A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
35174728
PubMed Central
PMC8859710
DOI
10.1177/21925682211057546
Knihovny.cz E-zdroje
- Klíčová slova
- cervical, degeneration, disability, disc herniation, myelopathy, ossification posterior longitudinal ligament, questionnaire, recovery, spondylosis, spondylotic, stenosis,
- Publikační typ
- časopisecké články MeSH
STUDY DESIGN: Literature Review (Narrative). OBJECTIVE: To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS: Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS: Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION: Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Department of Neurological Surgery 6559Thomas Jefferson University Philadelphia PA USA
Department of Neurosurgery 2152University of Cambridge Cambridge UK
Department of Neurosurgery 5506Medical College of Wisconsin Wauwatosa WI USA
Department of Neurosurgery 60078St Vincent's Hospital Melbourne Fitzroy VIC Australia
Department of Neurosurgery 8789University of California Davis Sacramento CA USA
Department of Pathology Brain Research Institute 12978Niigata University Niigata Japan
Division of Anaesthesia Department of Medicine 2152University of Cambridge Cambridge UK
Division of Neurosurgery Department of Surgery 7938University of Toronto Toronto ON Canada
Division of Neurosurgery Geneva University Hospitals 27230University of Geneva Genève Switzerland
Instituto de Ciências Biomédicas Abel Salazar Porto Portugal
University Spine Center 31031Balgrist University Hospital Zurich Switzerland
Zobrazit více v PubMed
Davies BM, Mowforth OD, Smith EK, Kotter MR. Degenerative cervical myelopathy. BMJ. 2018;360:k186. doi:10.1136/bmj.k186. PubMed DOI PMC
Smith SS, Stewart ME, Davies BM, Kotter MRN. The Prevalence of asymptomatic and symptomatic spinal cord compression on magnetic resonance imaging: a systematic review and meta-analysis. Global Spine Journal. 2020;11:597-607. doi:10.1177/2192568220934496. PubMed DOI PMC
Fehlings MG, Ibrahim A, Tetreault L, et al. A global perspective on the outcomes of surgical decompression in patients with cervical spondylotic myelopathy. Spine. 2015;40:1322-1328. doi:10.1097/brs.0000000000000988. PubMed DOI
Pope DH, Mowforth OD, Davies BM, Kotter MRN. Diagnostic delays lead to greater disability in degenerative cervical myelopathy and represent a health inequality. Spine. 2020;45:368-377. doi:10.1097/brs.0000000000003305. PubMed DOI
Davies BM, Munro C, Khan DZ, et al. Outcomes of degenerative cervical myelopathy from the perspective of persons living with the condition: findings of a semistructured interview process with partnered internet survey. Global Spine Journal. 2020;6:219256822095381. doi:10.1177/2192568220953811. PubMed DOI PMC
Mowforth OD, Davies BM, Kotter MR. Quality of life among informal caregivers of patients with degenerative cervical myelopathy: cross-sectional questionnaire study. Interact J Med Res. 2019;8(4):e12381. doi: 10.2196/12381. PubMed DOI PMC
Oh T, Lafage R, Lafage V, et al. Comparing quality of life in cervical spondylotic myelopathy with other chronic debilitating diseases using the Short Form Survey 36-Health Survey. World Neurosurg. 106; 2017:699-706. doi:10.1016/j.wneu.2016.12.124. PubMed DOI
Khan DZ, Fitzpatrick SM, Hilton B, McNair AG, Sarewitz E, Davies BM, et al.. Prevailing outcome themes reported by people with degenerative cervical myelopathy: focus group study. JMIR Formative Research. 2020;5:e18732. doi:10.2196/18732. PubMed DOI PMC
Davies BM, Khan DZ, Mowforth OD, et al. RE-CODE DCM (research objectives and common data elements for degenerative cervical myelopathy): a consensus process to improve research efficiency in DCM, through establishment of a standardized dataset for clinical research and the definition of the research priorities. Global Spine Journal. 2019;9:65S-76S. doi:10.1177/2192568219832855. PubMed DOI PMC
Stookey B. Compression of the spinal cord due to ventral extradural cervical chondromas. Arch Neurol Psychiatr. 1928;20:275-291. doi:10.1001/archneurpsyc.1928.02210140043003. DOI
Peet MM, Echols DH. Herniation of the nucleus pulposus. Arch Neurol Psychiatr. 1934;32:924-932. doi:10.1001/archneurpsyc.1934.02250110012002. DOI
Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy - update and future directions. Nat Rev Neurol. 2020;16:108-124. doi:10.1038/s41582-019-0303-0. PubMed DOI
Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative cervical myelopathy. Spine. 2015;40:E675-E693. doi:10.1097/brs.0000000000000913. PubMed DOI
Brain WR, Northfield D, Wilkinson M. The neurological manifestations of cervical spondylosis. Brain. 1952;75:187-225. doi:10.1093/brain/75.2.187. PubMed DOI
Ito T, Oyanagi K, Takahashi H, Takahashi HE, Ikuta F. Cervical Spondylotic Myelopathy. Spine. 1996;21:827-833. PubMed
Karadimas SK, Gatzounis G, Fehlings MG. Pathobiology of cervical spondylotic myelopathy. European Spine Journaland the European Section of the Cervical Spine Research Society. 2015;24(suppl 2):132-138. doi:10.1007/s00586-014-3264-4. PubMed DOI
Akter F, Yu X, Qin X, Yao S, et al. The pathophysiology of degenerative cervical myelopathy and the physiology of recovery following decompression. Front Neurosci. 2020;14:550. doi:10.3389/fnins.2020.00138. PubMed DOI PMC
Karadimas SK, Moon ES, Yu W-R, et al. A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol Dis. 2013;54:43-58. doi:10.1016/j.nbd.2013.02.013. PubMed DOI
Dhillon RS, Parker J, Syed YA, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta neuropathologica communications. 2016;4:89. doi:10.1186/s40478-016-0359-7. PubMed DOI PMC
Yu WR, Liu T, Kiehl T-R, Fehlings MG. Human neuropathological and animal model evidence supporting a role for fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011;134:1277-1292. doi:10.1093/brain/awr054. PubMed DOI
Karadimas S, Gialeli C, Klironomos G, et al. The role of oligodendrocytes in the molecular pathobiology and potential molecular treatment of cervical spondylotic myelopathy. Curr Med Chem. 2010;17:1048-1058. doi:10.2174/092986710790820598. PubMed DOI
Shingu H, Kimura I, Nasu Y, et al. Microangiographic study of spinal cord injury and myelopathy. Spinal Cord. 1989;27:182-189. doi:10.1038/sc.1989.27. PubMed DOI
Murakami N, Muroga T, Sobue I. Cervical myelopathy due to ossification of the posterior longitudinal ligament. Arch Neurol. 1978;35:33-36. doi:10.1001/archneur.1978.00500250037008. PubMed DOI
