Synthesis of Selaginpulvilin D by [2 + 2 + 2] Cyclotrimerization─A Second-Generation Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41533530
PubMed Central
PMC12865770
DOI
10.1021/acs.joc.5c02709
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report a second-generation synthesis of selaginpulvilin D that addresses key limitations of our earlier route. An efficient early-stage [2 + 2 + 2] cyclotrimerization now provides high-yield access to the molecule's fluorene core. Previously, this step was low-yielding and relied on a difficult-to-prepare aryldiyne intermediate. By introducing the arylalkyne moiety after the cyclotrimerization, the new strategy removes these issues and delivers a more practical, efficient, and modular pathway to selaginpulvilin D.
Zobrazit více v PubMed
Banks J. A.. Selaginella and 400 Million Years of Separation. Annu. Rev. Plant Biol. 2009;60(1):223–238. doi: 10.1146/annurev.arplant.59.032607.092851. PubMed DOI
Bailly C.. The Traditional and Modern Uses of Selaginella Tamariscina (P.Beauv.) Spring, in Medicine and Cosmetic: Applications and Bioactive Ingredients. J. Ethnopharmacol. 2021;280:114444. doi: 10.1016/j.jep.2021.114444. PubMed DOI
Shi S., Zhou H., Zhang Y., Huang K.. Hyphenated HSCCC–DPPH· for Rapid Preparative Isolation and Screening of Antioxidants from Selaginella Moellendorffii. Chromatographia. 2008;68(3–4):173–178. doi: 10.1365/s10337-008-0716-1. DOI
Adnan M., Siddiqui A. J., Jamal A., Hamadou W. S., Awadelkareem A. M., Sachidanandan M., Patel M.. Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective. Rec. Nat. Prod. 2021;15(5):330–355. doi: 10.25135/rnp.222.20.11.1890. DOI
Křížkovská B., Kumar R., Řehořová K., Sýkora D., Dobiasová S., Kučerová D., Tan M. C., Linis V., Oyong G., Ruml T., Lipov J., Viktorová J.. Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species. Pharmaceuticals. 2021;14(1):16. doi: 10.3390/ph14010016. PubMed DOI PMC
Yin D., Li J., Lei X., Liu Y., Yang Z., Chen K.. Antiviral Activity of Total Flavonoid Extracts from Selaginella Moellendorffii Hieron against Coxsackie Virus B3 In Vitro and In Vivo . Evidence-Based Complementary Altern. Med. 2014;2014:950817. doi: 10.1155/2014/950817. PubMed DOI PMC
Zhang L.-P., Liang Y.-M., Wei X.-C., Cheng D.-L.. A New Unusual Natural Pigment from Selaginella Sinensis and Its Noticeable Physicochemical Properties. J. Org. Chem. 2007;72(10):3921–3924. doi: 10.1021/jo0701177. PubMed DOI
Liu X., Tang G.-H., Weng H.-Z., Zhang J.-S., Xu Y.-K., Yin S.. A New Selaginellin Derivative and a New Triarylbenzophenone Analog from the Whole Plant of Selaginella Pulvinata . J. Asian Nat. Prod. Res. 2018;20(12):1123–1128. doi: 10.1080/10286020.2017.1378646. PubMed DOI
Liu R., Zou H., Zou Z.-X., Cheng F., Yu X., Xu P.-S., Li X.-M., Li D., Xu K.-P., Tan G.-S.. Two New Anthraquinone Derivatives and One New Triarylbenzophenone Analog from Selaginella Tamariscina . Nat. Prod. Res. 2020;34(19):2709–2714. doi: 10.1080/14786419.2018.1452008. PubMed DOI
Wang C.-G., Yao W.-N., Zhang B., Hua J.-L., Liang D., Wang H.-S., Lin L.-G., Ji Z.-Z., Zhang H.-J., Su Z.-R.. Lung cancer and matrix metalloproteinases inhibitors of polyphenols from Selaginella tamariscina with suppression activity of migration. Bioorg. Med. Chem. Lett. 2018;28(14):2413–2417. doi: 10.1016/j.bmcl.2018.06.024. PubMed DOI
Chen W., Peng Y., Huang W., Zhou L., Quan X., Zhao Q., Zhang D., Sheng X., Luo Y., Zou H.. A New Diarylbenzophenone from Selaginella Tamariscina. Rec. Nat. Prod. 2020;14(6):421–426. doi: 10.25135/rnp.182.20.03.1586. DOI
