Dermatomal Contact Heat Evoked Potentials for the Detection of Subclinical Cervical Spinal Cord Injury in Asymptomatic Degenerative Cervical Cord Compression

. 2025 Dec ; 32 (12) : e70454.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41378688

Grantová podpora
NU 22-04-00024 Czech Health Research Agency
65269705 Ministry of Health of the Czech Republic
MUNI/A/1522/2024 Ministry of Education, Youth and Sports of the Czech Republic

BACKGROUND: Asymptomatic degenerative cervical cord compression (ADCC) represents a premyelopathic stage of degenerative cervical myelopathy (DCM), with high prevalence in older age and unclear management. Contact heat-evoked potentials (CHEPs) assess the integrity of the thermo-algesic somatosensory pathway and have shown the highest sensitivity among neurophysiological methods in detecting dysfunction in the centromedial and anterior spinal cord in DCM. METHODS: This cross-sectional cohort study evaluated the utility of upper extremity dermatomal C4, C6 and C8 CHEPs (dCHEPs) compared to standard neurophysiological methods-median and tibial nerves somatosensory evoked potentials (SEPs), upper and lower extremity motor evoked potentials (MEPs), and electromyography (EMG)-for detecting subclinical cervical cord dysfunction in ADCC. Two cohorts were included: 82 ADCC patients (mean age 53.7 ± 9.8 years; 53 females) and 10 DCM patients (mean age 64.0 ± 7.9 years; 4 females). All underwent bilateral dCHEPs (C4, C6, C8), SEPs, MEPs, and EMG (C5-C8 myotomes). RESULTS: dCHEPs abnormalities were found in 50% of ADCC patients, exceeding the rates for SEPs (32.1%), MEPs (21.8%), and EMG (13.9%). In 20.7%, dCHEPs were the only abnormal neurophysiological finding. In the DCM cohort, dCHEPs were abnormal in 80%, and were the only abnormality in 20%. In both groups, abnormalities were most frequent in the C8 dermatome. CONCLUSIONS: dCHEPs demonstrated superior sensitivity in detecting cervical cord dysfunction, not only in DCM but also in ADCC. As a functional complement to MRI, they may aid in identifying early spinal cord involvement. Their prognostic role in ADCC warrants further study.

Zobrazit více v PubMed

Zipser C. M., Margetis K., Pedro K. M., et al., “Increasing Awareness of Degenerative Cervical Myelopathy: A Preventative Cause of Non‐Traumatic Spinal Cord Injury,” Spinal Cord 59 (2021): 1216–1268, 10.1038/s41393-021-00711-8. PubMed DOI PMC

Davies B., Mowforth O., Gharooni A. A., et al., “A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy (DCM) [AO Spine RECODE‐DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time,” Global Spine Journal 12 (2022): 78S–96S, 10.1177/21925682211057546. PubMed DOI PMC

Horak T., Horakova M., Kerkovsky M., et al., “Evidence‐Based Commentary on the Diagnosis, Management, and Further Research of Degenerative Cervical Spinal Cord Compression in the Absence of Clinical Symptoms of Myelopathy,” Frontiers in Neurology 15 (2024): 1341371, 10.3389/fneur.2024.1341371. PubMed DOI PMC

Agrawal V., Yasin F., Yurac R., et al., “A Systematic Review of Current Terminology for Conditions Preceding Degenerative Cervical Myelopathy: Evidence to Inform an AO Spine Expert Opinion Statement,” Brain and Spine 3 (2023): 102076, 10.1016/j.bas.2023.102076. DOI

Restuccia D., Di Lazzaro V., Lo Monaco M., et al., “Somatosensory Evoked Potentials in the Diagnosis of Cervical Spondylotic Myelopathy,” Electromyography and Clinical Neurophysiology 32, no. 7–8 (1992): 389–395. PubMed

Bednarik J., Kadanka Z., Vohanka S., et al., “The Value of Somatosensory and Motor‐Evoked Potentials in Predicting and Monitoring the Effect of Therapy in Spondylotic Cervical Myelopathy (Prospective Randomised Study),” Spine 24 (1999): 1593–1598, 10.1097/00007632-199908010-00014. PubMed DOI

Nardone R., Höller Y., Brigo F., et al., “The Contribution of Neurophysiology in the Diagnosis and Management of Cervical Spondylotic Myelopathy: A Review,” Spinal Cord 54, no. 10 (2016): 756–766, 10.1038/sc.2016.82. PubMed DOI

