive mechanisms of cancerous cell lines with or without methionine dependency. Clin Epigenetics 13:212. https://doi.org/10.1186/s13148-021-01199-y PubMed DOI PMC
Sihver L, Yasuda N (2018) Causes and radiological consequences of the chernobyl and fukushima nuclear accidents. J Nucl Eng Radiat Sci 4:020914. https://doi.org/10.1115/1.4037116 DOI
Šlampa P (2021) Radiační onkologie: pro postgraduální přípravu i každodenní praxi. Maxdorf, Praha
Smith LE, Nagar S, Kim GJ, Morgan WF (2003) radiation-induced genomic instability: radiation quality and dose response. Health Phys 85:23–29. https://doi.org/10.1097/00004032-200307000-00006 PubMed DOI
Solomon F, Marston R, Lewis T (1986) The Medical Implications of Nuclear War. National Academies Press
Solov’yov AV, Verkhovtsev AV, Mason NJ et al (2024) Condensed matter systems exposed to radiation: multiscale theory, simulations, and experiment. Chem Rev 124:8014–8129. https://doi.org/10.1021/acs.chemrev.3c00902 PubMed DOI PMC
Sørensen BS, Overgaard J, Bassler N (2011) In vitro RBE-LET dependence for multiple particle types. Acta Oncol 50:757–762. https://doi.org/10.3109/0284186X.2011.582518 PubMed DOI
Spinelli A, Osborn J (1991) The effects of the Chernobyl explosion on induced abortion in Italy. Biomed Pharmacother 45:243–247. https://doi.org/10.1016/0753-3322(91)90024-N PubMed DOI
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084. https://doi.org/10.1016/j.redox.2018.101084 PubMed DOI
Staaf E, Brehwens K, Haghdoost S et al (2012) Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr 3:8. https://doi.org/10.1186/2041-9414-3-8 PubMed DOI PMC
Štefanciková L, Lacombe S, Salado D et al (2016) Effect of gadolinium-base`d nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J Nanobiotechnology 14:63. https://doi.org/10.1186/s12951-016-0215-8 PubMed DOI PMC
Stone JK, Kim J-H, Vukadin L et al (2019) Hypoxia induces cancer cell-specific chromatin interactions and increases MALAT1 expression in breast cancer cells. J Biol Chem 294:11213–11224. https://doi.org/10.1074/jbc.RA118.006889 PubMed DOI PMC
Stricklin DL, VanHorne-Sealy J, Rios CI et al (2021) Neutron radiobiology and dosimetry. Radiat Res 195:480–496. https://doi.org/10.1667/RADE-20-00213.1 PubMed DOI PMC
Strigari L, Strolin S, Morganti AG, Bartoloni A (2021) Dose-effects models for space radiobiology: an overview on dose-effect relationships. Front Public Health 9:733337. https://doi.org/10.3389/fpubh.2021.733337 PubMed DOI PMC
Sun L, Jing Y, Liu X et al (2020) Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat Commun 11:1886. https://doi.org/10.1038/s41467-020-15809-5 PubMed DOI PMC
Sung H, Siegel RL, Rosenberg PS, Jemal A (2019) Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 4:e137–e147. https://doi.org/10.1016/S2468-2667(18)30267-6 PubMed DOI
Surdutovich E, Solovyov AV (2017) Cell survival probability in a spread-out Bragg peak for novel treatment planning. Eur Phys J D 71:210. https://doi.org/10.1140/epjd/e2017-80120-0 DOI
Takahashi A, Ikeda H, Yoshida Y (2018) Role of high-linear energy transfer radiobiology in space radiation exposure risks. Int J Part Ther 5:151–159. https://doi.org/10.14338/IJPT-18-00013.1 PubMed DOI PMC
Takata H, Hanafusa T, Mori T et al (2013) Chromatin compaction protects genomic DNA from radiation damage. PLoS ONE 8:e75622. https://doi.org/10.1371/journal.pone.0075622 PubMed DOI PMC
Talapko J, Talapko D, Katalinić D et al (2024) Health Effects of Ionizing radiation on the human body. Med Kaunas Lith 60:653. https://doi.org/10.3390/medicina60040653 DOI
Tamaki N, Shishido F (2011) What we have learned from Fukushima. Eur J Nucl Med Mol Imaging 38:1589–1590. https://doi.org/10.1007/s00259-011-1869-y PubMed DOI
Tanigawa K, Hosoi Y, Hirohashi N et al (2012) Loss of life after evacuation: lessons learned from the Fukushima accident. The Lancet 379:889–891. https://doi.org/10.1016/S0140-6736(12)60384-5 DOI