Bohlman HH, Emery SE. The pathophysiology of cervical spondylosis and myelopathy. Spine. 1988;13:843-846. doi:10.1097/00007632-198807000-00025. PubMed DOI
PAYNE EE, Spillane JD. The cervical spine an anatomico-pathological study of 70 specimens (using a special technique) with particular reference to the problem of cervical spondylosis. Brain. 1957;80:571-596. doi:10.1093/brain/80.4.571. PubMed DOI
Hirai T, Uchida K, Nakajima H, et al. The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One. 2013;8:e64528. doi:10.1371/journal.pone.0064528. PubMed DOI PMC
Nouri A, Martin AR, Tetreault L, et al. MRI analysis of the combined prospectively collected aospine north America and international data. Spine. 2017;42:1058-1067. doi:10.1097/brs.0000000000001981. PubMed DOI
Hilton B, Tempest-Mitchell J, Davies BM, et al. Cord compression defined by MRI is the driving factor behind the decision to operate in degenerative cervical myelopathy despite poor correlation with disease severity. PLoS One. 2019;14:e0226020. doi:10.1371/journal.pone.0226020. PubMed DOI PMC
Fehlings MG, Tetreault LA, Riew KD, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression. Global Spine Journal. 2017;7:70S-83S. doi:10.1177/2192568217701914. PubMed DOI PMC
Tempest-Mitchell J, Hilton B, Davies BM, Nouri A, Hutchinson PJ, Scoffings DJ, et al. A comparison of radiological descriptions of spinal cord compression with quantitative measures, and their role in non-specialist clinical management. PLoS One. 2019;14:e0219380. doi:10.1371/journal.pone.0219380. PubMed DOI PMC
Nouri A, Tetreault L, Côté P, Zamorano JJ, Dalzell K, Fehlings MG. Does magnetic resonance imaging improve the predictive performance of a validated clinical prediction rule developed to evaluate surgical outcome in patients with degenerative cervical myelopathy? Spine. 2015;40:1092-1100. doi:10.1097/brs.0000000000000919. PubMed DOI
Wilson JR, Barry S, Fischer DJ, et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine. 2013;38:S37-S54. doi:10.1097/brs.0b013e3182a7f2e7. PubMed DOI
Badhiwala JH, Witiw CD, Nassiri F, et al. Patient phenotypes associated with outcome following surgery for mild degenerative cervical myelopathy: a principal component regression analysis. Spine J. 2018;18:2220-2231. doi:10.1016/j.spinee.2018.05.009. PubMed DOI
Kadanka Z, Adamova B, Kerkovsky M, et al. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain and behavior. 2017;7:e00797. doi:10.1002/brb3.797. PubMed DOI PMC
Martin AR, De Leener B, Cohen-Adad J, et al. Clinically feasible microstructural mri to quantify cervical spinal cord tissue injury using dti, mt, and T2*-weighted imaging: assessment of normative data and reliability. Am J Neuroradiol. 2017;38:1257-1265. doi:10.3174/ajnr.a5163. PubMed DOI PMC
Kovalova I, Kerkovsky M, Kadanka Z, et al. Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine. 2016;41:1908-1916. doi:10.1097/brs.0000000000001842. PubMed DOI
Rhee J, Tetreault LA, Chapman JR, et al. Nonoperative versus operative management for the treatment degenerative cervical myelopathy: an updated systematic review. Global Spine Journal. 2017;7:35S-41S. doi:10.1177/2192568217703083. PubMed DOI PMC
Badhiwala JH, Wilson JR. The natural history of degenerative cervical myelopathy. Neurosurg Clin. 2018;29:21-32. doi:10.1016/j.nec.2017.09.002. PubMed DOI
Tetreault LA, Karadimas S, Wilson JR, et al. The natural history of degenerative cervical myelopathy and the rate of hospitalization following spinal cord injury: an updated systematic review. Global Spine Journal. 2017;7:28S-34S. doi:10.1177/2192568217700396. PubMed DOI PMC
Martin AR, De Leener B, Cohen-Adad J, et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ open. 2018;8:e019809. doi:10.1136/bmjopen-2017-019809. PubMed DOI PMC
Cui L, Kong C, Chen X, Liu Y, Zhang Y, Guan Y. Changes in diffusion tensor imaging indices of the lumbosacral enlargement correlate with cervical spinal cord changes and clinical assessment in patients with cervical spondylotic myelopathy. Clin Neurol Neurosurg. 2019;186:105282. doi:10.1016/j.clineuro.2019.02.014. PubMed DOI
Chen X, Kong C, Feng S, et al. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy. J Magn Reson Imag. 2016;43:1484-1491. doi:10.1002/jmri.25109. PubMed DOI
Shabani S, Kaushal M, Budde MD, Wang MC, Kurpad SN. Diffusion tensor imaging in cervical spondylotic myelopathy: a review. J Neurosurg Spine. 2020;33(1):65-72. doi:10.3171/2019.12.spine191158. PubMed DOI
Grabher P, Mohammadi S, David G, Freund P. Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy. J Neurotrauma. 2017;34:2329-2334. doi:10.1089/neu.2017.4980. PubMed DOI
Grabher P, Mohammadi S, Trachsler A, et al. Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep. 2016;6:24636. EP-. doi:10.1038/srep24636. PubMed DOI PMC
David G, Mohammadi S, Martin AR, et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol. 2019;15:718-731. doi:10.1038/s41582-019-0270-5. PubMed DOI
Lindberg PG, Sanchez K, Ozcan F, et al. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol. 2016;26:733-742. doi:10.1007/s00330-015-3876-z. PubMed DOI
Xu N, Wang S, Yuan H, Liu X, Liu Z. Does dynamic supine magnetic resonance imaging improve the diagnostic accuracy of cervical spondylotic myelopathy? A review of the current evidence. World Neurosurgery. 2017;100:474-479. doi:10.1016/j.wneu.2017.01.047. PubMed DOI
Ost K, Jacobs WB, Evaniew N, Cohen-Adad J, Anderson D, Cadotte DW. Spinal cord morphology in degenerative cervical myelopathy patients; assessing key morphological characteristics using machine vision tools. J Clin Med. 2021;10:892. doi:10.3390/jcm10040892. PubMed DOI PMC
Bartlett RD, Choi D, Phillips JB. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation. Regenerative medicine. 2016;11:659-673. doi:10.2217/rme-2016-0065. PubMed DOI
Mercier JP, Zambelli G, Kurz W. Tensile behaviour of materials. In: Mercier. Mercier JP, Zambelli G, Kurz W, eds. Introduction to Materials Science. Paris; New York: Elsevier; 2002:261-277. 10.1016/b978-2-84299-286-6.50017-2. DOI
Hučko B, Jančo R. Introduction to Mechanics of Materials: Part I. Bookboon; 2013. https://www.arma.org.au/wp-content/uploads/2017/03/introduction-to-mechanics-of-materials-part-i.pdf. accessed Mar 18, 2021
Iowa State University. Nondestructive Evaluation Physics: Materials. Ames, IA: Iowa State University. https://www.nde-ed.org/Physics/Materials/index.xhtml. accessed Mar 18, 2021.
