Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 HL140398
NHLBI NIH HHS - United States
R41 AI164997
NIAID NIH HHS - United States
T32 HL139425
NHLBI NIH HHS - United States
Wellcome Trust - United Kingdom
K08 AI143968
NIAID NIH HHS - United States
T32 HL007747
NHLBI NIH HHS - United States
R37 DE022550
NIDCR NIH HHS - United States
I01 BX004828
BLRD VA - United States
P30 CA125123
NCI NIH HHS - United States
T32 AI053831
NIAID NIH HHS - United States
R01 HL117181
NHLBI NIH HHS - United States
R01 AI135803
NIAID NIH HHS - United States
S10 RR024574
NCRR NIH HHS - United States
214229_Z_18_Z
Wellcome Trust - United Kingdom
PubMed
37819761
PubMed Central
PMC10753853
DOI
10.1016/j.celrep.2023.113240
PII: S2211-1247(23)01252-4
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, CD11b, CP: Immunology, CP: Neuroscience, Candida albicans, Toll-like Receptor 4, amyloid beta, blood-brain barrier, candidalysin, cerebral mycosis, microglia, secreted aspartic proteinase,
- MeSH
- Alzheimer Disease metabolism microbiology MeSH
- Amyloid beta-Peptides metabolism MeSH
- CD11b Antigen * metabolism MeSH
- Candida albicans metabolism MeSH
- Fungal Proteins metabolism MeSH
- Microglia * metabolism microbiology MeSH
- Mycoses * genetics metabolism MeSH
- Mice MeSH
- Toll-Like Receptor 4 * metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
- CD11b Antigen * MeSH
- Fungal Proteins MeSH
- Toll-Like Receptor 4 * MeSH
The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid β (Aβ)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aβ-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aβ, candidalysin, and CD11b.
Department of Medicine Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA
Department of Neuroscience Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, and White TC (2012). Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13–165rv113. PubMed
Eggimann P, Garbino J, and Pittet D (2003). Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 3, 685–702. PubMed
Parker JC Jr., McCloskey JJ, and Lee RS (1978). The emergence of candidosis. The dominant postmortem cerebral mycosis. Am. J. Clin. Pathol. 70, 31–36. PubMed
McCarthy MW, Kalasauskas D, Petraitis V, Petraitiene R, and Walsh TJ (2017). Fungal Infections of the Central Nervous System in Children. J. Pediatric Infect. Dis. Soc. 6, e123–e133. 10.1093/jpids/pix059. PubMed DOI
Pendlebury WW, Perl DP, and Munoz DG (1989). Multiple microabscesses in the central nervous system: a clinicopathologic study. J. Neuropathol. Exp. Neurol. 48, 290–300. PubMed
Guerra C, Linde-Zwirble WT, and Wunsch H (2012). Risk factors for dementia after critical illness in elderly Medicare beneficiaries. Crit. Care 16, R233. 10.1186/cc11901. PubMed DOI PMC
Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, et al. (2013). Long-term cognitive impairment after critical illness. N. Engl. J. Med. 369, 1306–1316. 10.1056/NEJMoa1301372. PubMed DOI PMC
Pisa D, Alonso R, Rábano A, and Carrasco L (2016). Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies. Front. Neurosci. 10, 86. 10.3389/fnins.2016.00086. PubMed DOI PMC
Wu Y, Du S, Johnson JL, Tung H-Y, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, et al. (2019). Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 10, 58. PubMed PMC
Netea MG, Brown GD, Kullberg BJ, and Gow NAR (2008). An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78. 10.1038/nrmicro1815. PubMed DOI
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, et al. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68. 10.1038/nature17625. PubMed DOI PMC
Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang C, Knight JM, et al. (2021). Candida albicans Elicits Protective Allergic Responses Via Platelet Mediated T helper 2 and T helper 17 Cell Polarization. Immunity. 10.1016/j.immuni.2021.08.009. PubMed DOI PMC
Ballabh P, Braun A, and Nedergaard M (2004). The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13. PubMed
Smolenski G, Sullivan PA, Cutfield SM, and Cutfield JF (1997). Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology 143, 349–356. 10.1099/00221287-143-2-349. PubMed DOI
Naglik JR, Challacombe SJ, and Hube B (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428. table of contents. PubMed PMC
Monod M, Togni G, Hube B, and Sanglard D (1994). Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol. Microbiol. 13, 357–368. PubMed
Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schäfer W, Klis F, et al. (2006). Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281, 688–694. 10.1074/jbc.M509297200. PubMed DOI
