Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species

. 2020 Dec 26 ; 14 (1) : . [epub] 20201226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33375355

Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008351 European Structural and Investment Funds Operational Program Research, Development and Education
TJ02000372 Technology Agency of the Czech Republic

Selaginella P. Beauv. is a group of vascular plants in the family Selaginellaceae Willk., found worldwide and numbering more than 700 species, with some used as foods and medicines. The aim of this paper was to compare methanolic (MeOH) and dichloromethane (DCM) extracts of eight Selaginella species on the basis of their composition and biological activities. Six of these Selaginella species are underinvestigated. Using ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis, we identified a total of 193 compounds among the tested Selaginella species, with flavonoids predominating. MeOH extracts recovered more constituents that were detected, including selaginellins, the occurrence of which is only typical for this plant genus. Of all the tested species, Selaginella apoda contained the highest number of identified selaginellins. The majority of the compounds were identified in S. apoda, the fewest compounds in Selaginella cupressina. All the tested species demonstrated antioxidant activity using oxygen radical absorption capacity (ORAC) assay, which showed that MeOH extracts had higher antioxidant capacity, with the half maximal effective concentration (EC50) ranging from 12 ± 1 (Selaginella myosuroides) to 124 ± 2 (Selaginella cupressina) mg/L. The antioxidant capacity was presumed to be correlated with the content of flavonoids, (neo)lignans, and selaginellins. Inhibition of acetylcholinesterase (AChE) was mostly discerned in DCM extracts and was only exhibited in S. myosuroides, S. cupressina, Selaginella biformis, and S. apoda extracts with the half maximal inhibitory concentration (IC50) in the range of 19 ± 3 to 62 ± 1 mg/L. Substantial cytotoxicity against cancer cell lines was demonstrated by the MeOH extract of S. apoda, where the ratio of the IC50 HEK (human embryonic kidney) to IC50 HepG2 (hepatocellular carcinoma) was 7.9 ± 0.2. MeOH extracts inhibited the production of nitrate oxide and cytokines in a dose-dependent manner. Notably, S. biformis halved the production of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 at the following concentrations: 105 ± 9, 11 ± 1, and 10 ± 1 mg/L, respectively. Our data confirmed that extracts from Selaginella species exhibited cytotoxicity against cancer cell lines and AChE inhibition. The activity observed in S. apoda was the most promising and is worth further exploration.

Zobrazit více v PubMed

Weng J.-K., Noel J. Chemodiversity in selaginella: A reference system for parallel and convergent metabolic evolution in terrestrial plants. Front. Plant Sci. 2013;4:1–17. doi: 10.3389/fpls.2013.00119. PubMed DOI PMC

Nguyen P.H., Zhao B.T., Ali M.Y., Choi J.S., Rhyu D.Y., Min B.S., Woo M.H. Insulin-mimetic selaginellins from selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod. 2015;78:34–42. doi: 10.1021/np5005856. PubMed DOI

Nguyen P.H., Ji D.J., Han Y.R., Choi J.S., Rhyu D.Y., Min B.S., Woo M.H. Selaginellin and biflavonoids as protein tyrosine phosphatase 1b inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects. Bioorg. Med. Chem. 2015;23:3730–3737. doi: 10.1016/j.bmc.2015.04.007. PubMed DOI

Adame-González A.B., Muñíz-Dl M.E., Valencia -A.S. Comparative leaf morphology and anatomy of six Selaginella species (selaginellaceae, subgen, rupestrae) with notes on xerophytic adaptations. Flora. 2019;260:151482. doi: 10.1016/j.flora.2019.151482. DOI

Uphof J.C.T. Physiological anatomy of xerophytic Selaginellas. New Phytol. 1920;19:101–131. doi: 10.1111/j.1469-8137.1920.tb07321.x. DOI

Weststrand S., Korall P. Phylogeny of Selaginellaceae: There is value in morphology after all! Am. J. Bot. 2016;103:2136–2159. doi: 10.3732/ajb.1600156. PubMed DOI

Magazù S., Migliardo F., Benedetto A., La Torre R., Hennet L. Bio-protective effects of homologous disaccharides on biological macromolecules. Eur. Biophys. J. 2012;41:361–367. doi: 10.1007/s00249-011-0760-x. PubMed DOI

Schulz C., Little D.P., Stevenson D.W., Bauer D., Moloney C., Stützel T. An overview of the morphology, anatomy, and life cycle of a new model species: The lycophyte Selaginella apoda (l.) spring. Int. J. Plant Sci. 2010;171:693–712. doi: 10.1086/654902. DOI