Bilston LE, Meaney DF. The Development of a Physical Model to Measure Strain in a Surrogate Spinal Cord during Hyperflexion and Hyperextension. Switzerland International Research Council on the Biomechanics of Injury; 1993.
Yang KH. Chapter 5 - Material Laws and Properties. Academic Press; 2018:231-256. 10.1016/b978-0-12-809831-8.00005-2. DOI
Molnar K, Labouesse M. The plastic cell: mechanical deformation of cells and tissues. Open Biology. 2021;11:210006. doi:10.1098/rsob.210006. PubMed DOI PMC
Harada A, Mimatsu K. Postoperative changes in the spinal cord in cerivical myelopathy demonstrated by magnetic resonance imaging. Spine. 1992;17:1275-1280. doi:10.1097/00007632-199211000-00003. PubMed DOI
Wolf K, Reisert M, Beltrán SF, et al. Focal cervical spinal stenosis causes mechanical strain on the entire cervical spinal cord tissue - A prospective controlled, matched-pair analysis based on phase-contrast MRI. Neuroimage: Clinical. 2021;30:102580. doi:10.1016/j.nicl.2021.102580. PubMed DOI PMC
Hupp M, Vallotton K, Brockmann C, et al. Segmental differences of cervical spinal cord motion: advancing from confounders to a diagnostic tool. Sci Rep. 2019;9:7415. doi:10.1038/s41598-019-43908-x. PubMed DOI PMC
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, et al. The restless spinal cord in degenerative cervical myelopathy. Am J Neuroradiol. 2021;42:597-609. doi:10.3174/ajnr.a6958. PubMed DOI PMC
Winklhofer S, Schoth F, Stolzmann P, Krings T, Mull M, Wiesmann M, et al. Spinal cord motion: influence of respiration and cardiac cycle. Rofo. 2014;186:1016-1021. doi:10.1055/s-0034-1366429. PubMed DOI
Mikulis DJ, Wood ML, Zerdoner OA, Poncelet BP. Oscillatory motion of the normal cervical spinal cord. Radiology. 1994; 192:117-121. 10.1148/radiology.192.1.8208922. PubMed DOI
Kharbanda HS, Alsop DC, Anderson AW, Filardo G, Hackney DB. Effects of cord motion on diffusion imaging of the spinal cord. Magn Reson Med. 2006;56:334-339. doi:10.1002/mrm.20959. PubMed DOI
Wolf K, Krafft AJ, Egger K, et al. Assessment of spinal cord motion as a new diagnostic MRI-parameter in cervical spinal canal stenosis: study protocol on a prospective longitudinal trial. J Orthop Surg Res. 2019;14:321-327. doi:10.1186/s13018-019-1381-9. PubMed DOI PMC
Stoltmann HF, Blackwood W. An anatomical study of the role of the dentate ligaments in the cervical spinal canal. J Neurosurg. 1966;24:43-46. doi:10.3171/jns.1966.24.1.0043. PubMed DOI
Ranger MRB, Irwin GJ, Bunbury KM, Peutrell JM. Changing body position alters the location of the spinal cord within the vertebral canal: a magnetic resonance imaging study. Br J Anaesth. 2008;101:804-809. doi:10.1093/bja/aen295. PubMed DOI
Witkamp TD, Vandertop WP, Beek FJA, Notermans NC, Gooskens RHJM, van Waes PFGM. Medullary cone movement in subjects with a normal spinal cord and in patients with a tethered spinal cord. Radiology. 2001;220:208-212. doi:10.1148/radiology.220.1.r01jl06208. PubMed DOI
Stamates MM, Frim DM, Yang CW, Katzman GL, Ali S. Magnetic resonance imaging in the prone position and the diagnosis of tethered spinal cord. J Neurosurg Pediatr. 2018;21:4-10. doi:10.3171/2017.3.peds16596. PubMed DOI
Endo K, Suzuki H, Nishimura H, Tanaka H, Shishido T, Yamamoto K. Kinematic analysis of the cervical cord and cervical canal by dynamic neck motion. Asian Spine Journal. 2014;8:747-752. doi:10.4184/asj.2014.8.6.747. PubMed DOI PMC
Harrison DE, Cailliet R, Harrison DD, Troyanovich SJ, Harrison SO. A review of biomechanics of the central nervous system-Part I: spinal canal deformations resulting from changes in posture. J Manipulative Physiol Therapeut. 1999;22:227-234. doi:10.1016/s0161-4754(99)70049-7. PubMed DOI
Kuwazawa Y, Pope MH, Bashir W, Takahashi K, Smith FW. The length of the cervical cord: effects of postural changes in healthy volunteers using positional magnetic resonance imaging. Spine. 2006;31:E579-E583. doi:10.1097/01.brs.0000229228.62627.75. PubMed DOI
Smith CG. Changes in length and position of the segments of the spinal cord with changes in posture in the monkey. Radiology. 1956;66:259-266. doi:10.1148/66.2.259. PubMed DOI
Tykocki T, du Plessis J, Wynne-Jones G. Analysis of morphometric parameters in cervical canal stenosis on neutral and dynamic magnetic resonance imaging. World neurosurgery. 2018;114:e317-e322. doi:10.1016/j.wneu.2018.02.179. PubMed DOI
Breig A, Turnbull I, Hassler O. Effects of mechanical stresses on the spinal cord in cervical spondylosis. J Neurosurg. 1966;25:45-56. doi:10.3171/jns.1966.25.1.0045. PubMed DOI
