First independent validation of the proton-boron capture therapy concept

. 2024 Aug 20 ; 14 (1) : 19264. [epub] 20240820

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39164312

Grantová podpora
21-06451S Czech Science Foundation

Odkazy

PubMed 39164312
PubMed Central PMC11335746
DOI 10.1038/s41598-024-69370-y
PII: 10.1038/s41598-024-69370-y
Knihovny.cz E-zdroje

Boron has been suggested to enhance the biological effectiveness of proton beams in the Bragg peak region via the p + 11B → 3α nuclear capture reaction. However, a number of groups have observed no such enhancement in vitro or questioned its proposed mechanism recently. To help elucidate this phenomenon, we irradiated DU145 prostate cancer or U-87 MG glioblastoma cells by clinical 190 MeV proton beams in plateau or Bragg peak regions with or without 10B or 11B isotopes added as sodium mercaptododecaborate (BSH). The results demonstrate that 11B but not 10B or other components of the BSH molecule enhance cell killing by proton beams. The enhancement occurs selectively in the Bragg peak region, is present for boron concentrations as low as 40 ppm, and is not due to secondary neutrons. The enhancement is likely initiated by proton-boron capture reactions producing three alpha particles, which are rare events occurring in a few cells only, and their effects are amplified by intercellular communication to a population-level response. The observed up to 2-3-fold reductions in survival levels upon the presence of boron for the studied prostate cancer or glioblastoma cells suggest promising clinical applications for these tumour types.

Zobrazit více v PubMed

Mohan, R. & Grosshans, D. Proton therapy—Present and future. Adv. Drug Deliv. Rev.109, 26–44. 10.1016/j.addr.2016.11.006 (2017). 10.1016/j.addr.2016.11.006 PubMed DOI PMC

Yoon, D. K., Jung, J. Y. & Suh, T. S. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study. Appl. Phys. Lett.105, 223507. 10.1063/1.4903345 (2014).10.1063/1.4903345 DOI

Cirrone, G. A. P. et al. First experimental proof of proton boron capture therapy (PBCT) to enhance protontherapy effectiveness. Sci. Rep.8, 1141. 10.1038/s41598-018-19258-5 (2018). 10.1038/s41598-018-19258-5 PubMed DOI PMC

Monti Hughes, A. & Hu, N. Optimizing boron neutron capture therapy (BNCT) to treat cancer: An updated review on the latest developments on boron compounds and strategies. Cancers15, 4091. 10.3390/cancers15164091 (2023). 10.3390/cancers15164091 PubMed DOI PMC

Bláha, P. et al. The proton-boron reaction increases the radiobiological effectiveness of clinical low- and high-energy proton beams: Novel experimental evidence and perspectives. Front Oncol.11, 682647. 10.3389/fonc.2021.682647 (2021). 10.3389/fonc.2021.682647 PubMed DOI PMC

Ricciardi, V. et al. A new low-energy proton irradiation facility to unveil the mechanistic basis of the proton-boron capture therapy approach. Appl. Sci.11, 11986. 10.3390/app112411986 (2021).10.3390/app112411986 DOI

Barth, R. F., Mi, P. & Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun.38, 35. 10.1186/s40880-018-0299-7 (2018).10.1186/s40880-018-0299-7 PubMed DOI PMC

Hideghéty, K. et al. 11Boron delivery agents for boron proton-capture enhanced proton therapy. Anticancer Res.39, 2265–2276. 10.21873/anticanres.13343 (2019). 10.21873/anticanres.13343 PubMed DOI

Jung, J. Y. et al. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): A Monte Carlo study. Oncotarget8, 39774–39781. 10.18632/oncotarget.15700 (2017). 10.18632/oncotarget.15700 PubMed DOI PMC

Mazzone, A., Finocchiaro, P., Lo Meo, S. & Colonna, N. On the (un)effectiveness of proton boron capture in proton therapy. Eur. Phys. J. Plus134, 361. 10.1140/epjp/i2019-12725-8 (2019).10.1140/epjp/i2019-12725-8 DOI

