First independent validation of the proton-boron capture therapy concept
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-06451S
Czech Science Foundation
PubMed
39164312
PubMed Central
PMC11335746
DOI
10.1038/s41598-024-69370-y
PII: 10.1038/s41598-024-69370-y
Knihovny.cz E-zdroje
- Klíčová slova
- Biological effectiveness, Cell survival, Proton radiotherapy, Proton-boron capture therapy, Sodium mercaptododecaborate (BSH),
- MeSH
- bor chemie MeSH
- glioblastom radioterapie farmakoterapie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty radioterapie farmakoterapie MeSH
- protonová terapie * metody MeSH
- protony MeSH
- terapie metodou neutronového záchytu (bor-10) * metody MeSH
- viabilita buněk účinky léků účinky záření MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bor MeSH
- protony MeSH
Boron has been suggested to enhance the biological effectiveness of proton beams in the Bragg peak region via the p + 11B → 3α nuclear capture reaction. However, a number of groups have observed no such enhancement in vitro or questioned its proposed mechanism recently. To help elucidate this phenomenon, we irradiated DU145 prostate cancer or U-87 MG glioblastoma cells by clinical 190 MeV proton beams in plateau or Bragg peak regions with or without 10B or 11B isotopes added as sodium mercaptododecaborate (BSH). The results demonstrate that 11B but not 10B or other components of the BSH molecule enhance cell killing by proton beams. The enhancement occurs selectively in the Bragg peak region, is present for boron concentrations as low as 40 ppm, and is not due to secondary neutrons. The enhancement is likely initiated by proton-boron capture reactions producing three alpha particles, which are rare events occurring in a few cells only, and their effects are amplified by intercellular communication to a population-level response. The observed up to 2-3-fold reductions in survival levels upon the presence of boron for the studied prostate cancer or glioblastoma cells suggest promising clinical applications for these tumour types.
Nuclear Physics Institute of the Czech Academy of Sciences Husinec Řež 130 250 68 Řež Czech Republic
Proton Therapy Center Czech Prague Budínova 2437 1a 180 00 Prague Czech Republic
Thomayer University Hospital Vídeňská 800 140 59 Prague Czech Republic
Zobrazit více v PubMed
Mohan, R. & Grosshans, D. Proton therapy—Present and future. Adv. Drug Deliv. Rev.109, 26–44. 10.1016/j.addr.2016.11.006 (2017). 10.1016/j.addr.2016.11.006 PubMed DOI PMC
Yoon, D. K., Jung, J. Y. & Suh, T. S. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study. Appl. Phys. Lett.105, 223507. 10.1063/1.4903345 (2014).10.1063/1.4903345 DOI
Cirrone, G. A. P. et al. First experimental proof of proton boron capture therapy (PBCT) to enhance protontherapy effectiveness. Sci. Rep.8, 1141. 10.1038/s41598-018-19258-5 (2018). 10.1038/s41598-018-19258-5 PubMed DOI PMC
Monti Hughes, A. & Hu, N. Optimizing boron neutron capture therapy (BNCT) to treat cancer: An updated review on the latest developments on boron compounds and strategies. Cancers15, 4091. 10.3390/cancers15164091 (2023). 10.3390/cancers15164091 PubMed DOI PMC
Bláha, P. et al. The proton-boron reaction increases the radiobiological effectiveness of clinical low- and high-energy proton beams: Novel experimental evidence and perspectives. Front Oncol.11, 682647. 10.3389/fonc.2021.682647 (2021). 10.3389/fonc.2021.682647 PubMed DOI PMC
Ricciardi, V. et al. A new low-energy proton irradiation facility to unveil the mechanistic basis of the proton-boron capture therapy approach. Appl. Sci.11, 11986. 10.3390/app112411986 (2021).10.3390/app112411986 DOI
Barth, R. F., Mi, P. & Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun.38, 35. 10.1186/s40880-018-0299-7 (2018).10.1186/s40880-018-0299-7 PubMed DOI PMC
Hideghéty, K. et al. 11Boron delivery agents for boron proton-capture enhanced proton therapy. Anticancer Res.39, 2265–2276. 10.21873/anticanres.13343 (2019). 10.21873/anticanres.13343 PubMed DOI
