In Vitro Comparison of Passive and Active Clinical Proton Beams

. 2020 Aug 06 ; 21 (16) : . [epub] 20200806

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32781754

Grantová podpora
730983 INSPIRE project of the European Union's Horizon 2020 Research and Innovation Programme
20-04109J Czech Science Foundation
DAAD-19-03 German Academic Exchange Service

Nowadays, the irradiation methodology in proton therapy is switching from the use of passively scattered beams to active pencil beams due to the possibility of more conformal dose distributions. The dose rates of active pencil beams are much higher than those of passive beams. The purpose of this study was to investigate whether there is any difference in the biological effectiveness of these passive and active irradiation modes. The beam qualities of double scattering and pencil beam scanning were measured dosimetrically and simulated using the Monte Carlo code. Using the medulloblastoma cell line DAOY, we performed an in vitro comparison of the two modes in two positions along the dose-deposition curve plateau and inside the Bragg peak. We followed the clonogenic cell survival, apoptosis, micronuclei, and γH2AX assays as biological endpoints. The Monte Carlo simulations did not reveal any difference between the beam qualities of the two modes. Furthermore, we did not observe any statistically significant difference between the two modes in the in vitro comparison of any of the examined biological endpoints. Our results do not show any biologically relevant differences related to the different dose rates of passive and active proton beams.

Zobrazit více v PubMed

Wilson R.R. Radiological Use of Fast Protons. Radiolgy. 1946;47:487–491. doi: 10.1148/47.5.487. PubMed DOI

Lawrence J.H. Proton irradiation of the pituitary. Cancer. 1957;10:795–798. doi: 10.1002/1097-0142(195707/08)10:4<795::AID-CNCR2820100426>3.0.CO;2-B. PubMed DOI

Paganetti H. Proton Therapy Physics (Series in Medical Physics and Biomedical Engineering) Taylor & Francis; London, UK: 2012.

Schneider U., Agosteo S., Pedroni E., Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int. J. Radiat. Oncol. 2002;53:244–251. doi: 10.1016/S0360-3016(01)02826-7. PubMed DOI

Farah J., Mareš V., Romero-Exposito M., Trinkl S., Domingo C., Dufek V., Klodowska M., Kubancak J., Knežević Z., Liszka M., et al. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med. Phys. 2015;42:2572–2584. doi: 10.1118/1.4916667. PubMed DOI

Grassberger C., Paganetti H. Elevated LET components in clinical proton beams. Phys. Med. Boil. 2011;56:6677–6691. doi: 10.1088/0031-9155/56/20/011. PubMed DOI

Berry R.J. Effects of radiation dose-rate: From Protracted, Continuous Irradiation to Ultra-High Dose-Rates from Pulsed Accelerators. Br. Med. Bull. 1973;29:44–47. doi: 10.1093/oxfordjournals.bmb.a070955. PubMed DOI

Epp E.R., Weiss H., Ling C.C. Irradiation of cells by single and double pulses of high intensity radiation: Oxygen sensitization and diffusion kinetics. Curr. Top. Radiat. Res. 1976;11:201–250. PubMed

Durante M., Bräuer-Krisch E., Hill M.A. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br. J. Radiol. 2017;91:20170628. doi: 10.1259/bjr.20170628. PubMed DOI PMC

McGarry C.K., Butterworth K.T., Trainor C., O’Sullivan J.M., Prise K.M., Hounsell A.R. Temporal characterization andin vitrocomparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) Phys. Med. Boil. 2011;56:2445–2457. doi: 10.1088/0031-9155/56/8/008. PubMed DOI

Lohse I., Tanadini-Lang S., Hrbacek J., Scheidegger S., Bodis S., Macedo N.S., Feng J., Lütolf U.M., Zaugg K. Effect of high dose per pulse flattening filter-free beams on cancer cell survival. Radiother. Oncol. 2011;101:226–232. doi: 10.1016/j.radonc.2011.05.072. PubMed DOI

Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M.-F., Brito I., Hupé P., Bourhis J., et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014;6:245ra93. doi: 10.1126/scitranslmed.3008973. PubMed DOI