Kügler S, Böcker K, Heusipp G, Greune L, Kim KS, and Schmidt MA (2007). Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell Microbiol. 9, 619–632. 10.1111/j.1462-5822.2006.00813.x. PubMed DOI
Propson NE, Roy ER, Litvinchuk A, Köhl J, and Zheng H (2021). Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131, e140966. PubMed PMC
Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, and Wong PC (2001). BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci. 4, 233–234. 10.1038/85064. PubMed DOI
Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, et al. (2001). Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem. 76, 173–181. 10.1046/j.1471-4159.2001.00012.x. PubMed DOI
Zhang F, Gannon M, Chen Y, Zhou L, Jiao K, and Wang Q (2017). The amyloid precursor protein modulates a(2A)-adrenergic receptor endocytosis and signaling through disrupting arrestin 3 recruitment. Faseb. J. 31, 4434–4446. 10.1096/fj.201700346R. PubMed DOI PMC
Tahara K, Kim H-D, Jin J-J, Maxwell JA, Li L, and Fukuchi K. i. (2006). Role of toll-like receptor signalling in Aβ uptake and clearance. Brain 129, 3006–3019. PubMed PMC
Millien VO, Lu W, Shaw J, Yuan X, Mak G, Roberts L, Song LZ, Knight JM, Creighton CJ, Luong A, et al. (2013). Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 341, 792–796. 10.1126/science.1240342. PubMed DOI PMC
Kutuzova GD, Albrecht RM, Erickson CM, and Qureshi N (2001). Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. J. Immunol. 167, 482–489. 10.4049/jimmunol.167.1.482. PubMed DOI
Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J, Huppler AR, Ramani K, McGeachy MJ, Mufazalov IA, et al. (2017). Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2, eaam8834. 10.1126/sciimmunol.aam8834. PubMed DOI PMC
Verma AH, Zafar H, Ponde NO, Hepworth OW, Sihra D, Aggor FEY, Ainscough JS, Ho J, Richardson JP, Coleman BM, et al. (2018). IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. J. Immunol. 201, 627–634. 10.4049/jimmunol.1800515. PubMed DOI PMC
Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, Kaplan DH, Naglik JR, Shan W, Shetty AC, et al. (2020). Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci. Immunol. 5, eaba0570. 10.1126/sciimmunol.aba0570. PubMed DOI PMC
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, et al. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68. PubMed PMC
Liu J, Willems HME, Sansevere EA, Allert S, Barker KS, Lowes DJ, Dixson AC, Xu Z, Miao J, DeJarnette C, et al. (2021). A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis. PLoS Pathog. 17, e1009884. 10.1371/journal.ppat.1009884. PubMed DOI PMC
Richardson JP, Willems HME, Moyes DL, Shoaie S, Barker KS, Tan SL, Palmer GE, Hube B, Naglik JR, and Peters BM (2018). Candidalysin Drives Epithelial Signaling, Neutrophil Recruitment, and Immunopathology at the Vaginal Mucosa. Infect. Immun. 86, e00645–17. 10.1128/IAI.00645-17. PubMed DOI PMC
Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA, Hube B, Lionakis MS, Murdoch C, Filler SG, and Naglik JR (2019). Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. J. Infect. Dis. 220, 1477–1488. 10.1093/infdis/jiz322. PubMed DOI PMC
Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, Bohrer AC, Mayer-Barber KD, Lira SA, Iwakura Y, et al. (2019). CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 20, 559–570. 10.1038/s41590-019-0377-2. PubMed DOI PMC
Wu Y, Du S, Johnson JL, Tung H-Y, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, et al. (2019). Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 10, 58. 10.1038/s41467-018-07991-4. PubMed DOI PMC
Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, and Boche D (2005). Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49, 375–384. PubMed
Veenstra AA, Tang J, and Kern TS (2013). Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy. PLoS One 8, e78405. 10.1371/journal.pone.0078405. PubMed DOI PMC
Lionakis MS, Lim JK, Lee CCR, and Murphy PM (2011). Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180–199. 10.1159/000321157. PubMed DOI PMC
Shukla AK, McIntyre LL, Marsh SE, Schneider CA, Hoover EM, Walsh CM, Lodoen MB, Blurton-Jones M, and Inlay MA (2019). CD11a expression distinguishes infiltrating myeloid cells from plaque-associated microglia in Alzheimer’s disease. Glia 67, 844–856. 10.1002/glia.23575. PubMed DOI PMC
