Synthesis of Selaginpulvilin D by [2 + 2 + 2] Cyclotrimerization─A Second-Generation Approach

. 2026 Jan 30 ; 91 (4) : 1860-1863. [epub] 20260114

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41533530

We report a second-generation synthesis of selaginpulvilin D that addresses key limitations of our earlier route. An efficient early-stage [2 + 2 + 2] cyclotrimerization now provides high-yield access to the molecule's fluorene core. Previously, this step was low-yielding and relied on a difficult-to-prepare aryldiyne intermediate. By introducing the arylalkyne moiety after the cyclotrimerization, the new strategy removes these issues and delivers a more practical, efficient, and modular pathway to selaginpulvilin D.

Zobrazit více v PubMed

Banks J. A.. Selaginella and 400 Million Years of Separation. Annu. Rev. Plant Biol. 2009;60(1):223–238. doi: 10.1146/annurev.arplant.59.032607.092851. PubMed DOI

Bailly C.. The Traditional and Modern Uses of Selaginella Tamariscina (P.Beauv.) Spring, in Medicine and Cosmetic: Applications and Bioactive Ingredients. J. Ethnopharmacol. 2021;280:114444. doi: 10.1016/j.jep.2021.114444. PubMed DOI

Shi S., Zhou H., Zhang Y., Huang K.. Hyphenated HSCCC–DPPH· for Rapid Preparative Isolation and Screening of Antioxidants from Selaginella Moellendorffii. Chromatographia. 2008;68(3–4):173–178. doi: 10.1365/s10337-008-0716-1. DOI

Adnan M., Siddiqui A. J., Jamal A., Hamadou W. S., Awadelkareem A. M., Sachidanandan M., Patel M.. Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective. Rec. Nat. Prod. 2021;15(5):330–355. doi: 10.25135/rnp.222.20.11.1890. DOI

Křížkovská B., Kumar R., Řehořová K., Sýkora D., Dobiasová S., Kučerová D., Tan M. C., Linis V., Oyong G., Ruml T., Lipov J., Viktorová J.. Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species. Pharmaceuticals. 2021;14(1):16. doi: 10.3390/ph14010016. PubMed DOI PMC

Yin D., Li J., Lei X., Liu Y., Yang Z., Chen K.. Antiviral Activity of Total Flavonoid Extracts from Selaginella Moellendorffii Hieron against Coxsackie Virus B3 In Vitro and In Vivo . Evidence-Based Complementary Altern. Med. 2014;2014:950817. doi: 10.1155/2014/950817. PubMed DOI PMC

Zhang L.-P., Liang Y.-M., Wei X.-C., Cheng D.-L.. A New Unusual Natural Pigment from Selaginella Sinensis and Its Noticeable Physicochemical Properties. J. Org. Chem. 2007;72(10):3921–3924. doi: 10.1021/jo0701177. PubMed DOI

Liu X., Tang G.-H., Weng H.-Z., Zhang J.-S., Xu Y.-K., Yin S.. A New Selaginellin Derivative and a New Triarylbenzophenone Analog from the Whole Plant of Selaginella Pulvinata . J. Asian Nat. Prod. Res. 2018;20(12):1123–1128. doi: 10.1080/10286020.2017.1378646. PubMed DOI

Liu R., Zou H., Zou Z.-X., Cheng F., Yu X., Xu P.-S., Li X.-M., Li D., Xu K.-P., Tan G.-S.. Two New Anthraquinone Derivatives and One New Triarylbenzophenone Analog from Selaginella Tamariscina . Nat. Prod. Res. 2020;34(19):2709–2714. doi: 10.1080/14786419.2018.1452008. PubMed DOI

Wang C.-G., Yao W.-N., Zhang B., Hua J.-L., Liang D., Wang H.-S., Lin L.-G., Ji Z.-Z., Zhang H.-J., Su Z.-R.. Lung cancer and matrix metalloproteinases inhibitors of polyphenols from Selaginella tamariscina with suppression activity of migration. Bioorg. Med. Chem. Lett. 2018;28(14):2413–2417. doi: 10.1016/j.bmcl.2018.06.024. PubMed DOI

Chen W., Peng Y., Huang W., Zhou L., Quan X., Zhao Q., Zhang D., Sheng X., Luo Y., Zou H.. A New Diarylbenzophenone from Selaginella Tamariscina. Rec. Nat. Prod. 2020;14(6):421–426. doi: 10.25135/rnp.182.20.03.1586. DOI

Zhu Q.-F., Luo T.-T., Chen Q., Gao B.-B., Zeng A.-F., Ao J.-L., Xu G.-B., Liao S.-G., He X.. Three New Selaginellin Derivatives from Selaginella Pulvinata and Their α-Glucosidase Inhibitory Activity. Chem. Biodiversity. 2023;20(4):e202300109. doi: 10.1002/cbdv.202300109. PubMed DOI