Heo J.K., Nguyen P.H., Kim W.C., Phuc N.M., Liu K.H. Inhibitory effect of selaginellins from Selaginella tamariscina (beauv.) spring against cytochrome P450 and uridine 5’-diphosphoglucuronosyltransferase isoforms on human liver microsomes. Molecules. 2017;22:1590. doi: 10.3390/molecules22101590. PubMed DOI PMC

Shim S.Y., Lee S.G., Lee M. Biflavonoids isolated from Selaginella tamariscina and their anti-inflammatory activities via ERK 1/2 signaling. Molecules. 2018;23:926. doi: 10.3390/molecules23040926. PubMed DOI PMC

Wang G., Ma X., Li D., Jiang Y., Liang Q., Hui C. Chemical composition of essential volatile oils of Selaginella spp. and their antibacterial activity. Bangladesh J. Bot. 2018;47:719–726.

Chandran G., Muralidhara Neuroprotective effect of aqueous extract of Selaginella delicatula as evidenced by abrogation of rotenone-induced motor deficits, oxidative dysfunctions, and neurotoxicity in mice. Cell Mol. Neurobiol. 2013;33:929–942. doi: 10.1007/s10571-013-9959-y. PubMed DOI PMC

Girish C., Muralidhara Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in drosophila melanogaster: Implications for parkinson’s disease. NeuroToxicology. 2012;33:444–456. doi: 10.1016/j.neuro.2012.04.002. PubMed DOI

Chen J.J., Duh C.Y., Chen J.F. New cytotoxic biflavonoids from Selaginella delicatula. Planta medica. 2005;71:659–665. doi: 10.1055/s-2005-871273. PubMed DOI

Li L., Wang Q., Deng R., Zhang S., Lu Y. Transcriptome profiling of blue leaf coloration in Selaginella uncinata. Canadian J. Plant Sci. 2016;97 doi: 10.1139/CJPS-2016-0260. DOI

Li J., Lei X., Chen K.L. Comparison of cytotoxic activities of extracts from Selaginella species. Pharmacogn. Mag. 2014;10:529–535. doi: 10.4103/0973-1296.141794. PubMed DOI PMC

Zheng J., Zheng Y., Zhi H., Dai Y., Wang N.-L., Fang Y.-X., Du Z.-Y., Zhang K., Wu L.-Y., Fan M. γ-Lactone derivatives and terpenoids from Selaginella uncinata and their protective effect against anoxia. Chem. Nat. Compd. 2014;50:366–369. doi: 10.1007/s10600-014-0956-2. DOI

Yu B., Cai W., Zhang H.H., Zhong Y.S., Fang J., Zhang W.Y., Mo L., Wang L.C., Yu C.H. Selaginella uncinata flavonoids ameliorated ovalbumin-induced airway inflammation in a rat model of asthma. J. Ethnopharmacol. 2017;195:71–80. doi: 10.1016/j.jep.2016.11.049. PubMed DOI

Zou Z.X., Xu P.S., Zhang G.G., Cheng F., Chen K., Li J., Zhu W.X., Cao D.S., Xu K.P., Tan G.S. Selagintriflavonoids with BACE1 inhibitory activity from the fern Selaginella doederleinii. Phytochemistry. 2017;134:114–121. doi: 10.1016/j.phytochem.2016.11.011. PubMed DOI

Zou Z.X., Xu K.P., Xu P.S., Li X.M., Cheng F., Li J., Yu X., Cao D.S., Li D., Zeng W., et al. Seladoeflavones A–F, six novel flavonoids from Selaginella doederleinii. Fitoterapia. 2017;116:66–71. doi: 10.1016/j.fitote.2016.11.014. PubMed DOI

Zhu Y., Huang R.Z., Wang C.G., Ouyang X.L., Jing X.T., Liang D., Wang H.S. New inhibitors of matrix metalloproteinases 9 (MMP-9): Lignans from Selaginella moellendorffii. Fitoterapia. 2018;130:281–289. doi: 10.1016/j.fitote.2018.09.008. PubMed DOI

Cheng F., Xu K.P., Liu L.F., Yao C.P., Xu P.S., Zhou G., Li D., Li X.M., Chen K., Zou Z.X., et al. New neolignans from Selaginella pieta and their protective effect on HT-22 cells. Fitoterapia. 2018;127:69–73. doi: 10.1016/j.fitote.2018.02.008. PubMed DOI

Wang Y.-H., Long C.-L., Yang F.-M., Wang X., Sun Q.-Y., Wang H.-S., Shi Y.-N., Tang G.-H. Pyrrolidinoindoline alkaloids from Selaginella moellendorfii. J. Nat. Prod. 2009;72:1151–1154. doi: 10.1021/np9001515. PubMed DOI