Kroeker SG, Morley PL, Jones CF, Bilston LE, Cripton PA. The development of an improved physical surrogate model of the human spinal cord-Tension and transverse compression. J Biomech. 2009;42:878-883. doi:10.1016/j.jbiomech.2009.01.036. PubMed DOI
Henderson FC, Geddes JF, Vaccaro AR, Woodard E, Berry KJ, Benzel EC. Stretch-associated injury in cervical spondylotic myelopathy: new concept and review. Neurosurgery. 2005;56:1101-1113. -discussion 1101-13. PubMed
Stoner KE, Abode-Iyamah KO, Magnotta VA, Howard MA, Grosland NM. Measurement of in vivo spinal cord displacement and strain fields of healthy and myelopathic cervical spinal cord. J Neurosurg Spine. 2019;31:53-59. doi:10.3171/2018.12.spine18989. PubMed DOI
Liu S, Lafage R, Smith JS, et al. Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy. J Neurosurg Spine. 2015;23:690-700. doi:10.3171/2015.2.spine14414. PubMed DOI
Henderson FC, Austin C, Benzel E, et al. Neurological and spinal manifestations of the ehlers-danlos syndromes. Am J Med Genet Part C: Seminars in Medical Genetics. 2017;175:195-211. doi:10.1002/ajmg.c.31549. PubMed DOI
Nouri A, Kato S, Badhiwala JH, et al. The influence of cervical spondylolisthesis on clinical presentation and surgical outcome in patients with DCM: analysis of a multicenter global cohort of 458 patients. Global Spine J. 2020;10:448-455. doi:10.1177/2192568219860827. PubMed DOI PMC
Gondar R, Nouri A, Jannelli G, Schaller K, Tessitore E. Does spondylolisthesis affect severity and outcome of degenerative cervical myelopathy? A systematic review and meta-analysis. Global Spine J. 2020;11:1134-1141. doi:10.1177/2192568220960452. PubMed DOI PMC
Butler DS. Adverse mechanical tension in the nervous system: a model for assessment and treatment. Aust J Physiother. 1989;35:227-238. doi:10.1016/s0004-9514(14)60511-0. PubMed DOI
Kim YH, Khuyagbaatar B, Kim K. Biomechanical effects of spinal cord compression due to ossification of posterior longitudinal ligament and ligamentum flavum: a finite element analysis. Med Eng Phys. 2013;35:1266-1271. doi:10.1016/j.medengphy.2013.01.006. PubMed DOI
Nishida N, Kanchiku T, Imajo Y, Suzuki H, Yoshida Y, Kato Y, et al.. Stress analysis of the cervical spinal cord: Impact of the morphology of spinal cord segments on stress. The journal of spinal cord medicine. 2016;39:327-334. doi:10.1179/2045772315y.0000000012. PubMed DOI PMC
Hung T-K, Lin H-S, Bunegin L, Albin MS. Mechanical and neurological response of cat spinal cord under static loading. Surg Neurol. 1982;17:213-217. doi:10.1016/0090-3019(82)90284-1. PubMed DOI
Olsson S-E, Stavenborn M, Hoppe F. Dynamic compression of the cervical spinal cord. Acta Vet Scand. 1982;23:65-78. doi:10.1186/bf03546823. PubMed DOI PMC
Ouyang H, Galle B, Li J, Nauman E, Shi R. Biomechanics of spinal cord injury: a multimodal investigation using ex vivo guinea pig spinal cord white matter. J Neurotrauma. 2008;25:19-29. doi:10.1089/neu.2007.0340. PubMed DOI
Karimi A, Shojaei A, Tehrani P. Mechanical properties of the human spinal cord under the compressive loading. J Chem Neuroanat. 2017;86:15-18. doi:10.1016/j.jchemneu.2017.07.004. PubMed DOI
Zhao P, Kong C, Chen X, et al. In vivo diffusion tensor imaging of chronic spinal cord compression: a rat model with special attention to the conus medullaris. Acta Radiologica. 2016;57:1531-1539. doi:10.1177/0284185116631185. PubMed DOI
Freund P, Seif M, Weiskopf N, et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol. 2019;18:1123-1135. doi:10.1016/s1474-4422(19)30138-3. PubMed DOI
Konomi T, Fujiyoshi K, Hikishima K, et al. Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: Preclinical longitudinal study in common marmosets. Neuroimage. 2012;63:1841-1853. doi:10.1016/j.neuroimage.2012.08.040. PubMed DOI
Overley SC, Kim JS, Gogel BA, Merrill RK, Hecht AC. Tandem spinal stenosis. JBJS Reviews. 2017;5:e2. doi:10.2106/jbjs.rvw.17.00007. PubMed DOI
Vavasour IM, Meyers SM, MacMillan EL, et al. Increased spinal cord movements in cervical spondylotic myelopathy. Spine J. 2014;14:2344-2354. doi:10.1016/j.spinee.2014.01.036. PubMed DOI
Wolf K, Hupp M, Friedl S, et al. In cervical spondylotic myelopathy spinal cord motion is focally increased at the level of stenosis: a controlled cross-sectional study. Spinal Cord. 2018;56:769-776. doi:10.1038/s41393-018-0075-1. PubMed DOI
Jones CF, Kroeker SG, Cripton PA, Hall RM. The effect of cerebrospinal fluid on the biomechanics of spinal cord. Spine. 2008;33:E580-E588. doi:10.1097/brs.0b013e31817ecc57. PubMed DOI
Doh JW, Hwang SC, Yun SM, et al. Acute paraplegia following lumbar puncture in a patient with cervical disc herniation. Journal of Korean Neurosurgical Society. 2001.