Vozenin M.-C., De Fornel P., Petersson K., Favaudon V., Jaccard M., Germond J.-F., Petit B., Burki M., Ferrand G., Patin D., et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clin. Cancer Res. 2019;25:35–42. doi: 10.1158/1078-0432.CCR-17-3375. PubMed DOI

Montay-Gruel P.-G., Petersson K., Jaccard M., Boivin G., Germond J.-F., Petit B., Doenlen R., Favaudon V., Bochud F., Bailat C., et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017;124:365–369. doi: 10.1016/j.radonc.2017.05.003. PubMed DOI

Iwata H., Ogino H., Hashimoto S., Yamada M., Shibata H., Yasui K., Toshito T., Omachi C., Tatekawa K., Manabe Y., et al. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:95–102. doi: 10.1016/j.ijrobp.2016.01.017. PubMed DOI

Auer S., Hable V., Greubel C., Drexler G.A., Schmid T.E., Belka C., Dollinger G., Friedl A.A. Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat. Oncol. 2011;6:139. doi: 10.1186/1748-717X-6-139. PubMed DOI PMC

Gridley D.S., Pecaut M., Mao X.W., Wroe A.J., Luo-Owen X. Biological Effects of Passive Versus Active Scanning Proton Beams on Human Lung Epithelial Cells. Technol. Cancer Res. Treat. 2015;14:81–98. doi: 10.7785/tcrt.2012.500392. PubMed DOI

Steel G.G. The ESTRO Breur lecture cellular sensitivity to low dose-rate irradiation focuses the problem of tumour radioresistance. Radiother. Oncol. 1991;20:71–83. doi: 10.1016/0167-8140(91)90140-c. PubMed DOI

Hamilton J., Bernhard E.J. Cell signalling and radiation survival: The impact of protein phosphatases. Int. J. Radiat. Boil. 2009;85:937–942. doi: 10.3109/09553000903232827. PubMed DOI

Jeggo P.A., Lavin M.F. Cellular radiosensitivity: How much better do we understand it? Int. J. Radiat. Boil. 2009;85:1061–1081. doi: 10.3109/09553000903261263. PubMed DOI

Rodemann H.P. Molecular radiation biology: Perspectives for radiation oncology. Radiother. Oncol. 2009;92:293–298. doi: 10.1016/j.radonc.2009.08.023. PubMed DOI

ICRP The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 2007;37 doi: 10.1016/j.icrp.2007.10.003. PubMed DOI

Michaelidesová A., Vachelová J., Puchalska M., Brabcová K.P., Vondráček V., Sihver L., Davídková M. Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode. Australas. Phys. Eng. Sci. Med. 2017;47:359–368. doi: 10.1007/s13246-017-0540-8. PubMed DOI

Ferrari A., Sala P.R., Fasso A., Ranft J. FLUKA: A Multi-Particle Transport Code (Program Version 2005) Stanford Linear Accelerator Center; Stanford, CA, USA: 2005.

Böhlen T., Cerutti F., Chin M., Fassò A., Ferrari A., Ortega P.G., Mairani A., Sala P., Smirnov G., Vlachoudis V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets. 2014;120:211–214. doi: 10.1016/j.nds.2014.07.049. DOI

Falk M., Emilie L., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI

Dale R.G. Use of the Linear-Quadratic Radiobiological Model for Quantifying Kidney Response in Targeted Radiotherapy. Cancer Biother. Radiopharm. 2004;19:363–370. doi: 10.1089/1084978041425070. PubMed DOI

Fenech M., Chang W.P., Kirsch-Volders M., Holland N., Bonassi S., Zeiger E. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003;534:65–75. doi: 10.1016/S1383-5718(02)00249-8. PubMed DOI

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: Part A--Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI

Stefancikova L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., Lux F., Depeš D., Kozubek M., Falk M. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J. Nanobiotechnol. 2016;14:63. doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC

Jezkova L., Falk M., Falkova I., Davidkova M., Bačíková A., Stefancikova L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl. Radiat. Isot. 2014;83:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI

Sharma N.K. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in vitro. J. Radiat. Res. 2013;54:789–797. doi: 10.1093/jrr/rrs117. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...