Selagibenzophenone B and Its Derivatives: SelB-1, a Dual Topoisomerase I/II Inhibitor Identified through In Vitro and In Silico Analyses
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39184056
PubMed Central
PMC11342340
DOI
10.1021/acsbiomedchemau.4c00027
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The development of multitargeted drugs represents an innovative approach to cancer treatment, aiming to enhance drug effectiveness while minimizing side effects. Herein, we sought to elucidate the inhibitory effect of selagibenzophenone B derivatives on the survival of cancer cells and dual topoisomerase I/II enzyme activity. Results demonstrated that among the compounds, SelB-1 selectively inhibited the proliferation and migration of prostate cancer cells while exhibiting minimal effects on healthy cells. Furthermore, SelB-1 showed a dual inhibitory effect on topoisomerases. Computational analyses mirrored the results from enzyme inhibition assays, demonstrating the compound's strong binding affinity to the catalytic sites of the topoisomerases. To our surprise, SelB-1 did not induce apoptosis in prostate cancer cells; instead, it induced autophagic gene expression and lipid peroxidation while reducing GSH levels, which might be associated with ferroptotic death mechanisms. To summarize, the findings suggest that SelB-1 possesses the potential to serve as a dual topoisomerase inhibitor and can be further developed as a promising candidate for prostate cancer treatment.
Zobrazit více v PubMed
Newman D. J.; Cragg G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI
Lapinskaite R.; Atalay H. N.; Malatinec Š.; Donmez S.; Cinar Z. O.; Schwarz P. F.; Perhal A. F.; Císařová I.; Labanauskas L.; Karpiński T. M.; Dirsch V. M.; Tumer T. B.; Rycek L. Synthesis of Selagibenzophenone A and Its Derivatives for Evaluation of Their Antiproliferative, RORγ Inverse Agonistic, and Antimicrobial Effect**. ChemistrySelect 2023, 8 (7), e202204816 10.1002/slct.202204816. DOI
Liu X.; Luo H.-B.; Huang Y.-Y.; Bao J.-M.; Tang G.-H.; Chen Y.-Y.; Wang J.; Yin S. Selaginpulvilins A-D, New Phosphodiesterase-4 Inhibitors with an Unprecedented Skeleton from Selaginella Pulvinata. Org. Lett. 2014, 16 (1), 282–285. 10.1021/ol403282f. PubMed DOI
Liu R.; Zou H.; Zou Z. X.; Cheng F.; Yu X.; Xu P. S.; Li X. M.; Li D.; Xu K. P.; Tan G. S. Two New Anthraquinone Derivatives and One New Triarylbenzophenone Analog from Selaginella Tamariscina. Nat. Prod. Res. 2020, 34 (19), 2709–2714. 10.1080/14786419.2018.1452008. PubMed DOI
Lapinskaite R.; Malatinec Š.; Mateus M.; Rycek L. Cross-Coupling as a Key Step in the Synthesis and Structure Revision of the Natural Products Selagibenzophenones a and B. Catalysts 2021, 11 (6), 708. 10.3390/catal11060708. DOI
Wang C. G.; Yao W. N.; Zhang B.; Hua J.; Liang D.; Wang H. S. Lung Cancer and Matrix Metalloproteinases Inhibitors of Polyphenols from Selaginella Tamariscina with Suppression Activity of Migration. Bioorg. Med. Chem. Lett. 2018, 28 (14), 2413–2417. 10.1016/j.bmcl.2018.06.024. PubMed DOI
Vos S. M.; Tretter E. M.; Schmidt B. H.; Berger J. M. All Tangled up: How Cells Direct, Manage and Exploit Topoisomerase Function. Nat. Rev. Mol. Cell Biol. 2011, 12 (12), 827. 10.1038/nrm3228. PubMed DOI PMC