Liu X., Luo H.-B., Huang Y.-Y., Bao J.-M., Tang G.-H., Chen Y.-Y., Wang J., Yin S. S. A.. New Phosphodiesterase-4 Inhibitors with an Unprecedented Skeleton from Selaginella Pulvinata . Org. Lett. 2014;16(1):282–285. doi: 10.1021/ol403282f. PubMed DOI

Zhang J.-S., Liu X., Weng J., Guo Y.-Q., Li Q.-J., Ahmed A., Tang G.-H., Yin S.. Natural Diarylfluorene Derivatives: Isolation, Total Synthesis, and Phosphodiesterase-4 Inhibition. Org. Chem. Front. 2017;4(2):170–177. doi: 10.1039/C6QO00623J. DOI

Woo S., Kang K. B., Kim J., Sung S. H.. Molecular Networking Reveals the Chemical Diversity of Selaginellin Derivatives, Natural Phosphodiesterase-4 Inhibitors from Selaginella Tamariscina. J. Nat. Prod. 2019;82(7):1820–1830. doi: 10.1021/acs.jnatprod.9b00049. PubMed DOI

Li W., Tang G.-H., Yin S.. Selaginellins from the Genus Selaginella: Isolation, Structure, Biological Activity, and Synthesis. Nat. Prod. Rep. 2021;38(4):822–842. doi: 10.1039/D0NP00065E. PubMed DOI

Lapinskaite R., Malatinec Š., Mateus M., Rycek L.. Cross-Coupling as a Key Step in the Synthesis and Structure Revision of the Natural Products Selagibenzophenones A and B. Catalysts. 2021;11(6):708. doi: 10.3390/catal11060708. DOI

Kunák D., Mateus M., Rycek L.. Synthesis and Structure Confirmation of Selagibenzophenone C. Eur. J. Org. Chem. 2022;2022(11):e202200014. doi: 10.1002/ejoc.202200014. DOI

Havlíková T., Nallappan S., Císařová I., Rycek L.. Synthesis and Structural Confirmation of Selaginpulvilin X. Org. Biomol. Chem. 2024;22(45):8843–8846. doi: 10.1039/D4OB01529K. PubMed DOI

Rycek L., Mateus M., Beytlerová N., Kotora M.. Catalytic Cyclotrimerization Pathway for Synthesis of Selaginpulvilins C and D: Scope and Limitations. Org. Lett. 2021;23(12):4511–4515. doi: 10.1021/acs.orglett.1c00519. PubMed DOI

Dönmez S., Lapinskaite R., Atalay H. N., Tokay E., Kockar F., Rycek L., Özbil M., Tumer T. B.. Selagibenzophenone B and Its Derivatives: SelB-1, a Dual Topoisomerase I/II Inhibitor Identified through In Vitro and In Silico Analyses. ACS Bio Med. Chem. Au. 2024;4:178. doi: 10.1021/acsbiomedchemau.4c00027. PubMed DOI PMC

Lapinskaite R., Atalay H. N., Malatinec Š., Donmez S., Cinar Z. O., Schwarz P. F., Perhal A. F., Císařová I., Labanauskas L., Karpiński T. M., Dirsch V. M., Tumer T. B., Rycek L.. Synthesis of Selagibenzophenone A and Its Derivatives for Evaluation of Their Antiproliferative, RORγ Inverse Agonistic, and Antimicrobial Effect. ChemistrySelect. 2023;8(7):e202204816. doi: 10.1002/slct.202204816. DOI

Nallappan S., Lapinskaite R., Hájíček J., Kunák D., Čambal P., Nečas D., Císařová I., Atalay H. N., Tumer T. B., Tarábek J., Schwarzová-Pecková K., Rycek L.. The Biomimetic Synthesis of Polyarylated Fluorenes, Relevant to Selaginellaceae Polyphenols, Leading to the Spontaneous Formation of Stable Radicals. ChemPlusChem. 2024;89(4):e202300410. doi: 10.1002/cplu.202300410. PubMed DOI

Sengupta S., Mehta G.. Natural Products as Modulators of the Cyclic-AMP Pathway: Evaluation and Synthesis of Lead Compounds. Org. Biomol. Chem. 2018;16(35):6372–6390. doi: 10.1039/C8OB01388H. PubMed DOI

Chinta B. S., Baire B.. Formal Total Synthesis of Selaginpulvilin D. Org. Biomol. Chem. 2017;15(28):5908–5911. doi: 10.1039/C7OB00950J. PubMed DOI

Chinta B. S., Baire B.. Total Synthesis of Selaginpulvilins A and C. Org. Biomol. Chem. 2018;16(2):262–265. doi: 10.1039/C7OB02609A. PubMed DOI

