In vitro measurement of proton RBE: A multi-centric comparison using a harmonized setup
Status PubMed-not-MEDLINE Jazyk angličtina Země Irsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40485910
PubMed Central
PMC12141100
DOI
10.1016/j.ctro.2025.100978
PII: S2405-6308(25)00070-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cell survival, Proton therapy, Relative biological effectiveness,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: This study presents a multi-center comparison of in vitro cell survival measurements and RBE calculations following proton irradiations conducted under harmonized experimental conditions across six European institutions participating in the INSPIRE framework. MATERIALS AND METHODS: V79-4 cells were irradiated using spread-out Bragg peak (SOBP) proton fields of two configurations delivering 6 and 8 Gy with widths of 6 and 4 cm, respectively. Each center adhered to a standardized protocol, utilizing the same phantom design to minimize uncertainties related to sample positioning. X-ray reference irradiations were also performed to assess cell radiosensitivity across the participating centers. RESULTS: Despite the consistent protocol, significant inter-institutional variability was observed in the survival measurements. For both treatment plans, the largest variation was detected in the most distal points of the SOBP (coefficients of variation of 43 % and 60 % for the 6 Gy and 8 Gy plans, respectively). Kruskal-Wallis statistical test confirmed the significant differences between the centers for each of the measured position in the proton field for both SOBP configurations. Discrepancies were observed in calculated RBE data as well, albeit preserving the expected trend for the values to slightly increase towards the distal edge of the SOBP (up to 1.5 and 1.3 for the 6 Gy and 8 Gy plans, respectively). CONCLUSION: The results of the study highlight the minimal biological variation one could expect performing proton RBE measurements in well-aligned experimental conditions and challenges in conducting large-scale, multi-center radiobiological experiments and inter-comparisons between literature data sets.
CIMAP CEA CNRS ENSICAEN UNICAEN Normandie Université Caen France
Danish Centre for Particle Therapy Aarhus University Hospital Aarhus Denmark
Department of Experimental Clinical Oncology Aarhus University Hospital Aarhus Denmark
Department of Immunology Genetics and Pathology Uppsala University Uppsala Sweden
GSI Helmholtz Centre for Heavy Ion Research Darmstadt Germany
Helmholtz Zentrum Dresden Rossendorf Institute of Radiation Physics Dresden Germany
Helmholtz Zentrum Dresden Rossendorf Institute of Radiooncology OncoRay Dresden Germany
Institute for Condensed Matter Physics Technische Universität Darmstadt Darmstadt Germany
Institute of Nuclear Physics Polish Academy of Sciences Krakow Poland
Manchester Academic Health Science Centre The Christie NHS Foundation Trust Manchester UK
Nuclear Physics Institute of the Czech Academy of Sciences Řež Czech Republic
OncoRay National Center for Radiation Research in Oncology Faculty of Medicine Dresden Germany
Zobrazit více v PubMed
Grau C., Durante M., Georg D., Langendijk J.A., Weber D.C. Particle therapy in Europe. Mol Oncol. 2020;14(7):1492–1499. doi: 10.1002/1878-0261.12677. PubMed DOI PMC
Particle Therapy Co-Operative Group. Particle therapy facilities in clinical operation. Accessed August 10, 2023. https://www.ptcog.site/index.php/facilities-in-operation-public.
ICRU 78. Prescribing, Recording, and Reporting Proton-Beam Therapy: Contents.; 2007.