Ke L.Y., Zhang Y., Xia M.Y., Zhuo J.X., Wang Y.H., Long C.L. Modified abietane diterpenoids from whole plants of Selaginella moellendorffii. J. Nat. Prod. 2018;81:418–422. doi: 10.1021/acs.jnatprod.7b00909. PubMed DOI

Li D., Qian Y., Tian Y.J., Yuan S.M., Wei W., Wang G. Optimization of ionic liquid-assisted extraction of biflavonoids from Selaginella doederleinii and evaluation of its antioxidant and antitumor activity. Molecules. 2017;22:586. doi: 10.3390/molecules22040586. PubMed DOI PMC

Jiang Y., Li D., Ma X., Jiang F., He Q., Qiu S., Li Y., Wang G. Ionic liquid(-)ultrasound-based extraction of biflavonoids from Selaginella helvetica and investigation of their antioxidant activity. Molecules. 2018;23:3284. doi: 10.3390/molecules23123284. PubMed DOI PMC

Cao Y., Zhao M., Zhu Y., Zhu Z.H., Oberer L., Duan J.A. Diselaginellin b, an unusual dimeric molecule from Selaginella pulvinata, inhibited metastasis and induced apoptosis of smmc-7721 human hepatocellular carcinoma cells. J. Nat. Prod. 2017;80:3151–3158. doi: 10.1021/acs.jnatprod.7b00404. PubMed DOI

Zou Z., Xu P., Wu C., Zhu W., Zhu G., He X., Zhang G., Hu J., Liu S., Zeng W., et al. Carboxymethyl flavonoids and a chromone with antimicrobial activity from Selaginella moellendorffii hieron. Fitoterapia. 2016;111:124–129. doi: 10.1016/j.fitote.2016.04.022. PubMed DOI

Cao Y., Chen J.J., Tan N.H., Oberer L., Wagner T., Wu Y.P., Zeng G.Z., Yan H., Wang Q. Antimicrobial selaginellin derivatives from Selaginella pulvinata. Bioorg. Med. Chem. Lett. 2010;20:2456–2460. doi: 10.1016/j.bmcl.2010.03.016. PubMed DOI

Cao Y., Yao Y., Huang X.-J., Oberer L., Wagner T., Guo J.-M., Gu W., Liu W.-D., Lv G.-X., Shen Y.-N., et al. Four new selaginellin derivatives from Selaginella pulvinata: Mechanism of racemization process in selaginellins with quinone methide. Tetrahedron. 2015;71:1581–1587. doi: 10.1016/j.tet.2015.01.017. DOI

Zhang L.-P., Liang Y.-M., Wei X.-C., Cheng D.-L. A new unusual natural pigment from Selaginella sinensis and its noticeable physicochemical properties. J. Org. Chem. 2007;72:3921–3924. doi: 10.1021/jo0701177. PubMed DOI

Cheng X.L., Ma S.C., Yu J.D., Yang S.Y., Xiao X.Y., Hu J.Y., Lu Y., Shaw P.C., But P.P., Lin R.C. Selaginellin A and B, two novel natural pigments isolated from Selaginella tamariscina. Chem. Pharm. Bull. 2008;56:982–984. doi: 10.1248/cpb.56.982. PubMed DOI

Yang C., Shao Y., Li K., Xia W. Bioactive selaginellins from Selaginella tamariscina (beauv.) spring. Beilstein J. Org. Chem. 2012;8:1884–1889. doi: 10.3762/bjoc.8.217. PubMed DOI PMC

Scifinder. [(accessed on 31 July 2020)]; Available online: https://scifinder-n.cas.org/

Zhang G.G., Jing Y., Zhang H.M., Ma E.L., Guan J., Xue F.N., Liu H.X., Sun X.Y. Isolation and cytotoxic activity of selaginellin derivatives and biflavonoids from Selaginella tamariscina. Planta Med. 2012;78:390–392. doi: 10.1055/s-0031-1298175. PubMed DOI

Woo S., Kang K.B., Kim J., Sung S.H. Molecular networking reveals the chemical diversity of selaginellin derivatives, natural phosphodiesterase-4 inhibitors from Selaginella tamariscina. J. Nat. Prod. 2019;82:1820–1830. doi: 10.1021/acs.jnatprod.9b00049. PubMed DOI

Le D.D., Nguyen D.H., Zhao B.T., Seong S.H., Choi J.S., Kim S.K., Kim J.A., Min B.S., Woo M.H. Ptp1b inhibitors from selaginella tamariscina (beauv.) spring and their kinetic properties and molecular docking simulation. Bioorg. Chem. 2017;72:273–281. doi: 10.1016/j.bioorg.2017.05.001. PubMed DOI