Losse J, Svobodová E, Heyken A, Hube B, Zipfel PF, and Józsi M (2011). Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils. Mol. Immunol. 48, 2135–2143. PubMed
Soloviev DA, Fonzi WA, Sentandreu R, Pluskota E, Forsyth CB, Yadav S, and Plow EF (2007). Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin aMb2. J. Immunol. 178, 2038–2046. PubMed
Netea MG, Joosten LAB, van der Meer JWM, Kullberg B-J, and van de Veerdonk FL (2015). Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642. 10.1038/nri3897. PubMed DOI
Pisa D, Alonso R, Juarranz A, Rábano A, and Carrasco L (2015). Direct visualization of fungal infection in brains from patients with Alzheimer’s disease. J. Alzheimers Dis. 43, 613–624. 10.3233/JAD-141386. PubMed DOI
Alonso R, Pisa D, Aguado B, and Carrasco L (2017). Identification of Fungal Species in Brain Tissue from Alzheimer’s Disease by Next-Generation Sequencing. J. Alzheimers Dis. 58, 55–67. 10.3233/JAD-170058. PubMed DOI
Pisa D, Alonso R, and Carrasco L (2020). Parkinson’s Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. Int. J. Biol. Sci. 16, 1135–1152. 10.7150/ijbs.42257. PubMed DOI PMC
Villar CC, Kashleva H, Nobile CJ, Mitchell AP, and Dongari-Bagtzoglou A (2007). Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun. 75, 2126–2135. 10.1128/IAI.00054-07. PubMed DOI PMC
Landers CT, Tung HY, Knight JM, Madison MC, Wu Y, Zeng Z, Porter PC, Rodriguez A, Flick MJ, Kheradmand F, and Corry DB (2019). Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J. Biol. Chem. 294, 8834–8847. 10.1074/jbc.RA118.006724. PubMed DOI PMC
Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, et al. (2021). Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 54, 2595–2610.e7. 10.1016/j.immuni.2021.08.009. PubMed DOI PMC
Alonso R, Pisa D, and Carrasco L (2019). Brain Microbiota in Huntington’s Disease Patients. Front. Microbiol. 10, 2622. 10.3389/fmicb.2019.02622. PubMed DOI PMC
Alonso R, Pisa D, Fernández-Fernández AM, Rábano A, and Carrasco L (2017). Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 108, 249–260. 10.1016/j.nbd.2017.09.001. PubMed DOI
Ho J, Yang X, Nikou S-A, Kichik N, Donkin A, Ponde NO, Richardson JP, Gratacap RL, Archambault LS, Zwirner CP, et al. (2019). Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 10, 2297. 10.1038/s41467-019-09915-2. PubMed DOI PMC
Landers CT, Tung H-Y, Knight JM, Madison MC, Wu Y, Zeng Z, Porter PC, Rodriguez A, Flick MJ, Kheradmand F, and Corry DB (2019). Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J. Biol. Chem. 294, 8834–8847. PubMed PMC
Bacher P, Hohnstein T, Beerbaum E, Rocöker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P, Grehn C, Seidel K, et al. (2019). Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 176, 1340–1355.e15. 10.1016/j.cell.2019.01.041. PubMed DOI
Schild L, Heyken A, de Groot PWJ, Hiller E, Mock M, de Koster C, Horn U, Rupp S, and Hube B (2011). Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot. Cell 10, 98–109. PubMed PMC
Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, and Gow NA (1997). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun. 65, 3529–3538. PubMed PMC
Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, and Sebo P (2015). Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4, e10766. PubMed PMC
Sanglard D, Hube B, Monod M, Odds FC, and Gow NA (1997). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect. Immun. 65, 3539–3546. PubMed PMC
McCarthy DP, Richards MH, and Miller SD (2012). Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. In Autoimmunity (Springer; ), pp. 381–401. PubMed PMC
Jiang W, Huang W, Chen Y, Zou M, Peng D, and Chen D (2017). HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. Oxid. Med. Cell. Longev. 2017, 3160360. 10.1155/2017/3160360. PubMed DOI PMC
Borg-von Zepelin M, Beggah S, Boggian K, Sanglard D, and Monod M (1998). The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol. Microbiol. 28, 543–554. 10.1046/j.1365-2958.1998.00815.x. PubMed DOI
Calvo B, Rubio F, Fernández M, and Tranque P (2020). Dissociation of neonatal and adult mice brain for simultaneous analysis of microglia, astrocytes and infiltrating lymphocytes by flow cytometry. IBRO Rep. 8, 36–47. PubMed PMC
Lee J-K, and Tansey MG (2013). Microglia isolation from adult mouse brain. Methods Mol. Biol. 1041, 17–23. PubMed PMC
Agalave NM, Lane BT, Mody PH, Szabo-Pardi TA, and Burton MD (2020). Isolation, culture, and downstream characterization of primary microglia and astrocytes from adult rodent brain and spinal cord. J. Neurosci. Methods 340, 108742. PubMed PMC