Bednarik J., Kadanka Z., Vohanka S., et al., “The Value of Somatosensory and Motor Evoked Potentials in Pre‐Clinical Spondylotic Cervical Cord Compression,” European Spine Journal 7 (1998): 493–500, 10.1007/s005860050113. PubMed DOI PMC

Bednarik J., Kadanka Z., Dusek L., et al., “Presymptomatic Spondylotic Cervical Myelopathy—An Updated Predictive Model,” European Spine Journal 17 (2008): 421–431, 10.1007/s00586-008-0585-1. DOI

Kadanka Z., Adamova B., Kerkovsky M., et al., “Predictors of Symptomatic Myelopathy in Degenerative Cervical Spinal Cord Compression,” Brain and Behavior 7 (2017): e00797, 10.1002/brb3.797. PubMed DOI PMC

Wilson J. R., Barry S., Fischer D. J., et al., “Frequency, Timing, and Predictors of Neurological Dysfunction in the Nonmyelopathic Patient With Cervical Spinal Cord Compression, Canal Stenosis, and/or Ossification of the Posterior Longitudinal Ligament,” Spine 38 (2013): S37–S54, 10.1097/BRS.0b013e3182a7f2e7. PubMed DOI

Valošek J., Labounek R., Horák T., et al., “Diffusion MRI Reveals Tract‐Specific Microstructural Correlates of Neurophysiological Impairments in Non‐Myelopathic and Myelopathic Spinal Cord Compression,” European Journal of Neurology 28, no. 11 (2021): 3784–3797, 10.1111/ene.15027. PubMed DOI PMC

Jutzeler C. R., Ulrich A., Huber B., Rosner J., Kramer J. L. K., and Curt A., “Improved Diagnosis of Cervical Spondylotic Myelopathy With Contact Heat Evoked Potentials,” Journal of Neurotrauma 34 (2017): 2045–2053, 10.1089/neu.2016.4891. PubMed DOI

Scheuren P. S., David G., Kramer J. L. K., et al., “Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure‐Function Paradox in Cervical Myelopathy,” Neurology 97, no. 15 (2021): e1512–e1522, 10.1212/WNL.0000000000012643. PubMed DOI

Scheuren P. S., Hupp M., Pfender N., et al., “Spinal Cord Impairment in Degenerative Cervical Myelopathy Beyond MRI Lesions,” European Journal of Neurology 32, no. 1 (2025): e70001, 10.1111/ene.70001. PubMed DOI PMC

Kovalova I., Kerkovsky M., Kadanka Z., et al., “Prevalence and Imaging Characteristics of Nonmyelopathic and Myelopathic Spondylotic Cervical Cord Compression,” Spine 41, no. 24 (2016): 1908–1916, 10.1097/BRS.0000000000001842. PubMed DOI

Cohen‐Adad J., Alonso‐Ortiz E., Abramovic M., et al., “Generic Acquisition Protocol for Quantitative MRI of the Spinal Cord,” Nat Protoc 16, no. 10 (2021): 4611–4632, 10.1038/s41596-021-00588-0. PubMed DOI PMC

Jutzeler C. R., Rosner J., Rinert J., Kramer J. L. K., and Curt A., “Normative Data for the Segmental Acquisition of Contact Heat Evoked Potentials in Cervical Dermatomes,” Scientific Reports 6 (2016): 34660, 10.1038/srep34660. PubMed DOI PMC

Kramer J. L., Haefeli J., Curt A., Kramer J. L. K., and Steeves J. D., “Increased Baseline Temperature Improves the Acquisition of Contact Heat Evoked Potentials After Spinal Cord Injury,” Clinical Neurophysiology 123 (2012): 582–589, 10.1016/j.clinph.2011.08.013. PubMed DOI

Haefeli J., Kramer J. L., Blum J., Kramer J. L. K., and Curt A., “Assessment of Spinothalamic Tract Function Beyond Pinprick in Spinal Cord Lesions: A Contact Heat Evoked Potential Study,” Neurorehabilitation and Neural Repair 28 (2013): 494–503, 10.1177/1545968313517755. PubMed DOI

Raputová J., Vlčková E., Kočica J., et al., “Contact Heat Evoked Potentials—Impact of Physiological Variables,” Ceskoslovenská Neurologie a Neurochirurgie 82 (2019): 76–83, 10.14735/amcsnn201976. DOI

Pfender N., Jutzeler C. R., Hubli M., et al., “Potential Thresholds of Critically Increased Cardiac‐Related Spinal Cord Motion in Degenerative Cervical Myelopathy,” Frontiers in Neurology 15 (2024): 1411182, 10.3389/fneur.2024.1411182. PubMed DOI PMC