Tabbakh, F. & Hosmane, N. S. Enhancement of radiation effectiveness in proton therapy: Comparison between fusion and fission methods and further approaches. Sci. Rep.10, 5466. 10.1038/s41598-020-62268-5 (2020). 10.1038/s41598-020-62268-5 PubMed DOI PMC

Meyer, H. J., Titt, U. & Mohan, R. Technical note: Monte Carlo study of the mechanism of proton-boron fusion therapy. Med. Phys.49, 579–582. 10.1002/mp.15381 (2022). 10.1002/mp.15381 PubMed DOI

Safavi-Naeini, M. et al. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci. Rep.8, 16257. 10.1038/s41598-018-34643-w (2018). 10.1038/s41598-018-34643-w PubMed DOI PMC

Manandhar, M. et al. Effect of boron compounds on the biological effectiveness of proton therapy. Med. Phys.49, 6098–6109. 10.1002/mp.15824 (2022). 10.1002/mp.15824 PubMed DOI

Hosobuchi, M. et al. Experimental verification of efficacy of pBCT in terms of physical and biological aspects. Nucl. Instrum. Methods Phys. Res. A1045, 167537. 10.1016/j.nima.2022.167537 (2023).10.1016/j.nima.2022.167537 DOI

Shtam, T. et al. Experimental validation of proton boron capture therapy for glioma cells. Sci. Rep.13, 1341. 10.1038/s41598-023-28428-z (2023). 10.1038/s41598-023-28428-z PubMed DOI PMC

Naseri, A. & Mesbahi, A. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams. Rep. Pract. Oncol. Radiother.15, 138–144. 10.1016/j.rpor.2010.08.003 (2010). 10.1016/j.rpor.2010.08.003 PubMed DOI PMC

Hälg, R. A. & Schneider, U. Neutron dose and its measurement in proton therapy—Current state of knowledge. Br. J. Radiol.93, 20190412. 10.1259/bjr.20190412 (2020). 10.1259/bjr.20190412 PubMed DOI PMC

Stolarczyk, L. et al. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise. Phys. Med. Biol.63, 085017. 10.1088/1361-6560/aab469 (2018). 10.1088/1361-6560/aab469 PubMed DOI

Jamborová, Z. et al. Radiation damage to DNA plasmids in the presence of borocaptates. Radiat. Prot. Dosim.198, 532–536. 10.1093/rpd/ncac094 (2022).10.1093/rpd/ncac094 PubMed DOI

Kundrát, P. et al. Boron-enhanced biological effectiveness of proton irradiation: Strategy to assess the underpinning mechanism. Radiat. Prot. Dosim.198, 527–531. 10.1093/rpd/ncac093 (2022).10.1093/rpd/ncac093 PubMed DOI

Brown, N. F. et al. Survival outcomes and prognostic factors in glioblastoma. Cancers14, 3161. 10.3390/cancers14133161 (2022). 10.3390/cancers14133161 PubMed DOI PMC

Cammarata, F. P. et al. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun. Biol.6, 388. 10.1038/s42003-023-04770-w (2023). 10.1038/s42003-023-04770-w PubMed DOI PMC

Jelínek Michaelidesová, A. et al. Variations among glioblastoma cell lines in boron-mediated enhancement of cell killing by proton beams. In preparation (2024).

Prise, K. M. & O’Sullivan, J. M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer9, 351–360. 10.1038/nrc2603 (2009). 10.1038/nrc2603 PubMed DOI PMC

Mothersill, C., Saroya, R., Smith, R. W., Singh, H. & Seymour, C. B. Serum serotonin levels determine the magnitude and type of bystander effects in medium transfer experiments. Radiat. Res.174, 119–123. 10.1667/RR2036.1 (2010). 10.1667/RR2036.1 PubMed DOI

Michaelidesová, A. et al. In vitro comparison of passive and active clinical proton beams. Int. J. Mol. Sci.21, 1–15. 10.3390/ijms21165650 (2020).10.3390/ijms21165650 PubMed DOI PMC

Braselmann, H., Michna, A., Heß, J. & Unger, K. CFAssay: Statistical analysis of the colony formation assay. Radiat. Oncol.10, 223. 10.1186/s13014-015-0529-y (2015). 10.1186/s13014-015-0529-y PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...