Sebugwawo S, Hoddinott C. Danger of lumbar puncture in spinal cord compression. Br J Neurosurg. 1987;1:375-376. doi:10.3109/02688698709023781. PubMed DOI
Lee J, Paeng SH, Shim YW, Lee WH, Kim ST, Pyo SY. Acute quadriplegia after lumbar puncture in a patient with misdiagnosed cervical myelopathy. Korean journal of neurotrauma. 2020;16:299-304. doi:10.13004/kjnt.2020.16.e39. PubMed DOI PMC
Zipser CM, Pfender N, Spirig JM, et al. Study protocol for an observational study of cerebrospinal fluid pressure in patients with degenerative cervical myelopathy undergoing surgical deCOMPression of the spinal CORD: the COMP-CORD study. Bmj Open. 2020;10:e037332. doi:10.1136/bmjopen-2020-037332. PubMed DOI PMC
Yamada S, Won DJ, Pezeshkpour G, et al. Pathophysiology of tethered cord syndrome and similar complex disorders. Neurosurg Focus. 2007;23(2):E–6.. doi:10.3171/foc-07/08/e6. PubMed DOI
Stetler WR, Park P, Sullivan S. Pathophysiology of adult tethered cord syndrome: review of the literature. Neurosurg Focus. 2010;29:E2. doi:10.3171/2010.3.focus1080. PubMed DOI
Fujimoto Y, Oka S, Tanaka N, Nishikawa K, Kawagoe H, Baba I. Pathophysiology and treatment for cervical flexion myelopathy. Eur Spine J; 2002;11:276-285. 10.1007/s005860100344. PubMed DOI PMC
Chen CS. Mechanotransduction - a field pulling together? J Cell Sci. 2008;121:3285-3292. doi:10.1242/jcs.023507. PubMed DOI
LaPlaca MC, Prado GR. Neural mechanobiology and neuronal vulnerability to traumatic loading. J Biomech. 2010;43:71-78. doi:10.1016/j.jbiomech.2009.09.011. PubMed DOI
Galbraith JA, Thibault LE, Matteson DR. Mechanical and electrical responses of the squid giant axon to simple elongation. J Biomech Eng. 1993;115:13-22. doi:10.1115/1.2895464. PubMed DOI
Arundine M, Aarts M, Lau A, et al. Vulnerability of central neurons to secondary insults after in vitro mechanical stretch. J Neurosci. 2004;24:8106-8123. doi:10.1523/jneurosci.1362-04.2004. PubMed DOI PMC
LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech. 2005;38:1093-1105. doi:10.1016/j.jbiomech.2004.05.032. PubMed DOI
Gaub BM, Kasuba KC, Mace E, et al. Neurons differentiate magnitude and location of mechanical stimuli. Proc Natl Acad Sci Unit States Am. 2020;117:848-856. doi:10.1073/pnas.1909933117. PubMed DOI PMC
Ahmed WW, Li TC, Rubakhin SS, Chiba A, Sweedler JV, Saif TA. Mechanical tension modulates local and global vesicle dynamics in neurons. Cell Mol Bioeng. 2012;5:155-164. doi:10.1007/s12195-012-0223-1. PubMed DOI PMC
Ayali A. The function of mechanical tension in neuronal and network development. Integrative Biology. 2010;2:178-182. doi:10.1039/b927402b. PubMed DOI
Galle B, Ouyang H, Shi R, Nauman E. Correlations between tissue-level stresses and strains and cellular damage within the guinea pig spinal cord white matter. J Biomech. 2007;40:3029-3033. doi:10.1016/j.jbiomech.2007.03.014. PubMed DOI
Russell CM, Choo AM, Tetzlaff W, Chung T-E, Oxland TR. Maximum principal strain correlates with spinal cord tissue damage in contusion and dislocation injuries in the rat cervical spine. J Neurotrauma. 2012;29:1574-1585. doi:10.1089/neu.2011.2225. PubMed DOI
Al-Habib A, Albakr A, Al Towim A, et al. In vivo assessment of spinal cord elasticity using shear wave ultrasound in dogs. J Neurosurg Spine. 2018;29:461-469. doi:10.3171/2018.2.spine171195. PubMed DOI
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6:48-67. doi:10.1021/cn500256e. PubMed DOI PMC
Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J Neurotrauma. 2001;18:361-367. doi:10.1089/08977150151071053. PubMed DOI
Okazaki T, Kanchiku T, Nishida N, et al. Age-related changes of the spinal cord: a biomechanical study. Experimental and therapeutic medicine. 2018;15:2824-2829. doi:10.3892/etm.2018.5796. PubMed DOI PMC
Mattucci S, Speidel J, Liu J, Kwon BK, Tetzlaff W, Oxland TR. Basic biomechanics of spinal cord injury - how injuries happen in people and how animal models have informed our understanding. Clin BioMech. 2019;64:58-68. doi:10.1016/j.clinbiomech.2018.03.020. PubMed DOI
Sharif-Alhoseini M, Khormali M, Rezaei M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord. 2017;55:714-721. doi:10.1038/sc.2016.187. PubMed DOI
Oakland RJ, Hall RM, Wilcox RK, Barton DC. The biomechanical response of spinal cord tissue to uniaxial loading. Proc IME H J Eng Med. 2006;220:489-492. doi:10.1243/09544119jeim135. PubMed DOI
Patel AA, Spiker WR, Daubs M, Brodke DS, Cannon-Albright LA. Evidence of an inherited predisposition for cervical spondylotic myelopathy. Spine. 2012;37:26-29. doi:10.1097/brs.0b013e3182102ede. PubMed DOI PMC
Mukerji N, Sinar EJ. Identical twins with cervical myelopathy: a case for hereditary cervical spondylosis? J Neurosurg Spine. 2007;6:344-349. doi:10.3171/spi.2007.6.4.10. PubMed DOI
Pope DH, Davies BM, Mowforth OD, Bowden AR, Kotter MRN. Genetics of degenerative cervical myelopathy: a systematic review and meta-analysis of candidate gene studies. J Clin Med. 2020;9:282. doi:10.3390/jcm9010282. PubMed DOI PMC
Setzer M, Hermann E, Seifert V, Marquardt G. Apolipoprotein E gene polymorphism and the risk of cervical myelopathy in patients with chronic spinal cord compression. Spine. 2008;33:497-502. doi:10.1097/brs.0b013e3181657cf7. PubMed DOI