Bednarik J., Kadanka Z., Dusek L., et al., “Pre‐Symptomatic Spondylotic Cervical Cord Compression,” Spine 29 (2004): 2260–2269, 10.1097/01.brs.0000142434.02579.84. PubMed DOI

Tavy D. L. J., Franssen H., Keunen R. W. M., Wattendorff A. R., Hekster R. E. M., and van Huffelen A. C., “Motor and Somatosensory Evoked Potentials in Asymptomatic Spondylotic Cord Compression,” Muscle & Nerve 22 (1999): 628–634. PubMed

Maertens de Noordhout A., Remacle J. M., Pepin J. L., et al., “Magnetic Stimulation of the Motor Cortex in Cervical Spondylosis,” Neurology 41 (1991): 75–80, 10.1212/wnl.41.1.75. PubMed DOI

Tavy D. L., Wagner G. L., Keunen R. W., Wattendorff A. R., Hekster R. E., and Franssen H., “Transcranial Magnetic Stimulation in Patients With Cervical Spondylotic Myelopathy: Clinical and Radiological Correlations,” Muscle & Nerve 17 (1994): 235–241, 10.1002/mus.880170215. PubMed DOI

Travlos A., Pant B., and Eisen A., “Transcranial Magnetic Stimulation for Detection of Preclinical Cervical Spondylotic Myelopathy,” Archives of Physical Medicine and Rehabilitation 73 (1992): 442–446. PubMed

Khan M. R., McInnes A., and Hughes S. P., “Neurophysiological Studies in Cervical Spondylosis,” Journal of Spinal Disorders 2 (1989): 163–169. PubMed

Bednařík J., Kadaňka Z., and Voháňka S., “Median Nerve Mononeuropathy in Spondylotic Cervical Myelopathy: Double Crush Syndrome?,” Journal of Neurology 246 (1999): 544–551, 10.1007/s004150050401. PubMed DOI

Restuccia D., Valeriani M., Di Lazzaro V., et al., “Somatosensory Evoked Potentials After Multisegmental Upper Limb Stimulation in Diagnosis of Cervical Spondylotic Myelopathy,” Journal of Neurology, Neurosurgery, and Psychiatry 57 (1994): 301–308, 10.1136/jnnp.57.3.301. PubMed DOI PMC

Nové‐Josserand A., André‐Obadia N., and Mauguière F., “Cervical Spondylotic Myelopathy: Motor and Somatosensory Evoked Potentials, Clinical and Radiological Correlation,” Revue Neurologique 158, no. 12 (2002): 1191–1197.

Jaskolski D. J., Jarratt J. A., and Jakubovski J., “Clinical Evaluation of Magnetic Stimulation in Cervical Spondylosis,” British Journal of Neurosurgery 3 (1989): 541–548, 10.3109/02688698909002845. PubMed DOI

Di Lazzaro V., Restuccia D., Colosimo C., et al., “The Contribution of Magnetic Stimulation of the Motor Cortex to the Diagnosis of Cervical Spondylotic Myelopathy: Correlation of Central Motor Conduction to Distal and Poximal Upper Limb Muscles With Clinical and MRI Findings,” Electroencephalography and Clinical Neurophysiology 85 (1992): 311–320, 10.1016/0168-5597(92)90107-m. PubMed DOI

Rikita T., Tanaka N., Nakanishi K., et al., “The Relationship Between Central Motor Conduction Time and Spinal Cord Compression in Patients With Cervical Spondylotic Myelopathy,” Spinal Cord 55 (2017): 419–426, 10.1038/sc.2016.130. PubMed DOI

Takahashi J., Hirabayashi H., Hashidate H., et al., “Assessment of Cervical Myelopathy Using Transcranial Magnetic Stimulation and Prediction of Prognosis After Laminoplasty,” Spine 33 (2008): E15–E20, 10.1097/BRS.0b013e31815e5dae. PubMed DOI

Granovsky Y., Anand P., Nakae A., et al., “Normative Data for Aδ Contact Heat Evoked Potentials in Adult Population: A Multicenter Study,” Pain 157, no. 5 (2016): 1156–1163, 10.1097/j.pain.0000000000000495. PubMed DOI

Sun B., Wang H., Chen Z., Cui F., Yang F., and Huang X., “Contact Heat Evoked Potentials in China: Normal Values and Reproducibility,” Frontiers in Human Neuroscience 15 (2022): 747553, 10.3389/fnhum.2021.747553. PubMed DOI PMC

Horak T., Horakova M., Svatkova A., et al., “In Vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression,” Journal of Neurotrauma 38, no. 21 (2021): 2999–3010, 10.1089/neu.2021.0151. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...