Karmakar R., Lee D.. Total Synthesis of Selaginpulvilin C and D Relying on in Situ Formation of Arynes and Their Hydrogenation. Org. Lett. 2016;18(23):6105–6107. doi: 10.1021/acs.orglett.6b03241. PubMed DOI

Sowden M. J., Sherburn M. S.. Four-Step Total Synthesis of Selaginpulvilin D. Org. Lett. 2017;19(3):636–637. doi: 10.1021/acs.orglett.6b03793. PubMed DOI

Matton P., Huvelle S., Haddad M., Phansavath P., Ratovelomanana-Vidal V.. Recent Progress in Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Synthesis. 2022;54(1):4–32. doi: 10.1055/s-0040-1719831. DOI

Roglans A., Pla-Quintana A., Solà M.. Mechanistic Studies of Transition-Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Chem. Rev. 2021;121(3):1894–1979. doi: 10.1021/acs.chemrev.0c00062. PubMed DOI

Shibata Y., Tanaka K.. Rhodium-catalyzed [2 + 2 + 2] cycloaddition of alkynes for the synthesis of substituted benzenes: Catalysts, reaction scope, and synthetic applications. Synthesis. 2012;44:323–350. doi: 10.1055/s-0031-1289665. DOI

Doerksen R. S., Hodík T., Hu G., Huynh N. O., Shuler W. G., Krische M. J.. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem. Rev. 2021;121(7):4045–4083. doi: 10.1021/acs.chemrev.0c01133. PubMed DOI PMC

Gläsel, T. ; Hapke, M. . Cobalt-Catalysed [2 + 2 + 2] Cycloadditions. Cobalt Catalysis in Organic Synthesis: Nethods and Reactions. Hapke, M. ; Hilt, G. . John Wiley & Sons, 2020, 287–335 10.1002/9783527814855.ch9. DOI

Chakrabortty R., Ghosh S., Ganesh V.. Nickel-Catalyzed [2 + 2 + 2] Cyclotrimerization of Alkynes and Other Unsaturated Systems: A Literature Overview. Eur. J. Org. Chem. 2024;27(46):e202400801. doi: 10.1002/ejoc.202400801. DOI

Parisot W., Haddad M., Phansavath P., Ratovelomanana-Vidal V., Lefèvre G.. Iron-Catalyzed [2 + 2+2] Cycloadditions for the Construction of Aromatic and Heteroaromatic Rings. Chem. - Eur. J. 2025;31(22):e202404574. doi: 10.1002/chem.202404574. PubMed DOI

Chen H., Li Z., Shao P., Yuan H., Chen S.-C., Luo T.. Total Synthesis of (+)-Mutilin: A Transannular [2 + 2] Cycloaddition/Fragmentation Approach. J. Am. Chem. Soc. 2022;144(34):15462–15467. doi: 10.1021/jacs.2c06934. PubMed DOI

Nissen F., Detert H.. Total Synthesis of Lavendamycin by a [2 + 2+2] Cycloaddition. Eur. J. Org. Chem. 2011;2011(15):2845–2853. doi: 10.1002/ejoc.201100131. DOI

Teske J. A., Deiters A.. A Cyclotrimerization Route to Cannabinoids. Org. Lett. 2008;10(11):2195–2198. doi: 10.1021/ol800589e. PubMed DOI

Welsch T., Tran H.-A., Witulski B.. Total Syntheses of the Marine Illudalanes Alcyopterosin I, L, M, N, and C. Org. Lett. 2010;12(24):5644–5647. doi: 10.1021/ol102432q. PubMed DOI

Zou Y., Deiters A.. Total Synthesis of Cryptoacetalide. J. Org. Chem. 2010;75(15):5355–5358. doi: 10.1021/jo100867v. PubMed DOI

Kaiser R. P., Nečas D., Cadart T., Gyepes R., Císařová I., Mosinger J., Pospíšil L., Kotora M.. Straightforward Synthesis and Properties of Highly Fluorescent [5]- and [7]-Helical Dispiroindeno­[2,1-c]­Fluorenes. Angew. Chem. 2019;131(48):17329–17334. doi: 10.1002/ange.201908348. PubMed DOI

Cadart T., Feriancová L., Henke P., Gyepes R., Císařová I., Kalíková K., Kotora M.. Synthesis of Highly Fluorescent Helical Quinolizinium Salts by a Rh-Catalyzed Cyclotrimerization/C–H Activation Sequence. Chem. Commun. 2025;61(24):4662–4665. doi: 10.1039/D4CC06512C. PubMed DOI

Cadart T., Nečas D., Kaiser R. P., Favereau L., Císařová I., Gyepes R., Hodačová J., Kalíková K., Bednárová L., Crassous J.. et al. Rhodium-Catalyzed Enantioselective Synthesis of Highly Fluorescent and CPL-Active Dispiroindeno­[2,1-c]­Fluorenes. Chem. - Eur. J. 2021;27(44):11279–11284. doi: 10.1002/chem.202100759. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...