Cao Y., Chen J.-J., Tan N.-H., Wu Y.-P., Yang J., Wang Q. Structure determination of selaginellins G and H from Selaginella pulvinata by NMR spectroscopy. Magn. Reson. Chem. 2010;48:656–659. doi: 10.1002/mrc.2623. PubMed DOI

Zálešák F., Bon D.J.D., Pospíšil J. Lignans and neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019;146:104284. doi: 10.1016/j.phrs.2019.104284. PubMed DOI

Zhu B., Wang T.-B., Hou L.-J., Lv H.-X., Liu A.M., Zeng P., Li A.-H. A new selaginellin from Selaginella moellendorffii inhibits hepatitis B virus gene expression and replication. Chem. Nat. Compd. 2016;52:624–627. doi: 10.1007/s10600-016-1725-1. DOI

Liu X., Luo H.-B., Huang Y.-Y., Bao J.-M., Tang G.-H., Chen Y.-Y., Wang J., Yin S. Selaginpulvilins A–D, new phosphodiesterase-4 inhibitors with an unprecedented skeleton from Selaginella pulvinata. Org. Lett. 2014;16:282–285. doi: 10.1021/ol403282f. PubMed DOI

Yao W.-N., Huang R.-Z., Hua J., Zhang B., Wang C.-G., Liang D., Wang H.-S. Selagintamarlin a: A selaginellin analogue possessing a 1H-2-benzopyran core from Selaginella tamariscina. ACS Omega. 2017;2:2178–2183. doi: 10.1021/acsomega.7b00209. PubMed DOI PMC

Zhang J.-S., Liu X., Weng J., Guo Y.-Q., Li Q.-J., Ahmed A., Tang G.-H., Yin S. Natural diarylfluorene derivatives: Isolation, total synthesis, and phosphodiesterase-4 inhibition. Org. Chem. Front. 2017;4:170–177. doi: 10.1039/C6QO00623J. DOI

Huang Y., Liu X., Wu D., Tang G., Lai Z., Zheng X., Yin S., Luo H.-B. The discovery, complex crystal structure, and recognition mechanism of a novel natural PDE4 inhibitor from Selaginella pulvinata. Biochem. Pharmacol. 2017;130:51–59. doi: 10.1016/j.bcp.2017.01.016. PubMed DOI

Yao Y., Luong T.N., Lepik M., Aftab N., Fong V.H., Vieira A. Synergism of antioxidant phytochemicals: Comparisons among purified polyphenols and dietary-plant extracts, XXVIII International Horticultural Congress, 2012. International Society for Horticultural Science (ISHS); Leuven, Belgium: 2012. pp. 121–127. DOI

Macêdo L.A.R.d.O., Oliveira Júnior R.G.d., Souza G.R., de Oliveira A.P., de Lavor É.M., Silva M.G.e., Pacheco A.G.M., de Menezes I.R.A., Coutinho H.D.M., Pessoa C.d.Ó., et al. Chemical composition, antioxidant and antibacterial activities and evaluation of cytotoxicity of the fractions obtained from Selaginella convoluta (arn.) spring (Selaginellaceae) Biotechnol. Equip. 2018;32:506–512. doi: 10.1080/13102818.2018.1431055. DOI

Rao L., You Y.-X., Su Y., Fan Y., Liu Y., He Q., Chen Y., Meng J., Hu L., Li Y., et al. Lignans and neolignans with antioxidant and human cancer cell proliferation inhibitory activities from Cinnamomum bejolghota confirm its functional food property. J. Agric. Food Chem. 2020;68:8825–8835. doi: 10.1021/acs.jafc.0c02885. PubMed DOI

Singh K., Gangrade A., Jana A., Mandal B.B., Das N. Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring. ACS Omega. 2019;4:835–841. doi: 10.1021/acsomega.8b02849. DOI

Badisa R.B., Darling-Reed S.F., Joseph P., Cooperwood J.S., Latinwo L.M., Goodman C.B. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009;29:2993–2996. PubMed PMC

Perreault M., Maltais R., Dutour R., Poirier D. Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133. Steroids. 2016;115:105–113. doi: 10.1016/j.steroids.2016.08.015. PubMed DOI

Peña-Morán O.A., Villarreal M.L., Álvarez-Berber L., Meneses-Acosta A., Rodríguez-López V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules. 2016;21:1013. doi: 10.3390/molecules21081013. PubMed DOI PMC

Qian Z., Cai-xia W., Yan-ling L., Cui-yan L., Yan-hua R. Chemical constituents from Selaginella doederleinii and their bioactivities. Zhongcaoyao. 2013;44:3270–3275.