Setzer M, Vrionis FD, Hermann EJ, Seifert V, Marquardt G. Effect of apolipoprotein E genotype on the outcome after anterior cervical decompression and fusion in patients with cervical spondylotic myelopathy. J Neurosurg Spine. 2009;11:659-666. doi:10.3171/2009.7.spine08667. PubMed DOI
Wang D, Liu W, Cao Y, et al. BMP-4 polymorphisms in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell Physiol Biochem. 2013;32:210-217. doi:10.1159/000350137. PubMed DOI
Wang Z-C, Hou X-W, Shao J, et al. HIF-1α polymorphism in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion treatment. PLoS One. 2014;9:e110862. doi:10.1371/journal.pone.0110862. PubMed DOI PMC
Wu J, Wu D, Guo K, Yuan F, Ran B. OPN polymorphism is associated with the susceptibility to cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell Physiol Biochem. 2014;34:565-574. doi:10.1159/000363023. PubMed DOI
Chang F, Li L, Gao G, et al. Role of Runx2 polymorphisms in risk and prognosis of ossification of posterior longitudinal ligament. J Clin Lab Anal. 2017;31:e22068. doi:10.1002/jcla.22068. PubMed DOI PMC
New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014;52:97-109. doi:10.1038/sc.2012.165. PubMed DOI
Chazono M, Tanaka T, Kumagae Y, Sai T, Marumo K. Ethnic differences in pedicle and bony spinal canal dimensions calculated from computed tomography of the cervical spine: a review of the english-language literature. Eur Spine J. 2012;21:1451-1458. doi:10.1007/s00586-012-2295-y. PubMed DOI PMC
Toki S, Higashino K, Manabe H, et al. Morphometric analysis of subaxial cervical spine with myelopathy: a comparison with the normal population. Spine Surgery and Related Research. 2021;5:34-40. doi:10.22603/ssrr.2020-0061. PubMed DOI PMC
Nouri A, Tetreault L, Nori S, Martin AR, Nater A, Fehlings MG. Congenital cervical spine stenosis in a multicenter global cohort of patients with degenerative cervical myelopathy: an ambispective report based on a magnetic resonance imaging diagnostic criterion. Neurosurgery. 2018;83:521-528. doi:10.1093/neuros/nyx521. PubMed DOI
Lee SE, Chung CK. Risk prediction for development of traumatic cervical spinal cord injury without spinal instability. Global Spine J. 2015;5:315-321. doi:10.1055/s-0035-1547526. PubMed DOI PMC
Fujimori T, Le H, Hu SS, et al. Ossification of the posterior longitudinal ligament of the cervical spine in 3161 patients. Spine. 2015;40:E394-E403. doi:10.1097/brs.0000000000000791. PubMed DOI
Tchkonia T, Kirkland JL. Aging, cell senescence, and chronic disease. Jama. 2018;320:1319. doi:10.1001/jama.2018.12440. PubMed DOI
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-1217. doi:10.1016/j.cell.2013.05.039. PubMed DOI PMC
Grodzinski B, Durham R, Mowforth O, Stubbs D, Kotter MRN, Davies BM. The effect of ageing on presentation, management and outcomes in degenerative cervical myelopathy: a systematic review. Age Ageing. 2020;50:705-715. doi:10.1093/ageing/afaa236. PubMed DOI
Gembruch O, Jabbarli R, Rashidi A, et al. Degenerative cervical myelopathy in higher-aged patients: how do they benefit from surgery? J Clin Med. 2019;9:62. doi:10.3390/jcm9010062. PubMed DOI PMC
Wilson JRF, Badhiwala JH, Jiang F, et al. The impact of older age on functional recovery and quality of life outcomes after surgical decompression for degenerative cervical myelopathy: results from an ambispective, propensity-matched analysis from the CSM-NA and CSM-I international, multi-center studies. J Clin Med. 2019;8:1708. doi:10.3390/jcm8101708. PubMed DOI PMC
Oishi Y, Baratta J, Robertson RT, Steward O. Assessment of factors regulating axon growth between the cortex and spinal cord in organotypic co-cultures: effects of age and neurotrophic factors. J Neurotrauma. 2004;21:339-356. doi:10.1089/089771504322972121. PubMed DOI
Byrne AB, Walradt T, Gardner KE, Hubbert A, Reinke V, Hammarlund M. Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron. 2014;81:561-573. doi:10.1016/j.neuron.2013.11.019. PubMed DOI PMC
Sim FJ, Zhao C, Penderis J, Franklin RJM. The age-related decrease in cns remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 2002;22:2451-2459. doi:10.1523/jneurosci.22-07-02451.2002. PubMed DOI PMC
Ito M, Muramatsu R, Kato Y, et al. Age-dependent decline in remyelination capacity is mediated by apelin-APJ signaling. Nature Aging. 2021;1:284-294. doi:10.1038/s43587-021-00041-7. PubMed DOI
Papinutto N, Asteggiano C, Bischof A, et al. Intersubject variability and normalization strategies for spinal cord total cross‐sectional and gray matter areas. J Neuroimaging. 2020;30:110-118. doi:10.1111/jon.12666. PubMed DOI PMC
Papinutto N, Schlaeger R, Panara V, et al. Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: a 2D phase sensitive inversion recovery imaging study. PLoS One. 2015;10:e0118576. doi:10.1371/journal.pone.0118576. PubMed DOI PMC
Ishikawa M, Matsumoto M, Fujimura Y, Chiba K, Toyama Y. Changes of cervical spinal cord and cervical spinal canal with age in asymptomatic subjects. Spinal Cord. 2003;41:159-163. doi:10.1038/sj.sc.3101375. PubMed DOI
Callaghan MF, Freund P, Draganski B, et al. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging. 2014;35:1862-1872. doi:10.1016/j.neurobiolaging.2014.02.008. PubMed DOI PMC
Tanaka Y. Morphological changes of the cervical spinal canal and cord due to aging. Nihon Seikeigeka Gakkai Zasshi. 1984;58:873-886. PubMed
