The Biomimetic Synthesis of Polyarylated Fluorenes, Relevant to Selaginellaceae Polyphenols, Leading to the Spontaneous Formation of Stable Radicals
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Charles University Research Centre UNCE
SVV 260690
Fond Junior
UNCE/SCI/014, Fond Junior
Fond Junior
FIA-2021-3666
Çanakkale Onsekiz Mart University
FYL-2021-3564
Çanakkale Onsekiz Mart University
PubMed
37943550
DOI
10.1002/cplu.202300410
Knihovny.cz E-zdroje
- Klíčová slova
- biomimetic synthesis, cytotoxicity, radicals, selaginellacea polyphenols, spin density distribution,
- Publikační typ
- časopisecké články MeSH
This work reports a biomimetic synthesis of polyarylated fluorene derivatives. The molecules are formed via intramolecular electrophilic aromatic substitution, resembling a cyclization leading towards the natural selaginpulvilins from selaginellins. The scope of the reaction was investigated, and the products were obtained in 60-95 % yields. Some of the compounds decompose to a stable radical. We investigated the nature and the origin of the radical using experimental methods, including EPR or electrochemical measurements, as well as theoretical methods, such as DFT calculations. Based on our observations, we hypothesize, that phenoxy radicals are formed in the first instance, which however undergo internal rearrangement to thermodynamically more stable carbon-centered radicals. The preliminary data also show the cytotoxic properties of some of the molecules.
Zobrazit více v PubMed
J. A. Banks, Annu. Rev. Plant Biol. 2009, 60, 223–238.
B. Křížkovská, R. Kumar, K. Řehořová, D. Sýkora, S. Dobiasová, D. Kučerová, M. C. Tan, V. Linis, G. Oyong, T. Ruml, J. Lipov, J. Viktorová, Pharmaceuticals 2021, 14, 16.
M. Adnan, A. J. Siddiqui, A. Jamal, W. S. Hamadou, A. M. Awadelkareem, M. Sachidanandan, M. Patel, Rec. Nat. Prod. 2021, 15, 330–355.
D. Yin, J. Li, X. Lei, Y. Liu, Z. Yang, K. Chen, Evid.-Based Complement. Altern. Med. 2014, 2014, 1–7.
W. Li, G.-H. Tang, S. Yin, Nat. Prod. Rep. 2021, 38, 822–842.
L.-P. Zhang, Y.-M. Liang, X.-C. Wei, D.-L. Cheng, J. Org. Chem. 2007, 72, 3921–3924.
J.-S. Zhang, X. Liu, J. Weng, Y.-Q. Guo, Q.-J. Li, A. Ahmed, G.-H. Tang, S. Yin, Org. Chem. Front. 2017, 4, 170–177.
X. Liu, H.-B. Luo, Y.-Y. Huang, J.-M. Bao, G.-H. Tang, Y.-Y. Chen, J. Wang, S. Yin, Org. Lett. 2014, 16, 282–285.
W. Chen, Y. Peng, W. Huang, L. Zhou, X. Quan, Q. Zhao, D. Zhang, X. Sheng, Y. Luo, H. Zou, Rec. Nat. Prod. 2020, 14, 421–426.
R. Liu, H. Zou, Z.-X. Zou, F. Cheng, X. Yu, P.-S. Xu, X.-M. Li, D. Li, K.-P. Xu, G.-S. Tan, Nat. Prod. Res. 2020, 34, 2709–2714.
X. Liu, G.-H. Tang, H.-Z. Weng, J.-S. Zhang, Y.-K. Xu, S. Yin, J. Asian Nat. Prod. Res. 2018, 20, 1123–1128.
L. Rycek, M. Mateus, N. Beytlerová, M. Kotora, Org. Lett. 2021, 23, 4511–4515.
R. Lapinskaite, Š. Malatinec, M. Mateus, L. Rycek, Catalysts 2021, 11, 708.
D. Kunák, M. Mateus, L. Rycek, Eur. J. Org. Chem. 2022, 2022, e202200014.
R. Lapinskaite, H. N. Atalay, Š. Malatinec, S. Donmez, Z. O. Cinar, P. F. Schwarz, A. F. Perhal, I. Císařová, L. Labanauskas, T. M. Karpiński, V. M. Dirsch, T. B. Tumer, L. Rycek, ChemistrySelect 2023, 8, e202204816.
For reviews on synthesis of fluorene cores see:
R. P. Kaiser, I. Caivano, M. Kotora, Tetrahedron 2019, 75, 2981–2992;
S. Patel, B. Rathod, S. Regu, S. Chak, A. Shard, ChemistrySelect 2020, 5, 10673–10691.
For other Friedel-Crafts based fluorene synthesis see:
G. Li, E. Wang, H. Chen, H. Li, Y. Liu, P. G. Wang, Tetrahedron 2008, 64, 9033–9043;
S. Sarkar, S. Maiti, K. Bera, S. Jalal, U. Jana, Tetrahedron Lett. 2012, 53, 5544–5547;
Q. Li, W. Xu, J. Hu, X. Chen, F. Zhang, H. Zheng, RSC Adv. 2014, 4, 27722-27725..
For alternative polyarylated flurene core synthesis see: X.-Ch Wang, R.-L Yan, M.-J Zhong, Y.-M Liang, J. Org. Chem. 2012, 77, 2064-2068.
For recent work related to fluorene synthesis see:
L−Y Chen, J. Li, J. Org. Chem. 2023, 88, 10252-10256;
Z. Jiang, K. Sekine, Y. Kuninobu, Chem. Commun. 2022, 58, 843-846;
K. Dong, X. Fan, C. Pei, Y. Zheng, S. Chang, J. Cai, L. Qiu, Z.-X. Yu, X. Xu, Nat. Commun. 2020, 11, 2363.
Z. X. Chen, Y. Li, F. Huang, Chem 2021, 7, 288–332.
L. Ji, J. Shi, J. Wei, T. Yu, W. Huang, Adv. Mater. 2020, 32, 1908015.
C. Friebe, U. S. Schubert, Top. Curr. Chem. (Z) 2017, 375, 19.
I. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303–349.
M. Lj. Mihailović, Ž. Čeković, in The Hydroxyl Group (1971), John Wiley & Sons, Ltd, 1971, pp. 505–592.
T. A. Enache, A. M. Oliveira-Brett, J. Electroanal. Chem. 2011, 655, 9–16.
J. Vosáhlová, J. Sochr, S. Baluchová, Ľ. Švorc, A. Taylor, K. Schwarzová-Pecková, Electroanalysis 2020, 32, 2193–2204.
Z. Senturk, Curr. Drug Delivery 2013, 10, 76–91.
D. E. Williams, Mol. Phys. 1969, 16, 145–151.
D. K. Frantz, J. J. Walish, T. M. Swager, Org. Lett. 2013, 15, 4782–4785.
Y. Tian, K. Uchida, H. Kurata, Y. Hirao, T. Nishiuchi, T. Kubo, J. Am. Chem. Soc. 2014, 136, 12784–12793.
J. C. Walton, Chem. Soc. Rev. 2021, 50, 7496–7512.
J. C. Walton, J. Phys. Chem. A 2017, 121, 7761–7767.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
“Citation|Gaussian.com,” can be found under https://gaussian.com/citation/, n.d.
“IQmol Molecular Viewer,” can be found under http://www.iqmol.org/, n.d.
G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
S. P. Westrip, J. Appl. Crystallogr. 2010, 43, 920–925.
Synthesis of Selaginpulvilin D by [2 + 2 + 2] Cyclotrimerization─A Second-Generation Approach