Jung, J. Y. et al. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): A Monte Carlo study. Oncotarget8, 39774–39781. 10.18632/oncotarget.15700 (2017). 10.18632/oncotarget.15700 PubMed DOI PMC
Mazzone, A., Finocchiaro, P., Lo Meo, S. & Colonna, N. On the (un)effectiveness of proton boron capture in proton therapy. Eur. Phys. J. Plus134, 361. 10.1140/epjp/i2019-12725-8 (2019).10.1140/epjp/i2019-12725-8 DOI
Tabbakh, F. & Hosmane, N. S. Enhancement of radiation effectiveness in proton therapy: Comparison between fusion and fission methods and further approaches. Sci. Rep.10, 5466. 10.1038/s41598-020-62268-5 (2020). 10.1038/s41598-020-62268-5 PubMed DOI PMC
Meyer, H. J., Titt, U. & Mohan, R. Technical note: Monte Carlo study of the mechanism of proton-boron fusion therapy. Med. Phys.49, 579–582. 10.1002/mp.15381 (2022). 10.1002/mp.15381 PubMed DOI
Safavi-Naeini, M. et al. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci. Rep.8, 16257. 10.1038/s41598-018-34643-w (2018). 10.1038/s41598-018-34643-w PubMed DOI PMC
Manandhar, M. et al. Effect of boron compounds on the biological effectiveness of proton therapy. Med. Phys.49, 6098–6109. 10.1002/mp.15824 (2022). 10.1002/mp.15824 PubMed DOI
Hosobuchi, M. et al. Experimental verification of efficacy of pBCT in terms of physical and biological aspects. Nucl. Instrum. Methods Phys. Res. A1045, 167537. 10.1016/j.nima.2022.167537 (2023).10.1016/j.nima.2022.167537 DOI
Shtam, T. et al. Experimental validation of proton boron capture therapy for glioma cells. Sci. Rep.13, 1341. 10.1038/s41598-023-28428-z (2023). 10.1038/s41598-023-28428-z PubMed DOI PMC
Naseri, A. & Mesbahi, A. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams. Rep. Pract. Oncol. Radiother.15, 138–144. 10.1016/j.rpor.2010.08.003 (2010). 10.1016/j.rpor.2010.08.003 PubMed DOI PMC
Hälg, R. A. & Schneider, U. Neutron dose and its measurement in proton therapy—Current state of knowledge. Br. J. Radiol.93, 20190412. 10.1259/bjr.20190412 (2020). 10.1259/bjr.20190412 PubMed DOI PMC
Stolarczyk, L. et al. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise. Phys. Med. Biol.63, 085017. 10.1088/1361-6560/aab469 (2018). 10.1088/1361-6560/aab469 PubMed DOI
Jamborová, Z. et al. Radiation damage to DNA plasmids in the presence of borocaptates. Radiat. Prot. Dosim.198, 532–536. 10.1093/rpd/ncac094 (2022).10.1093/rpd/ncac094 PubMed DOI
Kundrát, P. et al. Boron-enhanced biological effectiveness of proton irradiation: Strategy to assess the underpinning mechanism. Radiat. Prot. Dosim.198, 527–531. 10.1093/rpd/ncac093 (2022).10.1093/rpd/ncac093 PubMed DOI
Brown, N. F. et al. Survival outcomes and prognostic factors in glioblastoma. Cancers14, 3161. 10.3390/cancers14133161 (2022). 10.3390/cancers14133161 PubMed DOI PMC
Cammarata, F. P. et al. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun. Biol.6, 388. 10.1038/s42003-023-04770-w (2023). 10.1038/s42003-023-04770-w PubMed DOI PMC
Jelínek Michaelidesová, A. et al. Variations among glioblastoma cell lines in boron-mediated enhancement of cell killing by proton beams. In preparation (2024).
Prise, K. M. & O’Sullivan, J. M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer9, 351–360. 10.1038/nrc2603 (2009). 10.1038/nrc2603 PubMed DOI PMC
Mothersill, C., Saroya, R., Smith, R. W., Singh, H. & Seymour, C. B. Serum serotonin levels determine the magnitude and type of bystander effects in medium transfer experiments. Radiat. Res.174, 119–123. 10.1667/RR2036.1 (2010). 10.1667/RR2036.1 PubMed DOI
Michaelidesová, A. et al. In vitro comparison of passive and active clinical proton beams. Int. J. Mol. Sci.21, 1–15. 10.3390/ijms21165650 (2020).10.3390/ijms21165650 PubMed DOI PMC
Braselmann, H., Michna, A., Heß, J. & Unger, K. CFAssay: Statistical analysis of the colony formation assay. Radiat. Oncol.10, 223. 10.1186/s13014-015-0529-y (2015). 10.1186/s13014-015-0529-y PubMed DOI PMC