Yasui K, Hashizume Y, Yoshida M, Kameyama T, Sobue G. Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol. 1999;97:253-259. doi:10.1007/s004010050982. PubMed DOI
Sasaki A, Mizutani T, Takasaki M, Yamada S, Mukai M, Ezaki Y. Morphometric study of age-related changes of the spinal cord. Nippon Ronen Igakkai Zasshi. Japanese Journal of Geriatrics. 1994;31:462-467. doi:10.3143/geriatrics.31.462. PubMed DOI
Piekarz KM, Bhaskaran S, Sataranatarajan K, et al. Molecular changes associated with spinal cord aging. GeroScience. 2020;42:765-784. doi:10.1007/s11357-020-00172-6. PubMed DOI PMC
Morales FR, Boxer PA, Fung SJ, Chase MH. Basic electrophysiological properties of spinal cord motoneurons during old age in the cat. Journal of neurophysiology. 1987;58:180-194. doi:10.1152/jn.1987.58.1.180. PubMed DOI
Sparrey CJ, Manley GT, Keaveny TM. Effects of white, grey, and pia mater properties on tissue level stresses and strains in the compressed spinal cord. J Neurotrauma. 2009;26:585-595. doi:10.1089/neu.2008.0654. PubMed DOI PMC
Jazwinski SM, Kim S. Examination of the dimensions of biological age. Front Genet. 2019;10:263. doi:10.3389/fgene.2019.00263. PubMed DOI PMC
Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20:249. doi:10.1186/s13059-019-1824-y. PubMed DOI PMC
Tuttle CSL, Waaijer MEC, Slee‐Valentijn MS, Stijnen T, Westendorp R, Maier AB. Cellular senescence and chronological age in various human tissues: a systematic review and meta‐analysis. Aging Cell. 2020;19:e13083. doi:10.1111/acel.13083. PubMed DOI PMC
Neumann B, Segel M, Chalut KJ, Franklin RJ. Remyelination and ageing: reversing the ravages of time. Multiple Sclerosis Journal. 2019;25:1835-1841. doi:10.1177/1352458519884006. PubMed DOI PMC
Wilson JRF, Badhiwala JH, Moghaddamjou A, Yee A, Wilson JR, Fehlings MG. Frailty is a better predictor than age of mortality and perioperative complications after surgery for degenerative cervical myelopathy: an analysis of 41,369 patients from the NSQIP database 2010-2018. J Clin Med. 2020;9:3491. doi:10.3390/jcm9113491. PubMed DOI PMC
Ellingson BM, Woodworth DC, Leu K, Salamon N, Holly LT. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis. World neurosurgery. 2019;128:e773-e781. doi:10.1016/j.wneu.2019.04.253. PubMed DOI PMC
Lee Y-S, Kim K-T, Kwon BK. Hemodynamic management of acute spinal cord injury: a literature review. Neurospine. 2021;18(1):7-14. doi: 10.14245/ns.2040144.072. PubMed DOI PMC
Squair JW, Bélanger LM, Tsang A, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89:1660-1667. doi:10.1212/wnl.0000000000004519. PubMed DOI
Senter HJ, Venes JL. Loss of autoregulation and posttraumatic ischemia following experimental spinal cord trauma. J Neurosurg. 1979;50:198-206. doi:10.3171/jns.1979.50.2.0198. PubMed DOI
Saadoun S, Papadopoulos MC. Targeted perfusion therapy in spinal cord trauma. Neurotherapeutics. 2020;17:511-521. doi:10.1007/s13311-019-00820-6. PubMed DOI PMC
Srihari G, Shukla D, Indira Devi B, Sathyaprabha TN. Subclinical autonomic nervous system dysfunction in compressive cervical myelopathy. Spine. 2011;36:654-659. doi:10.1097/brs.0b013e3181dc9eb2. PubMed DOI
Radhakrishnan M, Manohar N, Ramesh V, Chakraborti D. Haemodynamic changes during prone positioning in anaesthetised chronic cervical myelopathy patients. Indian J Anaesth. 2019;63:212. doi:10.4103/ija.ija_810_18. PubMed DOI PMC
Ong ET-E, Yeo LK-P, Kaliya-Perumal A-K, Oh JY-L. Orthostatic hypotension following cervical spine surgery: prevalence and risk factors. Global Spine J. 2020;10:578-582. doi:10.1177/2192568219863805. PubMed DOI PMC
Kalb S, Zaidi HA, Ribas-Nijkerk JC, et al. Persistent outpatient hypertension is independently associated with spinal cord dysfunction and imaging characteristics of spinal cord damage among patients with cervical spondylosis. World Neurosurgery. 2015;84:351-357. doi:10.1016/j.wneu.2015.03.030. PubMed DOI
Hukuda S, Ogata M, Katsuura A. Experimental study on acute aggravating factors of cervical spondylotic myelopathy. Spine. 1988;13:15-20. doi:10.1097/00007632-198801000-00005. PubMed DOI
Machino M, Ando K, Kobayashi K, et al. Prediction of outcome following laminoplasty of cervical spondylotic myelopathy: focus on the minimum clinically important difference. J Clin Neurosci. 2020;81:321-327. doi:10.1016/j.jocn.2020.09.065. PubMed DOI
Perdomo-Pantoja A, Chara A, Casaos J, et al. 12. Angiotensin-II type-1 receptor blockade decreased T2 signal intensity in spinal cord compression in symptomatic cervical spondylotic myelopathy. Spine J. 122019;19:S6. doi:10.1016/j.spinee.2019.05.025. DOI
Tetreault LA, Côté P, Kopjar B, Arnold P, Fehlings MG. A clinical prediction model to assess surgical outcome in patients with cervical spondylotic myelopathy: internal and external validations using the prospective multicenter AOSpine North American and international datasets of 743 patients. Spine J. 2015;15:388-397. doi:10.1016/j.spinee.2014.12.145. PubMed DOI
Zalewski NL, Rabinstein AA, Krecke KN, et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurology. 2019;76:56. doi:10.1001/jamaneurol.2018.2734. PubMed DOI PMC
Wang Y, Hashizume Y, Inagaki T. Autopsy findings of atheromatous embolism to the spinal cord. Nippon Ronen Igakkai Zasshi. Japanese Journal of Geriatrics. 1996;33:935-939. doi:10.3143/geriatrics.33.935. PubMed DOI
