• This record comes from PubMed

Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis

. 2023 Oct 31 ; 42 (10) : 113240. [epub] 20231017

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
R01 HL140398 NHLBI NIH HHS - United States
R41 AI164997 NIAID NIH HHS - United States
T32 HL139425 NHLBI NIH HHS - United States
Wellcome Trust - United Kingdom
K08 AI143968 NIAID NIH HHS - United States
T32 HL007747 NHLBI NIH HHS - United States
R37 DE022550 NIDCR NIH HHS - United States
I01 BX004828 BLRD VA - United States
P30 CA125123 NCI NIH HHS - United States
T32 AI053831 NIAID NIH HHS - United States
R01 HL117181 NHLBI NIH HHS - United States
R01 AI135803 NIAID NIH HHS - United States
S10 RR024574 NCRR NIH HHS - United States
214229_Z_18_Z Wellcome Trust - United Kingdom

Links

PubMed 37819761
PubMed Central PMC10753853
DOI 10.1016/j.celrep.2023.113240
PII: S2211-1247(23)01252-4
Knihovny.cz E-resources

The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid β (Aβ)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aβ-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aβ, candidalysin, and CD11b.

Centre for Host Microbiome Interactions Faculty of Dentistry Oral and Craniofacial Sciences King's College London London SE1 1UL UK

Department of Medicine Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA

Department of Medicine Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; Department of Pediatrics Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA

Department of Medicine Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; Department of Pediatrics Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; National School of Tropical Medicine Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA

Department of Medicine Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; Departments of Pathology and Immunology Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; Biology of Inflammation Center Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; Michael E DeBakey VA Center for Translational Research on Inflammatory Diseases Houston TX 77030 USA

Department of Microbial Pathogenicity Mechanisms Leibniz Institute for Natural Product Research and Infection Biology Hans Knoell Institute Jena 07737 Jena Germany

Department of Microbial Pathogenicity Mechanisms Leibniz Institute for Natural Product Research and Infection Biology Hans Knoell Institute Jena 07737 Jena Germany; Institute of Microbiology Friedrich Schiller University 07737 Jena Germany

Department of Neuroscience Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA

Department of Neuroscience Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA; Huffington Center on Aging Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA

Departments of Pathology and Immunology Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA

Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic

See more in PubMed

Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, and White TC (2012). Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13–165rv113. PubMed

Eggimann P, Garbino J, and Pittet D (2003). Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 3, 685–702. PubMed

Parker JC Jr., McCloskey JJ, and Lee RS (1978). The emergence of candidosis. The dominant postmortem cerebral mycosis. Am. J. Clin. Pathol. 70, 31–36. PubMed

McCarthy MW, Kalasauskas D, Petraitis V, Petraitiene R, and Walsh TJ (2017). Fungal Infections of the Central Nervous System in Children. J. Pediatric Infect. Dis. Soc. 6, e123–e133. 10.1093/jpids/pix059. PubMed DOI

Pendlebury WW, Perl DP, and Munoz DG (1989). Multiple microabscesses in the central nervous system: a clinicopathologic study. J. Neuropathol. Exp. Neurol. 48, 290–300. PubMed

Guerra C, Linde-Zwirble WT, and Wunsch H (2012). Risk factors for dementia after critical illness in elderly Medicare beneficiaries. Crit. Care 16, R233. 10.1186/cc11901. PubMed DOI PMC

Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, et al. (2013). Long-term cognitive impairment after critical illness. N. Engl. J. Med. 369, 1306–1316. 10.1056/NEJMoa1301372. PubMed DOI PMC

Pisa D, Alonso R, Rábano A, and Carrasco L (2016). Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies. Front. Neurosci. 10, 86. 10.3389/fnins.2016.00086. PubMed DOI PMC

Wu Y, Du S, Johnson JL, Tung H-Y, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, et al. (2019). Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 10, 58. PubMed PMC

Netea MG, Brown GD, Kullberg BJ, and Gow NAR (2008). An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78. 10.1038/nrmicro1815. PubMed DOI

Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, et al. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68. 10.1038/nature17625. PubMed DOI PMC

Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang C, Knight JM, et al. (2021). Candida albicans Elicits Protective Allergic Responses Via Platelet Mediated T helper 2 and T helper 17 Cell Polarization. Immunity. 10.1016/j.immuni.2021.08.009. PubMed DOI PMC

Ballabh P, Braun A, and Nedergaard M (2004). The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13. PubMed

Smolenski G, Sullivan PA, Cutfield SM, and Cutfield JF (1997). Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology 143, 349–356. 10.1099/00221287-143-2-349. PubMed DOI

Naglik JR, Challacombe SJ, and Hube B (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428. table of contents. PubMed PMC

Monod M, Togni G, Hube B, and Sanglard D (1994). Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol. Microbiol. 13, 357–368. PubMed

Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schäfer W, Klis F, et al. (2006). Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281, 688–694. 10.1074/jbc.M509297200. PubMed DOI

Kügler S, Böcker K, Heusipp G, Greune L, Kim KS, and Schmidt MA (2007). Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell Microbiol. 9, 619–632. 10.1111/j.1462-5822.2006.00813.x. PubMed DOI

Propson NE, Roy ER, Litvinchuk A, Köhl J, and Zheng H (2021). Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131, e140966. PubMed PMC

Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, and Wong PC (2001). BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci. 4, 233–234. 10.1038/85064. PubMed DOI

Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, et al. (2001). Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem. 76, 173–181. 10.1046/j.1471-4159.2001.00012.x. PubMed DOI

Zhang F, Gannon M, Chen Y, Zhou L, Jiao K, and Wang Q (2017). The amyloid precursor protein modulates a(2A)-adrenergic receptor endocytosis and signaling through disrupting arrestin 3 recruitment. Faseb. J. 31, 4434–4446. 10.1096/fj.201700346R. PubMed DOI PMC

Tahara K, Kim H-D, Jin J-J, Maxwell JA, Li L, and Fukuchi K. i. (2006). Role of toll-like receptor signalling in Aβ uptake and clearance. Brain 129, 3006–3019. PubMed PMC

Millien VO, Lu W, Shaw J, Yuan X, Mak G, Roberts L, Song LZ, Knight JM, Creighton CJ, Luong A, et al. (2013). Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 341, 792–796. 10.1126/science.1240342. PubMed DOI PMC

Kutuzova GD, Albrecht RM, Erickson CM, and Qureshi N (2001). Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. J. Immunol. 167, 482–489. 10.4049/jimmunol.167.1.482. PubMed DOI

Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J, Huppler AR, Ramani K, McGeachy MJ, Mufazalov IA, et al. (2017). Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2, eaam8834. 10.1126/sciimmunol.aam8834. PubMed DOI PMC

Verma AH, Zafar H, Ponde NO, Hepworth OW, Sihra D, Aggor FEY, Ainscough JS, Ho J, Richardson JP, Coleman BM, et al. (2018). IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. J. Immunol. 201, 627–634. 10.4049/jimmunol.1800515. PubMed DOI PMC

Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, Kaplan DH, Naglik JR, Shan W, Shetty AC, et al. (2020). Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci. Immunol. 5, eaba0570. 10.1126/sciimmunol.aba0570. PubMed DOI PMC

Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, et al. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68. PubMed PMC

Liu J, Willems HME, Sansevere EA, Allert S, Barker KS, Lowes DJ, Dixson AC, Xu Z, Miao J, DeJarnette C, et al. (2021). A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis. PLoS Pathog. 17, e1009884. 10.1371/journal.ppat.1009884. PubMed DOI PMC

Richardson JP, Willems HME, Moyes DL, Shoaie S, Barker KS, Tan SL, Palmer GE, Hube B, Naglik JR, and Peters BM (2018). Candidalysin Drives Epithelial Signaling, Neutrophil Recruitment, and Immunopathology at the Vaginal Mucosa. Infect. Immun. 86, e00645–17. 10.1128/IAI.00645-17. PubMed DOI PMC

Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA, Hube B, Lionakis MS, Murdoch C, Filler SG, and Naglik JR (2019). Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. J. Infect. Dis. 220, 1477–1488. 10.1093/infdis/jiz322. PubMed DOI PMC

Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, Bohrer AC, Mayer-Barber KD, Lira SA, Iwakura Y, et al. (2019). CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 20, 559–570. 10.1038/s41590-019-0377-2. PubMed DOI PMC

Wu Y, Du S, Johnson JL, Tung H-Y, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, et al. (2019). Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 10, 58. 10.1038/s41467-018-07991-4. PubMed DOI PMC

Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, and Boche D (2005). Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49, 375–384. PubMed

Veenstra AA, Tang J, and Kern TS (2013). Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy. PLoS One 8, e78405. 10.1371/journal.pone.0078405. PubMed DOI PMC

Lionakis MS, Lim JK, Lee CCR, and Murphy PM (2011). Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180–199. 10.1159/000321157. PubMed DOI PMC

Shukla AK, McIntyre LL, Marsh SE, Schneider CA, Hoover EM, Walsh CM, Lodoen MB, Blurton-Jones M, and Inlay MA (2019). CD11a expression distinguishes infiltrating myeloid cells from plaque-associated microglia in Alzheimer’s disease. Glia 67, 844–856. 10.1002/glia.23575. PubMed DOI PMC

Losse J, Svobodová E, Heyken A, Hube B, Zipfel PF, and Józsi M (2011). Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils. Mol. Immunol. 48, 2135–2143. PubMed

