In Vitro Comparison of Passive and Active Clinical Proton Beams
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
730983
INSPIRE project of the European Union's Horizon 2020 Research and Innovation Programme
20-04109J
Czech Science Foundation
DAAD-19-03
German Academic Exchange Service
PubMed
32781754
PubMed Central
PMC7460593
DOI
10.3390/ijms21165650
PII: ijms21165650
Knihovny.cz E-zdroje
- Klíčová slova
- cell survival, double scattering, pencil beam scanning, proton therapy,
- MeSH
- apoptóza účinky záření MeSH
- histony metabolismus MeSH
- lidé MeSH
- lineární přenos energie MeSH
- metoda Monte Carlo MeSH
- mikrojaderné testy MeSH
- nádorové buněčné linie MeSH
- neutrony MeSH
- počítačová simulace MeSH
- protonová terapie * MeSH
- viabilita buněk účinky záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- H2AX protein, human MeSH Prohlížeč
- histony MeSH
Nowadays, the irradiation methodology in proton therapy is switching from the use of passively scattered beams to active pencil beams due to the possibility of more conformal dose distributions. The dose rates of active pencil beams are much higher than those of passive beams. The purpose of this study was to investigate whether there is any difference in the biological effectiveness of these passive and active irradiation modes. The beam qualities of double scattering and pencil beam scanning were measured dosimetrically and simulated using the Monte Carlo code. Using the medulloblastoma cell line DAOY, we performed an in vitro comparison of the two modes in two positions along the dose-deposition curve plateau and inside the Bragg peak. We followed the clonogenic cell survival, apoptosis, micronuclei, and γH2AX assays as biological endpoints. The Monte Carlo simulations did not reveal any difference between the beam qualities of the two modes. Furthermore, we did not observe any statistically significant difference between the two modes in the in vitro comparison of any of the examined biological endpoints. Our results do not show any biologically relevant differences related to the different dose rates of passive and active proton beams.
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Nuclear Physics Institute of the Czech Academy of Sciences Řež 130 25068 Řež Czech Republic
Proton Therapy Center Czech Budínova 2437 1a 180 00 Prague Czech Republic
Zobrazit více v PubMed
Wilson R.R. Radiological Use of Fast Protons. Radiolgy. 1946;47:487–491. doi: 10.1148/47.5.487. PubMed DOI
Lawrence J.H. Proton irradiation of the pituitary. Cancer. 1957;10:795–798. doi: 10.1002/1097-0142(195707/08)10:4<795::AID-CNCR2820100426>3.0.CO;2-B. PubMed DOI
Paganetti H. Proton Therapy Physics (Series in Medical Physics and Biomedical Engineering) Taylor & Francis; London, UK: 2012.
Schneider U., Agosteo S., Pedroni E., Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int. J. Radiat. Oncol. 2002;53:244–251. doi: 10.1016/S0360-3016(01)02826-7. PubMed DOI
Farah J., Mareš V., Romero-Exposito M., Trinkl S., Domingo C., Dufek V., Klodowska M., Kubancak J., Knežević Z., Liszka M., et al. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med. Phys. 2015;42:2572–2584. doi: 10.1118/1.4916667. PubMed DOI
Grassberger C., Paganetti H. Elevated LET components in clinical proton beams. Phys. Med. Boil. 2011;56:6677–6691. doi: 10.1088/0031-9155/56/20/011. PubMed DOI
Berry R.J. Effects of radiation dose-rate: From Protracted, Continuous Irradiation to Ultra-High Dose-Rates from Pulsed Accelerators. Br. Med. Bull. 1973;29:44–47. doi: 10.1093/oxfordjournals.bmb.a070955. PubMed DOI
Epp E.R., Weiss H., Ling C.C. Irradiation of cells by single and double pulses of high intensity radiation: Oxygen sensitization and diffusion kinetics. Curr. Top. Radiat. Res. 1976;11:201–250. PubMed
Durante M., Bräuer-Krisch E., Hill M.A. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br. J. Radiol. 2017;91:20170628. doi: 10.1259/bjr.20170628. PubMed DOI PMC
McGarry C.K., Butterworth K.T., Trainor C., O’Sullivan J.M., Prise K.M., Hounsell A.R. Temporal characterization andin vitrocomparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) Phys. Med. Boil. 2011;56:2445–2457. doi: 10.1088/0031-9155/56/8/008. PubMed DOI