Martino E.; Della Volpe S.; Terribile E.; Benetti E.; Sakaj M.; Centamore A.; Sala A.; Collina S. The Long Story of Camptothecin: From Traditional Medicine to Drugs. Bioorg. Med. Chem. Lett. 2017, 27 (4), 701–707. 10.1016/j.bmcl.2016.12.085. PubMed DOI
de Man F. M.; Goey A. K. L.; van Schaik R. H. N.; Mathijssen R. H. J.; Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet. 2018, 57 (10), 1229. 10.1007/s40262-018-0644-7. PubMed DOI PMC
Zhao Y.; Zheng Y.; Chen X.; Du R.; Yan Z. Camptothecin Derivatives Induce Apoptosis and Inhibit Proliferation of Prostate Cancer PC-3M Cells through Downregulation of PI3K/Akt Signaling Pathway. Phytochem. Lett. 2021, 46, 79–89. 10.1016/j.phytol.2021.08.014. DOI
Mitra Ghosh T.; Mazumder S.; Davis J.; Yadav J.; Akinpelu A.; Alnaim A.; Kumar H.; Waliagha R.; Church Bird A. E.; Rais-Bahrami S.; Bird R. C.; Mistriotis P.; Mishra A.; Yates C. C.; Mitra A. K.; Arnold R. D. Metronomic Administration of Topotecan Alone and in Combination with Docetaxel Inhibits Epithelial–Mesenchymal Transition in Aggressive Variant Prostate Cancers. Cancer Res. Commun. 2023, 3 (7), 1286. 10.1158/2767-9764.CRC-22-0427. PubMed DOI PMC
Baldwin E. L.; Osheroff N. Etoposide, Topoisomerase II and Cancer. Curr. Med. Chem. - Anti-Cancer Agents 2005, 5 (4), 363–372. 10.2174/1568011054222364. PubMed DOI
Tariq S.; Kim S. Y.; Monteiro de Oliveira Novaes J.; Cheng H. Update 2021: Management of Small Cell Lung Cancer. Lung 2021, 199 (6), 579–587. 10.1007/s00408-021-00486-y. PubMed DOI
Zhao H.; Yu J.; Zhang R.; Chen P.; Jiang H.; Yu W. Doxorubicin Prodrug-Based Nanomedicines for the Treatment of Cancer. Eur. J. Med. Chem. 2023, 258, 115612 10.1016/j.ejmech.2023.115612. PubMed DOI
Cattrini C.; Capaia M.; Boccardo F.; Barboro P. Etoposide and Topoisomerase II Inhibition for Aggressive Prostate Cancer: Data from a Translational Study. Cancer Treat. Res. Commun. 2020, 25, 100221 10.1016/j.ctarc.2020.100221. PubMed DOI
Pommier Y. Topoisomerase I Inhibitors: Camptothecins and Beyond. Nat. Rev. Cancer 2006, 6 (10), 789–802. 10.1038/nrc1977. PubMed DOI
Chen S.; Gomez S. P.; McCarley D.; Mainwaring M. G. Topotecan-Induced Topoisomerase IIα Expression Increases the Sensitivity of the CML Cell Line K562 to Subsequent Etoposide plus Mitoxantrone Treatment. Cancer Chemother. Pharmacol. 2002, 49 (5), 347–355. 10.1007/s00280-002-0423-9. PubMed DOI
Crump M.; Lipton J.; Hedley D.; Sutton D.; Shepherd F.; Minden M.; Stewart K.; Beare S.; Eisenhauer E. Phase I Trial of Sequential Topotecan Followed by Etoposide in Adults with Myeloid Leukemia: A National Cancer Institute of Canada Clinical Trials Group Study. Leuk. 1999, 13 (3), 343–347. 10.1038/sj.leu.2401308. PubMed DOI
Skok Ž.; Zidar N.; Kikelj D.; Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J. Med. Chem. 2020, 63 (3), 884–904. 10.1021/acs.jmedchem.9b00726. PubMed DOI
Trocóniz I. F.; Cendrós J.-M.; Soto E.; Pruñonosa J.; Perez-Mayoral A.; Peraire C.; Principe P.; Delavault P.; Cvitkovic F.; Lesimple T.; Obach R. Population Pharmacokinetic/Pharmacodynamic Modeling of Drug-Induced Adverse Effects of a Novel Homocamptothecin Analog, Elomotecan (BN80927), in a Phase I Dose Finding Study in Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2012, 70 (2), 239–250. 10.1007/s00280-012-1906-y. PubMed DOI
Liew S. K.; Malagobadan S.; Arshad N. M.; Nagoor N. H. A Review of the Structure–Activity Relationship of Natural and Synthetic Antimetastatic Compounds. Biomolecules 2020, 10 (1), 138. 10.3390/biom10010138. PubMed DOI PMC