Tchurikov NA, Alembekov IR, Klushevskaya ES et al (2022) Genes possessing the most frequent DNA DSBs are highly associated with development and cancers, and essentially overlap with the rDNA-contacting genes. Int J Mol Sci 23:7201. https://doi.org/10.3390/ijms23137201 PubMed DOI PMC
Terekhanova NV, Karpova A, Liang W-W et al (2023) Epigenetic regulation during cancer transitions across 11 tumour types. Nature 623:432–441. https://doi.org/10.1038/s41586-023-06682-5 PubMed DOI PMC
Thielen H (2012) The Fukushima daiichi nuclear accident—an overview. Health Phys 103:169–174. https://doi.org/10.1097/HP.0b013e31825b57ec PubMed DOI
Trowell OA (1952) The sensitivity of lymphocytes to ionising radiation. J Pathol Bacteriol 64:687–704. https://doi.org/10.1002/path.1700640403 PubMed DOI
Urrutia-Pereira M, Miguel Chatkin J, José Chong-Neto H, Solé D (2023) Radon exposure: a major cause of lung cancer in nonsmokers. J Bras Pneumol. https://doi.org/10.36416/1806-3756/e20230210 PubMed DOI PMC
Van Bueren MAE, Janssen A (2024) The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair 133:103592. https://doi.org/10.1016/j.dnarep.2023.103592 PubMed DOI
Vergara X, Manjón AG, De Haas M et al (2024) Widespread chromatin context-dependencies of DNA double-strand break repair proteins. Nat Commun 15:5334. https://doi.org/10.1038/s41467-024-49232-x PubMed DOI PMC
Vicar T, Gumulec J, Kolar R et al (2021) DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput Struct Biotechnol J 19:6465–6480. https://doi.org/10.1016/j.csbj.2021.11.019 PubMed DOI PMC
Vogin G, Foray N (2012) The law of Bergonié and Tribondeau: A nice formula for a first approximation. Int J Radiat Biol 89(1):2–8. https://doi.org/10.3109/09553002.2012.717732
Von Halban H, Joliot F, Kowarski L (1939) Liberation of neutrons in the nuclear explosion of uranium. Nature 143:470–471. https://doi.org/10.1038/143470a0 DOI
Wang J, Wang H, Qian H (2018) Biological effects of radiation on cancer cells. Mil Med Res 5:20. https://doi.org/10.1186/s40779-018-0167-4 PubMed DOI PMC
Wassing IE, Esashi F (2021) RAD51: beyond the break. Semin Cell Dev Biol 113:38–46. https://doi.org/10.1016/j.semcdb.2020.08.010 PubMed DOI PMC
Weidner J, Neitzel C, Gote M et al (2023) Advanced image-free analysis of the nano-organization of chromatin and other biomolecules by Single Molecule Localization Microscopy (SMLM). Comput Struct Biotechnol J 21:2018–2034. https://doi.org/10.1016/j.csbj.2023.03.009 PubMed DOI PMC
Wells JN, Feschotte C (2020) A Field guide to eukaryotic transposable elements. Annu Rev Genet 54:539–561. https://doi.org/10.1146/annurev-genet-040620-022145 PubMed DOI PMC
Wojcik A, Harms-Ringdahl M (2019) Radiation protection biology then and now. Int J Radiat Biol 95:841–850. https://doi.org/10.1080/09553002.2019.1589027 PubMed DOI
Wu Y, Song Y, Wang R, Wang T (2023) Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 22:96. https://doi.org/10.1186/s12943-023-01801-2 PubMed DOI PMC
Yamakawa N, Takahashi A, Mori E et al (2008) High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation. Cancer Sci 99:1455–1460. https://doi.org/10.1111/j.1349-7006.2008.00818.x PubMed DOI PMC
Yeager M, Machiela MJ, Kothiyal P et al (2021) Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science 372:725–729. https://doi.org/10.1126/science.abg2365 PubMed DOI PMC
Yoon JY, Lee J-D, Joo SW, Kang DR (2016) Indoor radon exposure and lung cancer: a review of ecological studies. Ann Occup Environ Med 28:15. https://doi.org/10.1186/s40557-016-0098-z PubMed DOI PMC
Yue NJ, Lambert K, Reiff JE et al (2013) Radiation-induced genomic instability and radiation sensitivity. In: Brady LW, Yaeger TE (eds) Encyclopedia of Radiation Oncology. Springer, Berlin Heidelberg, pp 719–726 DOI
Zadneprianetc M, Boreyko A, Jezkova L et al (2022) Clustered DNA damage formation in human cells after exposure to low- and intermediate-energy accelerated heavy Ions. Phys Part Nucl Lett 19:440–450. https://doi.org/10.1134/S1547477122040227 DOI