Lohse I., Tanadini-Lang S., Hrbacek J., Scheidegger S., Bodis S., Macedo N.S., Feng J., Lütolf U.M., Zaugg K. Effect of high dose per pulse flattening filter-free beams on cancer cell survival. Radiother. Oncol. 2011;101:226–232. doi: 10.1016/j.radonc.2011.05.072. PubMed DOI
Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M.-F., Brito I., Hupé P., Bourhis J., et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014;6:245ra93. doi: 10.1126/scitranslmed.3008973. PubMed DOI
Vozenin M.-C., De Fornel P., Petersson K., Favaudon V., Jaccard M., Germond J.-F., Petit B., Burki M., Ferrand G., Patin D., et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clin. Cancer Res. 2019;25:35–42. doi: 10.1158/1078-0432.CCR-17-3375. PubMed DOI
Montay-Gruel P.-G., Petersson K., Jaccard M., Boivin G., Germond J.-F., Petit B., Doenlen R., Favaudon V., Bochud F., Bailat C., et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017;124:365–369. doi: 10.1016/j.radonc.2017.05.003. PubMed DOI
Iwata H., Ogino H., Hashimoto S., Yamada M., Shibata H., Yasui K., Toshito T., Omachi C., Tatekawa K., Manabe Y., et al. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:95–102. doi: 10.1016/j.ijrobp.2016.01.017. PubMed DOI
Auer S., Hable V., Greubel C., Drexler G.A., Schmid T.E., Belka C., Dollinger G., Friedl A.A. Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat. Oncol. 2011;6:139. doi: 10.1186/1748-717X-6-139. PubMed DOI PMC
Gridley D.S., Pecaut M., Mao X.W., Wroe A.J., Luo-Owen X. Biological Effects of Passive Versus Active Scanning Proton Beams on Human Lung Epithelial Cells. Technol. Cancer Res. Treat. 2015;14:81–98. doi: 10.7785/tcrt.2012.500392. PubMed DOI
Steel G.G. The ESTRO Breur lecture cellular sensitivity to low dose-rate irradiation focuses the problem of tumour radioresistance. Radiother. Oncol. 1991;20:71–83. doi: 10.1016/0167-8140(91)90140-c. PubMed DOI
Hamilton J., Bernhard E.J. Cell signalling and radiation survival: The impact of protein phosphatases. Int. J. Radiat. Boil. 2009;85:937–942. doi: 10.3109/09553000903232827. PubMed DOI
Jeggo P.A., Lavin M.F. Cellular radiosensitivity: How much better do we understand it? Int. J. Radiat. Boil. 2009;85:1061–1081. doi: 10.3109/09553000903261263. PubMed DOI
Rodemann H.P. Molecular radiation biology: Perspectives for radiation oncology. Radiother. Oncol. 2009;92:293–298. doi: 10.1016/j.radonc.2009.08.023. PubMed DOI
ICRP The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 2007;37 doi: 10.1016/j.icrp.2007.10.003. PubMed DOI
Michaelidesová A., Vachelová J., Puchalska M., Brabcová K.P., Vondráček V., Sihver L., Davídková M. Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode. Australas. Phys. Eng. Sci. Med. 2017;47:359–368. doi: 10.1007/s13246-017-0540-8. PubMed DOI
Ferrari A., Sala P.R., Fasso A., Ranft J. FLUKA: A Multi-Particle Transport Code (Program Version 2005) Stanford Linear Accelerator Center; Stanford, CA, USA: 2005.
Böhlen T., Cerutti F., Chin M., Fassò A., Ferrari A., Ortega P.G., Mairani A., Sala P., Smirnov G., Vlachoudis V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets. 2014;120:211–214. doi: 10.1016/j.nds.2014.07.049. DOI
Falk M., Emilie L., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI
Dale R.G. Use of the Linear-Quadratic Radiobiological Model for Quantifying Kidney Response in Targeted Radiotherapy. Cancer Biother. Radiopharm. 2004;19:363–370. doi: 10.1089/1084978041425070. PubMed DOI
Fenech M., Chang W.P., Kirsch-Volders M., Holland N., Bonassi S., Zeiger E. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003;534:65–75. doi: 10.1016/S1383-5718(02)00249-8. PubMed DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: Part A--Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI
Stefancikova L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., Lux F., Depeš D., Kozubek M., Falk M. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J. Nanobiotechnol. 2016;14:63. doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC
Jezkova L., Falk M., Falkova I., Davidkova M., Bačíková A., Stefancikova L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl. Radiat. Isot. 2014;83:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI
Sharma N.K. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in vitro. J. Radiat. Res. 2013;54:789–797. doi: 10.1093/jrr/rrs117. PubMed DOI PMC
First independent validation of the proton-boron capture therapy concept