Adnan M.; Siddiqui A. J.; Jamal A.; Hamadou W. S.; Awadelkareem A. M.; Sachidanandan M.; Patel M. Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective. Rec. Nat. Prod. 2021, 15 (5), 330–355. 10.25135/rnp.222.20.11.1890. DOI
Křížkovská B.; Kumar R.; Řehořová K.; Sýkora D.; Dobiasová S.; Kučerová D.; Tan M. C.; Linis V.; Oyong G.; Ruml T.; Lipov J.; Viktorová J. Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species. Pharmaceuticals 2020, 14 (1), 16. 10.3390/ph14010016. PubMed DOI PMC
Huang Y.; Liu X.; Wu D.; Tang G.; Lai Z.; Zheng X.; Yin S.; Luo H.-B. The Discovery, Complex Crystal Structure, and Recognition Mechanism of a Novel Natural PDE4 Inhibitor from Selaginella Pulvinata. Biochem. Pharmacol. 2017, 130, 51–59. 10.1016/j.bcp.2017.01.016. PubMed DOI
Sengupta S.; Mehta G. Natural Products as Modulators of the Cyclic-AMP Pathway: Evaluation and Synthesis of Lead Compounds. Org. Biomol. Chem. 2018, 16 (35), 6372–6390. 10.1039/C8OB01388H. PubMed DOI
Yin D.; Li J.; Lei X.; Liu Y.; Yang Z.; Chen K.. Antiviral Activity of Total Flavonoid Extracts from Selaginella Moellendorffii Hieron against Coxsackie Virus B3 in Vitro and in Vivo. Evidence-based Complement. Altern. Med. 2014, 2014. 1. 10.1155/2014/950817. PubMed DOI PMC
Böttcher R.; Dulla K.; Van Strijp D.; Dits N.; Verhoef E. I.; Baillie G. S.; Van Leenders G. J. L. H.; Houslay M. D.; Jenster G.; Hoffmann R. Human PDE4D Isoform Composition Is Deregulated in Primary Prostate Cancer and Indicative for Disease Progression and Development of Distant Metastases. Oncotarget 2016, 7 (43), 70669–70684. 10.18632/oncotarget.12204. PubMed DOI PMC
Denny W.; Baguley B. Dual Topoisomerase I/II Inhibitors in Cancer Therapy. Curr. Top. Med. Chem. 2005, 3 (3), 339–353. 10.2174/1568026033452555. PubMed DOI
Talukdar A.; Kundu B.; Sarkar D.; Goon S.; Mondal M. A. Topoisomerase I Inhibitors: Challenges, Progress and the Road Ahead. Eur. J. Med. Chem. 2022, 236, 114304 10.1016/j.ejmech.2022.114304. PubMed DOI
Swedan H. K.; Kassab A. E.; Gedawy E. M.; Elmeligie S. E. Topoisomerase II Inhibitors Design: Early Studies and New Perspectives. Bioorg. Chem. 2023, 136, 106548 10.1016/j.bioorg.2023.106548. PubMed DOI
Staker B. L.; Feese M. D.; Cushman M.; Pommier Y.; Zembower D.; Stewart L.; Burgin A. B. Structures of Three Classes of Anticancer Agents Bound to the Human Topoisomerase I-DNA Covalent Complex. J. Med. Chem. 2005, 48 (7), 2336–2345. 10.1021/jm049146p. PubMed DOI
Wu C. C.; Li Y. C.; Wang Y. R.; Li T. K.; Chan N. L. On the Structural Basis and Design Guidelines for Type II Topoisomerase-Targeting Anticancer Drugs. Nucleic Acids Res. 2013, 41 (22), 10630–10640. 10.1093/nar/gkt828. PubMed DOI PMC
Krieger E.; Vriend G. YASARA View—Molecular Graphics for All Devices—from Smartphones to Workstations. Bioinformatics 2014, 30 (20), 2981. 10.1093/bioinformatics/btu426. PubMed DOI PMC
Trott O.; Olson A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31 (2), 455. 10.1002/jcc.21334. PubMed DOI PMC
Kurkcuoglu Z.; Koukos P. I.; Citro N.; Trellet M. E.; Rodrigues J. P. G. L. M.; Moreira I. S.; Roel-Touris J.; Melquiond A. S. J.; Geng C.; Schaarschmidt J.; Xue L. C.; Vangone A.; Bonvin A. M. J. J. Performance of HADDOCK and a Simple Contact-Based Protein–Ligand Binding Affinity Predictor in the D3R Grand Challenge 2. J. Comput. Aided. Mol. Des. 2018, 32 (1), 175–185. 10.1007/s10822-017-0049-y. PubMed DOI PMC