Soloviev DA, Fonzi WA, Sentandreu R, Pluskota E, Forsyth CB, Yadav S, and Plow EF (2007). Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin aMb2. J. Immunol. 178, 2038–2046. PubMed

Netea MG, Joosten LAB, van der Meer JWM, Kullberg B-J, and van de Veerdonk FL (2015). Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642. 10.1038/nri3897. PubMed DOI

Pisa D, Alonso R, Juarranz A, Rábano A, and Carrasco L (2015). Direct visualization of fungal infection in brains from patients with Alzheimer’s disease. J. Alzheimers Dis. 43, 613–624. 10.3233/JAD-141386. PubMed DOI

Alonso R, Pisa D, Aguado B, and Carrasco L (2017). Identification of Fungal Species in Brain Tissue from Alzheimer’s Disease by Next-Generation Sequencing. J. Alzheimers Dis. 58, 55–67. 10.3233/JAD-170058. PubMed DOI

Pisa D, Alonso R, and Carrasco L (2020). Parkinson’s Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. Int. J. Biol. Sci. 16, 1135–1152. 10.7150/ijbs.42257. PubMed DOI PMC

Villar CC, Kashleva H, Nobile CJ, Mitchell AP, and Dongari-Bagtzoglou A (2007). Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun. 75, 2126–2135. 10.1128/IAI.00054-07. PubMed DOI PMC

Landers CT, Tung HY, Knight JM, Madison MC, Wu Y, Zeng Z, Porter PC, Rodriguez A, Flick MJ, Kheradmand F, and Corry DB (2019). Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J. Biol. Chem. 294, 8834–8847. 10.1074/jbc.RA118.006724. PubMed DOI PMC

Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, et al. (2021). Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 54, 2595–2610.e7. 10.1016/j.immuni.2021.08.009. PubMed DOI PMC

Alonso R, Pisa D, and Carrasco L (2019). Brain Microbiota in Huntington’s Disease Patients. Front. Microbiol. 10, 2622. 10.3389/fmicb.2019.02622. PubMed DOI PMC

Alonso R, Pisa D, Fernández-Fernández AM, Rábano A, and Carrasco L (2017). Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 108, 249–260. 10.1016/j.nbd.2017.09.001. PubMed DOI

Ho J, Yang X, Nikou S-A, Kichik N, Donkin A, Ponde NO, Richardson JP, Gratacap RL, Archambault LS, Zwirner CP, et al. (2019). Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 10, 2297. 10.1038/s41467-019-09915-2. PubMed DOI PMC

Landers CT, Tung H-Y, Knight JM, Madison MC, Wu Y, Zeng Z, Porter PC, Rodriguez A, Flick MJ, Kheradmand F, and Corry DB (2019). Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J. Biol. Chem. 294, 8834–8847. PubMed PMC

Bacher P, Hohnstein T, Beerbaum E, Rocöker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P, Grehn C, Seidel K, et al. (2019). Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 176, 1340–1355.e15. 10.1016/j.cell.2019.01.041. PubMed DOI

Schild L, Heyken A, de Groot PWJ, Hiller E, Mock M, de Koster C, Horn U, Rupp S, and Hube B (2011). Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot. Cell 10, 98–109. PubMed PMC

Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, and Gow NA (1997). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun. 65, 3529–3538. PubMed PMC

Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, and Sebo P (2015). Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4, e10766. PubMed PMC

Sanglard D, Hube B, Monod M, Odds FC, and Gow NA (1997). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect. Immun. 65, 3539–3546. PubMed PMC

McCarthy DP, Richards MH, and Miller SD (2012). Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. In Autoimmunity (Springer; ), pp. 381–401. PubMed PMC

Jiang W, Huang W, Chen Y, Zou M, Peng D, and Chen D (2017). HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. Oxid. Med. Cell. Longev. 2017, 3160360. 10.1155/2017/3160360. PubMed DOI PMC

Borg-von Zepelin M, Beggah S, Boggian K, Sanglard D, and Monod M (1998). The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol. Microbiol. 28, 543–554. 10.1046/j.1365-2958.1998.00815.x. PubMed DOI

Calvo B, Rubio F, Fernández M, and Tranque P (2020). Dissociation of neonatal and adult mice brain for simultaneous analysis of microglia, astrocytes and infiltrating lymphocytes by flow cytometry. IBRO Rep. 8, 36–47. PubMed PMC

Lee J-K, and Tansey MG (2013). Microglia isolation from adult mouse brain. Methods Mol. Biol. 1041, 17–23. PubMed PMC

Agalave NM, Lane BT, Mody PH, Szabo-Pardi TA, and Burton MD (2020). Isolation, culture, and downstream characterization of primary microglia and astrocytes from adult rodent brain and spinal cord. J. Neurosci. Methods 340, 108742. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...