Kathirvel P., Ravi S. Chemical composition of the essential oil from basil (Ocimum basilicum linn.) and its in vitro cytotoxicity against HeLa and HEP-2 human cancer cell lines and nih 3t3 mouse embryonic fibroblasts. Nat. Prod. Res. 2012;26:1112–1118. doi: 10.1080/14786419.2010.545357. PubMed DOI

Cheng F., Zou Z.X., Xu P.S., Zhang S.H., Zhang Y., Yao C.P., Xu K.P., Tan G.S. Pictalignans D–F, three new neolignan derivatives from Selaginella picta. Nat. Prod. Res. 2020;34:1264–1269. doi: 10.1080/14786419.2018.1560284. PubMed DOI

Permyakov S.E., Knyazeva E.L., Khasanova L.M., Fadeev R.S., Zhadan A.P., Roche-Hakansson H., Håkansson A.P., Akatov V.S., Permyakov E.A. Oleic acid is a key cytotoxic component of hamlet-like complexes. Biol. Chem. 2012;393:85. doi: 10.1515/BC-2011-230. PubMed DOI

Malhi H., Barreyro F.J., Isomoto H., Bronk S.F., Gores G.J. Free fatty acids sensitise hepatocytes to trail mediated cytotoxicity. Gut. 2007;56:1124–1131. doi: 10.1136/gut.2006.118059. PubMed DOI PMC

Mahapatra D.K., Bharti S.K., Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015;98:69–114. doi: 10.1016/j.ejmech.2015.05.004. PubMed DOI

Chiu C.Y., Li C.Y., Chiu C.C., Niwa M., Kitanaka S., Damu A.G., Lee E.J., Wu T.S. Constituents of leaves of Phellodendron japonicum maxim. and their antioxidant activity. Chem. Pharm. Bull. 2005;53:1118–1121. doi: 10.1248/cpb.53.1118. PubMed DOI

Paswan S.K., Gautam A., Verma P., Rao C.V., Sidhu O.P., Singh A.P., Srivastava S. The indian magical herb ‘sanjeevni’ (Selaginella bryopteris l.)—A promising anti-inflammatory phytomedicine for the treatment of patients with inflammatory skin diseases. J. Pharmacopunct. 2017;20:93–99. doi: 10.3831/KPI.2017.20.012. PubMed DOI PMC

Gayathri V., Asha V.V., John J.A., Subramoniam A. Protection of immunocompromised mice from fungal infection with a thymus growth-stimulatory component from Selaginella involvens, a fern. Immunopharmacol. Immunotoxicol. 2011;33:351–359. doi: 10.3109/08923973.2010.518617. PubMed DOI

Lee J.-H., Lee J.Y., Park J.H., Jung H.S., Kim J.S., Kang S.S., Kim Y.S., Han Y. Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective th1 immune response against disseminated candidiasis in mice. Vaccine. 2007;25:3834–3840. doi: 10.1016/j.vaccine.2007.01.108. PubMed DOI

Kim M.J., Wang H.S., Lee M.W. Anti-inflammatory effects of fermented bark of Acanthopanax sessiliflorus and its isolated compounds on lipopolysaccharide-treated RAW 264.7 macrophage cells. Evid. Based Complement Alternat. Med. 2020;2020:6749425. doi: 10.1155/2020/6749425. PubMed DOI PMC

Jang J., Kim S.-M., Yee S.-M., Kim E.-M., Lee E.-H., Choi H.-R., Lee Y.-S., Yang W.-K., Kim H.-Y., Kim K.-H., et al. Daucosterol suppresses dextran sulfate sodium (dss)-induced colitis in mice. Int. Immunopharmacol. 2019;72:124–130. doi: 10.1016/j.intimp.2019.03.062. PubMed DOI

Wang S., Yan Y., Cheng Z., Hu Y., Liu T. Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer a549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov. 2018;4:26–36. doi: 10.1038/s41420-018-0026-9. PubMed DOI PMC

Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex evaluation of antioxidant capacity of milk thistle dietary supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC

Aatbio EC50 calculator. [(accessed on 31 September 2020)]; Available online: https://www.aatbio.com/tools/ec50-calculator/

Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In silico and in vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC

Dobiasová S., Řehořová K., Kučerová D., Biedermann D., Káňová K., Petrásková L., Koucká K., Václavíková R., Valentová K., Ruml T., et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants. 2020;9:455. doi: 10.3390/antiox9050455. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...