Vangone A.; Schaarschmidt J.; Koukos P.; Geng C.; Citro N.; Trellet M. E.; Xue L. C.; Bonvin A. M. J. J. Large-Scale Prediction of Binding Affinity in Protein–Small Ligand Complexes: The PRODIGY-LIG Web Server. Bioinformatics 2019, 35 (9), 1585–1587. 10.1093/bioinformatics/bty816. PubMed DOI
Xiong K.; Qian C.; Yuan Y.; Wei L.; Liao X.; He L.; Rees T. W.; Chen Y.; Wan J.; Ji L.; Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew. Chemie Int. Ed. 2020, 59 (38), 16631–16637. 10.1002/anie.202006089. PubMed DOI
Elshazly A. M.; Wright P. A.; Xu J.; Gewirtz D. A. Topoisomerase I Poisons-Induced Autophagy: Cytoprotective. Cytotoxic or Non-Protective. Autophagy Reports 2023, 2 (1), 1–16. 10.1080/27694127.2022.2155904. PubMed DOI PMC
Alaaeldin R.; Abdel-Rahman I. M.; Ali F. E. M.; Bekhit A. A.; Elhamadany E. Y.; Zhao Q.-L.; Cui Z.-G.; Fathy M. Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in Cancer Cells by a Novel Ciprofloxacin Derivative via RIPK1/RIPK3/MLKL Activation. Molecules 2022, 27 (22), 7993. 10.3390/molecules27227993. PubMed DOI PMC
Galluzzi L.; Vitale I.; Aaronson S. A.; Abrams J. M.; Adam D.; Agostinis P.; Alnemri E. S.; Altucci L.; Amelio I.; Andrews D. W.; Annicchiarico-Petruzzelli M.; Antonov A. V.; Arama E.; Baehrecke E. H.; Barlev N. A.; Bazan N. G.; Bernassola F.; Bertrand M. J. M.; Bianchi K.; Blagosklonny M. V.; Blomgren K.; Borner C.; Boya P.; Brenner C.; Campanella M.; Candi E.; Carmona-Gutierrez D.; Cecconi F.; Chan F. K. M.; Chandel N. S.; Cheng E. H.; Chipuk J. E.; Cidlowski J. A.; Ciechanover A.; Cohen G. M.; Conrad M.; Cubillos-Ruiz J. R.; Czabotar P. E.; D’Angiolella V.; Dawson T. M.; Dawson V. L.; De Laurenzi V.; De Maria R.; Debatin K. M.; Deberardinis R. J.; Deshmukh M.; Di Daniele N.; Di Virgilio F.; Dixit V. M.; Dixon S. J.; Duckett C. S.; Dynlacht B. D.; El-Deiry W. S.; Elrod J. W.; Fimia G. M.; Fulda S.; García-Sáez A. J.; Garg A. D.; Garrido C.; Gavathiotis E.; Golstein P.; Gottlieb E.; Green D. R.; Greene L. A.; Gronemeyer H.; Gross A.; Hajnoczky G.; Hardwick J. M.; Harris I. S.; Hengartner M. O.; Hetz C.; Ichijo H.; Jäättelä M.; Joseph B.; Jost P. J.; Juin P. P.; Kaiser W. J.; Karin M.; Kaufmann T.; Kepp O.; Kimchi A.; Kitsis R. N.; Klionsky D. J.; Knight R. A.; Kumar S.; Lee S. W.; Lemasters J. J.; Levine B.; Linkermann A.; Lipton S. A.; Lockshin R. A.; López-Otín C.; Lowe S. W.; Luedde T.; Lugli E.; MacFarlane M.; Madeo F.; Malewicz M.; Malorni W.; Manic G.; Marine J. C.; Martin S. J.; Martinou J. C.; Medema J. P.; Mehlen P.; Meier P.; Melino S.; Miao E. A.; Molkentin J. D.; Moll U. M.; Muñoz-Pinedo C.; Nagata S.; Nuñez G.; Oberst A.; Oren M.; Overholtzer M.; Pagano M.; Panaretakis T.; Pasparakis M.; Penninger J. M.; Pereira D. M.; Pervaiz S.; Peter M. E.; Piacentini M.; Pinton P.; Prehn J. H. M.; Puthalakath H.; Rabinovich G. A.; Rehm M.; Rizzuto R.; Rodrigues C. M. P.; Rubinsztein D. C.; Rudel T.; Ryan K. M.; Sayan E.; Scorrano L.; Shao F.; Shi Y.; Silke J.; Simon H. U.; Sistigu A.; Stockwell B. R.; Strasser A.; Szabadkai G.; Tait S. W. G.; Tang D.; Tavernarakis N.; Thorburn A.; Tsujimoto Y.; Turk B.; Vanden Berghe T.; Vandenabeele P.; Vander Heiden M. G.; Villunger A.; Virgin H. W.; Vousden K. H.; Vucic D.; Wagner E. F.; Walczak H.; Wallach D.; Wang Y.; Wells J. A.; Wood W.; Yuan J.; Zakeri Z.; Zhivotovsky B.; Zitvogel L.; Melino G.; Kroemer G. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25 (3), 486–541. 10.1038/s41418-017-0012-4. PubMed DOI PMC