Zhu Q.-F., Luo T.-T., Chen Q., Gao B.-B., Zeng A.-F., Ao J.-L., Xu G.-B., Liao S.-G., He X.. Three New Selaginellin Derivatives from Selaginella Pulvinata and Their α-Glucosidase Inhibitory Activity. Chem. Biodiversity. 2023;20(4):e202300109. doi: 10.1002/cbdv.202300109. PubMed DOI
Liu X., Luo H.-B., Huang Y.-Y., Bao J.-M., Tang G.-H., Chen Y.-Y., Wang J., Yin S. S. A.. New Phosphodiesterase-4 Inhibitors with an Unprecedented Skeleton from Selaginella Pulvinata . Org. Lett. 2014;16(1):282–285. doi: 10.1021/ol403282f. PubMed DOI
Zhang J.-S., Liu X., Weng J., Guo Y.-Q., Li Q.-J., Ahmed A., Tang G.-H., Yin S.. Natural Diarylfluorene Derivatives: Isolation, Total Synthesis, and Phosphodiesterase-4 Inhibition. Org. Chem. Front. 2017;4(2):170–177. doi: 10.1039/C6QO00623J. DOI
Woo S., Kang K. B., Kim J., Sung S. H.. Molecular Networking Reveals the Chemical Diversity of Selaginellin Derivatives, Natural Phosphodiesterase-4 Inhibitors from Selaginella Tamariscina. J. Nat. Prod. 2019;82(7):1820–1830. doi: 10.1021/acs.jnatprod.9b00049. PubMed DOI
Li W., Tang G.-H., Yin S.. Selaginellins from the Genus Selaginella: Isolation, Structure, Biological Activity, and Synthesis. Nat. Prod. Rep. 2021;38(4):822–842. doi: 10.1039/D0NP00065E. PubMed DOI
Lapinskaite R., Malatinec Š., Mateus M., Rycek L.. Cross-Coupling as a Key Step in the Synthesis and Structure Revision of the Natural Products Selagibenzophenones A and B. Catalysts. 2021;11(6):708. doi: 10.3390/catal11060708. DOI
Kunák D., Mateus M., Rycek L.. Synthesis and Structure Confirmation of Selagibenzophenone C. Eur. J. Org. Chem. 2022;2022(11):e202200014. doi: 10.1002/ejoc.202200014. DOI
Havlíková T., Nallappan S., Císařová I., Rycek L.. Synthesis and Structural Confirmation of Selaginpulvilin X. Org. Biomol. Chem. 2024;22(45):8843–8846. doi: 10.1039/D4OB01529K. PubMed DOI
Rycek L., Mateus M., Beytlerová N., Kotora M.. Catalytic Cyclotrimerization Pathway for Synthesis of Selaginpulvilins C and D: Scope and Limitations. Org. Lett. 2021;23(12):4511–4515. doi: 10.1021/acs.orglett.1c00519. PubMed DOI
Dönmez S., Lapinskaite R., Atalay H. N., Tokay E., Kockar F., Rycek L., Özbil M., Tumer T. B.. Selagibenzophenone B and Its Derivatives: SelB-1, a Dual Topoisomerase I/II Inhibitor Identified through In Vitro and In Silico Analyses. ACS Bio Med. Chem. Au. 2024;4:178. doi: 10.1021/acsbiomedchemau.4c00027. PubMed DOI PMC
Lapinskaite R., Atalay H. N., Malatinec Š., Donmez S., Cinar Z. O., Schwarz P. F., Perhal A. F., Císařová I., Labanauskas L., Karpiński T. M., Dirsch V. M., Tumer T. B., Rycek L.. Synthesis of Selagibenzophenone A and Its Derivatives for Evaluation of Their Antiproliferative, RORγ Inverse Agonistic, and Antimicrobial Effect. ChemistrySelect. 2023;8(7):e202204816. doi: 10.1002/slct.202204816. DOI
Nallappan S., Lapinskaite R., Hájíček J., Kunák D., Čambal P., Nečas D., Císařová I., Atalay H. N., Tumer T. B., Tarábek J., Schwarzová-Pecková K., Rycek L.. The Biomimetic Synthesis of Polyarylated Fluorenes, Relevant to Selaginellaceae Polyphenols, Leading to the Spontaneous Formation of Stable Radicals. ChemPlusChem. 2024;89(4):e202300410. doi: 10.1002/cplu.202300410. PubMed DOI
Sengupta S., Mehta G.. Natural Products as Modulators of the Cyclic-AMP Pathway: Evaluation and Synthesis of Lead Compounds. Org. Biomol. Chem. 2018;16(35):6372–6390. doi: 10.1039/C8OB01388H. PubMed DOI
Chinta B. S., Baire B.. Formal Total Synthesis of Selaginpulvilin D. Org. Biomol. Chem. 2017;15(28):5908–5911. doi: 10.1039/C7OB00950J. PubMed DOI
Chinta B. S., Baire B.. Total Synthesis of Selaginpulvilins A and C. Org. Biomol. Chem. 2018;16(2):262–265. doi: 10.1039/C7OB02609A. PubMed DOI