Paganetti H., Blakely E., Carabe-Fernandez A., et al. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys. 2019;46(3):e53–e78. doi: 10.1002/mp.13390. PubMed DOI PMC
Sørensen B.S., Pawelke J., Bauer J., et al. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiother Oncol. 2021;163:177–184. doi: 10.1016/j.radonc.2021.08.016. PubMed DOI
Scholz M, Kellerer a. M, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy. Radiat Environ Biophys. 1997;36(1):59-66. doi:10.1007/s004110050055. PubMed
Hawkins R.B. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med Phys. 1998;25(7):1157–1170. doi: 10.1118/1.598307. PubMed DOI
Wilkens J.J., Oelfke U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Phys Med Biol. 2004;49(13):2811–2825. doi: 10.1088/0031-9155/49/13/004. PubMed DOI
Wedenberg M., Lind B.K., Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α / β of photons is a predictor for the sensitivity to LET changes. Acta Oncol (madr) 2013;52(3):580–588. doi: 10.3109/0284186X.2012.705892. PubMed DOI
McNamara A.L., Schuemann J., Paganetti H. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 2015;60(21):8399–8416. doi: 10.1088/0031-9155/60/21/8399. PubMed DOI PMC
Henthorn N.T., Gardner L.L., Aitkenhead A.H., et al. Proposing a clinical model for RBE based on proton track-end counts. Int J Radiation Oncol *Bio*Phys. 2023;116(4):916–926. doi: 10.1016/j.ijrobp.2022.12.056. PubMed DOI
Carabe A., Moteabbed M., Depauw N., Schuemann J., Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57(5):1159–1172. doi: 10.1088/0031-9155/57/5/1159. PubMed DOI
Friedrich T., Scholz U., ElsaSser T., Durante M., Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res. 2013;54(3):494–514. doi: 10.1093/jrr/rrs114. PubMed DOI PMC
Tommasino F., Durante M. Proton radiobiology. Cancers (Basel) 2015;7(1):353–381. doi: 10.3390/cancers7010353. PubMed DOI PMC
Paganetti H., Niemierko A., Ancukiewicz M., et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiation Oncol *Bio*Phys. 2002;53(2):407–421. doi: 10.1016/S0360-3016(02)02754-2. PubMed DOI
Lühr A., von Neubeck C., Pawelke J., et al. “Radiobiology of Proton Therapy”: results of an international expert workshop. Radiother Oncol. 2018;128(1):56–67. doi: 10.1016/j.radonc.2018.05.018. PubMed DOI
Henthorn N.T., Sokol O., Durante M., et al. Mapping the future of particle radiobiology in Europe: the INSPIRE project. Front Phys. 2020:8. doi: 10.3389/fphy.2020.565055. DOI
Elsässer T., Weyrather W.K., Friedrich T., et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 2010;78(4):1177–1183. doi: 10.1016/j.ijrobp.2010.05.014. PubMed DOI
Krämer M., Jäkel O., Haberer T., Schardt D., Weber U. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000:3299. doi: 10.1088/0031-9155/45/11/313. PubMed DOI
Krämer M., Scholz M. Rapid calculation of biological effects in ion radiotherapy. Phys Med Biol. 2006;51(8):1959–1970. doi: 10.1088/0031-9155/51/8/001. PubMed DOI
Sørensen B.S., Vestergaard A., Overgaard J., Præstegaard L.H. Dependence of cell survival on instantaneous dose rate of a linear accelerator. Radiother Oncol. 2011;101(1):223–225. doi: 10.1016/j.radonc.2011.06.018. PubMed DOI
Fowler J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–694. doi: 10.1259/0007-1285-62-740-679. PubMed DOI
Conte V., Bianchi A., Selva A., et al. Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC. Phys Med. 2019;64:114–122. doi: 10.1016/j.ejmp.2019.06.011. PubMed DOI
Rollet S., Colautti P., Grosswendt B., et al. Microdosimetric assessment of the radiation quality of a therapeutic proton beam: comparison between numerical simulation and experimental measurements. Radiat Prot Dosim. 2011;143(2–4):445–449. doi: 10.1093/rpd/ncq483. PubMed DOI
Michaelidesová A., Vachelová J., Klementová J., et al. In vitro comparison of passive and active clinical proton beams. Int J Mol Sci. 2020;21(16):5650. doi: 10.3390/ijms21165650. PubMed DOI PMC
Durante M., Paganetti H., Pompos A., Kry S.F., Wu X., Grosshans D.R. Report of a National Cancer Institute special panel: characterization of the physical parameters of particle beams for biological research. Med Phys. 2019;46(2) doi: 10.1002/mp.13324. PubMed DOI
Magrin G., Palmans H., Stock M., Georg D. State-of-the-art and potential of experimental microdosimetry in ion-beam therapy. Radiother Oncol. 2023;182 doi: 10.1016/j.radonc.2023.109586. PubMed DOI
Lühr A., Wagenaar D., Eekers D.B.P., et al. Recommendations for reporting and evaluating proton therapy beyond dose and constant relative biological effectiveness. Phys Imaging Radiat Oncol. 2025;33 doi: 10.1016/j.phro.2024.100692. PubMed DOI PMC
Paget V., Ben Kacem M., Dos Santos M., et al. Multiparametric radiobiological assays show that variation of X-ray energy strongly impacts relative biological effectiveness: comparison between 220 kV and 4 MV. Sci Rep. 2019;9(1):14328. doi: 10.1038/s41598-019-50908-4. PubMed DOI PMC
Reddy N.M., Mayer P.J., Nori D., Lange C.S. Chinese hamster V79 cells harbor potentially lethal damage which is neither fixed nor repaired for long times after attaining maximal survival under growth conditions. Radiat Res. 1995;141(3):252–258. doi: 10.2307/3579002. PubMed DOI