Zhou Y.; Shen Y.; Chen C.; Sui X.; Yang J.; Wang L.; Zhou J. The Crosstalk between Autophagy and Ferroptosis: What Can We Learn to Target Drug Resistance in Cancer?. Cancer Biol. Med. 2019, 16 (4), 630–646. 10.20892/j.issn.2095-3941.2019.0158. PubMed DOI PMC
Hou W.; Xie Y.; Song X.; Sun X.; Lotze M. T.; Zeh H. J.; Kang R.; Tang D. Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy 2016, 12 (8), 1425. 10.1080/15548627.2016.1187366. PubMed DOI PMC
Jiang R.; He S.; Gong H.; Wang Y.; Wei W.; Chen J.; Hu J.; Ye C.; LiuHuang S.; Jin S.; Wei H.; Xu W.; Xiao J.; Li T. Identification of ATG7 as a Regulator of Proferroptosis and Oxidative Stress in Osteosarcoma. Oxid. Med. Cell. Longevity 2022, 2022, 8441676 10.1155/2022/8441676. PubMed DOI PMC
Sharma A.; Flora S. J. S. Positive and Negative Regulation of Ferroptosis and Its Role in Maintaining Metabolic and Redox Homeostasis. Oxid. Med. Cell. Longevity 2021, 2021, 9074206 10.1155/2021/9074206. PubMed DOI PMC
Ursini F.; Maiorino M. Lipid Peroxidation and Ferroptosis: The Role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185. 10.1016/j.freeradbiomed.2020.02.027. PubMed DOI
Zhang C.; Liu X.; Jin S.; Chen Y.; Guo R. Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Mol. Cancer 2022, 21 (1), 47. 10.1186/s12943-022-01530-y. PubMed DOI PMC
Tsikas D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. 10.1016/j.ab.2016.10.021. PubMed DOI
Antika G.; Cinar Z. Ö.; Seçen E.; Özbil M.; Tokay E.; Köçkar F.; Prandi C.; Tumer T. B. Strigolactone Analogs: Two New Potential Bioactiphores for Glioblastoma. ACS Chem. Neurosci. 2022, 13 (5), 572–580. 10.1021/acschemneuro.1c00702. PubMed DOI PMC
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26 (16), 1701–1718. 10.1002/jcc.20291. PubMed DOI
Ponder J. W.; Case D. A. Force Fields for Protein Simulations. Adv. Protein Chem. 2003, 66, 27–85. 10.1016/S0065-3233(03)66002-X. PubMed DOI
Smith P. E.; van Gunsteren W. F. The Viscosity of SPC and SPC/E Water at 277 and 300 K. Chem. Phys. Lett. 1993, 215 (4), 315–318. 10.1016/0009-2614(93)85720-9. DOI
Hockney R. W.; Goel S. P.; Eastwood J. W. Quiet High-Resolution Computer Models of a Plasma. J. Comput. Phys. 1974, 14 (2), 148–158. 10.1016/0021-9991(74)90010-2. DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Kurt B.; Ozleyen A.; Antika G.; Yilmaz Y. B.; Tumer T. B. Multitarget Profiling of a Strigolactone Analogue for Early Events of Alzheimer’s Disease: In Vitro Therapeutic Activities against Neuroinflammation. ACS Chem. Neurosci. 2020, 11 (4), 501–507. 10.1021/acschemneuro.9b00694. PubMed DOI
Aras B.; Yerlikaya A. Bortezomib and Etoposide Combinations Exert Synergistic Effects on the Human Prostate Cancer Cell Line PC-3. Oncol. Lett. 2016, 11 (5), 3179–3184. 10.3892/ol.2016.4340. PubMed DOI PMC
Kachadourian R.; Day B. J. Flavonoid-Induced Glutathione Depletion: Potential Implications for Cancer Treatment. Free Radic. Biol. Med. 2006, 41 (1), 65. 10.1016/j.freeradbiomed.2006.03.002. PubMed DOI PMC
Synthesis of Selaginpulvilin D by [2 + 2 + 2] Cyclotrimerization─A Second-Generation Approach