Karmakar R., Lee D.. Total Synthesis of Selaginpulvilin C and D Relying on in Situ Formation of Arynes and Their Hydrogenation. Org. Lett. 2016;18(23):6105–6107. doi: 10.1021/acs.orglett.6b03241. PubMed DOI
Sowden M. J., Sherburn M. S.. Four-Step Total Synthesis of Selaginpulvilin D. Org. Lett. 2017;19(3):636–637. doi: 10.1021/acs.orglett.6b03793. PubMed DOI
Matton P., Huvelle S., Haddad M., Phansavath P., Ratovelomanana-Vidal V.. Recent Progress in Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Synthesis. 2022;54(1):4–32. doi: 10.1055/s-0040-1719831. DOI
Roglans A., Pla-Quintana A., Solà M.. Mechanistic Studies of Transition-Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Chem. Rev. 2021;121(3):1894–1979. doi: 10.1021/acs.chemrev.0c00062. PubMed DOI
Shibata Y., Tanaka K.. Rhodium-catalyzed [2 + 2 + 2] cycloaddition of alkynes for the synthesis of substituted benzenes: Catalysts, reaction scope, and synthetic applications. Synthesis. 2012;44:323–350. doi: 10.1055/s-0031-1289665. DOI
Doerksen R. S., Hodík T., Hu G., Huynh N. O., Shuler W. G., Krische M. J.. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem. Rev. 2021;121(7):4045–4083. doi: 10.1021/acs.chemrev.0c01133. PubMed DOI PMC
Gläsel, T. ; Hapke, M. . Cobalt-Catalysed [2 + 2 + 2] Cycloadditions. Cobalt Catalysis in Organic Synthesis: Nethods and Reactions. Hapke, M. ; Hilt, G. . John Wiley & Sons, 2020, 287–335 10.1002/9783527814855.ch9. DOI
Chakrabortty R., Ghosh S., Ganesh V.. Nickel-Catalyzed [2 + 2 + 2] Cyclotrimerization of Alkynes and Other Unsaturated Systems: A Literature Overview. Eur. J. Org. Chem. 2024;27(46):e202400801. doi: 10.1002/ejoc.202400801. DOI
Parisot W., Haddad M., Phansavath P., Ratovelomanana-Vidal V., Lefèvre G.. Iron-Catalyzed [2 + 2+2] Cycloadditions for the Construction of Aromatic and Heteroaromatic Rings. Chem. - Eur. J. 2025;31(22):e202404574. doi: 10.1002/chem.202404574. PubMed DOI
Chen H., Li Z., Shao P., Yuan H., Chen S.-C., Luo T.. Total Synthesis of (+)-Mutilin: A Transannular [2 + 2] Cycloaddition/Fragmentation Approach. J. Am. Chem. Soc. 2022;144(34):15462–15467. doi: 10.1021/jacs.2c06934. PubMed DOI
Nissen F., Detert H.. Total Synthesis of Lavendamycin by a [2 + 2+2] Cycloaddition. Eur. J. Org. Chem. 2011;2011(15):2845–2853. doi: 10.1002/ejoc.201100131. DOI
Teske J. A., Deiters A.. A Cyclotrimerization Route to Cannabinoids. Org. Lett. 2008;10(11):2195–2198. doi: 10.1021/ol800589e. PubMed DOI
Welsch T., Tran H.-A., Witulski B.. Total Syntheses of the Marine Illudalanes Alcyopterosin I, L, M, N, and C. Org. Lett. 2010;12(24):5644–5647. doi: 10.1021/ol102432q. PubMed DOI
Zou Y., Deiters A.. Total Synthesis of Cryptoacetalide. J. Org. Chem. 2010;75(15):5355–5358. doi: 10.1021/jo100867v. PubMed DOI
Kaiser R. P., Nečas D., Cadart T., Gyepes R., Císařová I., Mosinger J., Pospíšil L., Kotora M.. Straightforward Synthesis and Properties of Highly Fluorescent [5]- and [7]-Helical Dispiroindeno[2,1-c]Fluorenes. Angew. Chem. 2019;131(48):17329–17334. doi: 10.1002/ange.201908348. PubMed DOI
Cadart T., Feriancová L., Henke P., Gyepes R., Císařová I., Kalíková K., Kotora M.. Synthesis of Highly Fluorescent Helical Quinolizinium Salts by a Rh-Catalyzed Cyclotrimerization/C–H Activation Sequence. Chem. Commun. 2025;61(24):4662–4665. doi: 10.1039/D4CC06512C. PubMed DOI
Cadart T., Nečas D., Kaiser R. P., Favereau L., Císařová I., Gyepes R., Hodačová J., Kalíková K., Bednárová L., Crassous J.. et al. Rhodium-Catalyzed Enantioselective Synthesis of Highly Fluorescent and CPL-Active Dispiroindeno[2,1-c]Fluorenes. Chem. - Eur. J. 2021;27(44):11279–11284. doi: 10.1002/chem.202100759. PubMed DOI