Lin S-Y, Chen D-C, Lin C-L, et al. Risk of acute coronary syndrome in patients with cervical spondylosis. Atherosclerosis. 2018;271:136-141. doi:10.1016/j.atherosclerosis.2018.02.029. PubMed DOI
Itoki K, Kurokawa R, Shingo T, Kim P. Effect of myoarchitectonic spinolaminoplasty on concurrent hypertension in patients with cervical spondylotic myelopathy. Neurospine. 2018;15:77-85. doi:10.14245/ns.1836020.010. PubMed DOI PMC
Yang L, Yang C, Pang X, et al. Cervical decompression surgery for cervical spondylotic myelopathy and concomitant hypertension. Spine. 2017;42:903-908. doi:10.1097/brs.0000000000001941. PubMed DOI
Li Z-Q, Zhao Y-P, Jia W-Y, et al. Surgical treatment of cervical spondylotic myelopathy associated hypertension-a retrospective study of 309 patients. PLoS One. 2015;10:e0133828. doi:10.1371/journal.pone.0133828. PubMed DOI PMC
Stręk P, Reroń E, Maga P, Modrzejewski M, Szybist N. A possible correlation between vertebral artery insufficiency and degenerative changes in the cervical spine. Eur Arch Oto-Rhino-Laryngol. 1998;255:437-440. doi:10.1007/s004050050094. PubMed DOI
Liu H, Wang H-B, Wu L, et al. Effects of decompressive cervical surgery on blood pressure in cervical spondylosis patients with hypertension: a time series cohort study. BMC Surg. 2016;16:2. doi:10.1186/s12893-015-0117-y. PubMed DOI PMC
Lin S-Y, Hsu W-H, Lin C-C, et al. Association of arrhythmia in patients with cervical spondylosis: a nationwide population-based cohort study. J Clin Med. 2018;7:236. doi:10.3390/jcm7090236. PubMed DOI PMC
Nouri A, Patel K, Montejo J, et al. The role of vitamin B12 in the management and optimization of treatment in patients with degenerative cervical myelopathy. Global Spine J. 2019;9:331-337. doi:10.1177/2192568218758633. PubMed DOI PMC
Nouri A, Matur A, Pennington Z, et al. Prevalence of anemia and its relationship with neurological status in patients undergoing surgery for degenerative cervical myelopathy and radiculopathy: a retrospective study of 2 spine centers. J Clin Neurosci. 2020;72:252-257. doi:10.1016/j.jocn.2019.11.027. PubMed DOI
Allam AFA, Abotakia TAA, Koptan W. Role of cerebrolysin in cervical spondylotic myelopathy patients: a prospective randomized study. Spine J. 2018;18:1136-1142. doi:10.1016/j.spinee.2017.11.002. PubMed DOI
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28:203-209. PubMed PMC
Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179-194. doi:10.1016/s1474-4422(19)30356-4. PubMed DOI
Jogia T, Ruitenberg MJ. Traumatic spinal cord injury and the gut microbiota: current insights and future challenges. Front Immunol. 2020;11:704. doi:10.3389/fimmu.2020.00704. PubMed DOI PMC
Fouad K, Popovich PG, Kopp MA, Schwab JM. The neuroanatomical-functional paradox in spinal cord injury. Nat Rev Neurol. 2021;17:53-62. doi:10.1038/s41582-020-00436-x. PubMed DOI PMC
Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018;191:29-44. doi:10.1016/j.trsl.2017.10.004. PubMed DOI PMC
Ito K, Matsuyama Y, Yukawa Y, Kato F, Ishiguro N. Analysis of Interleukin-8, Interleukin-10, and tumor necrosis factor-α in the cerebrospinal fluid of patients with cervical spondylotic myelopathy. J Spinal Disord Tech. 2008;21:145-147. doi:10.1097/bsd.0b013e31806458b3. PubMed DOI
Nagashima H, Morio Y, Yamane K, Nanjo Y, Teshima R. Tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the cerebrospinal fluid of patients with cervical myelopathy and lumbar radiculopathy. Eur Spine J. 2009;18:1946-1950. doi:10.1007/s00586-009-1069-7. PubMed DOI PMC
Du S, Sun Y, Zhao B. Interleukin-6 serum levels are elevated in individuals with degenerative cervical myelopathy and are correlated with symptom severity. Med Sci Mon Int Med J Exp Clin Res. 2018;24:7405-7413. doi:10.12659/msm.912868. PubMed DOI PMC
Laliberte AM, Karadimas SK, Vidal PM, Satkunendrarajah K, Fehlings MG. Mir21 modulates inflammation and sensorimotor deficits in cervical myelopathy: data from humans and animal models. Brain Communications. 2021;3:fcaa234. doi:10.1093/braincomms/fcaa234. PubMed DOI PMC
Nouri A, Badhiwala JH, Kato S, et al. The relationship between gastrointestinal comorbidities, clinical presentation and surgical outcome in patients with DCM: analysis of a global cohort. J Clin Med. 2020;9:624. doi:10.3390/jcm9030624. PubMed DOI PMC
Wylie GR, Chiaravalloti ND, Weber E, Genova HM, Dyson-Hudson TA, Wecht JM. The neural mechanisms underlying processing speed deficits in individuals who have sustained a spinal cord injury: a pilot study. Brain Topogr. 2020;33:776-784. doi:10.1007/s10548-020-00798-x. PubMed DOI
Holly LT, Dong Y, Albistegui-DuBois R, Marehbian J, Dobkin B. Cortical reorganization in patients with cervical spondylotic myelopathy. J Neurosurg Spine. 2007;6:544-551. doi:10.3171/spi.2007.6.6.5. PubMed DOI PMC
Kuang C, Zha Y, Liu C, Chen J. Altered topological properties of brain structural covariance networks in patients with cervical spondylotic myelopathy. Front Hum Neurosci. 2020;14:364. doi:10.3389/fnhum.2020.00364. PubMed DOI PMC
Wang C, Laiwalla A, Salamon N, Ellingson BM, Holly LT. Compensatory brainstem functional and structural connectivity in patients with degenerative cervical myelopathy by probabilistic tractography and functional MRI. Brain Research. 2020;1749:147129. doi:10.1016/j.brainres.2020.147129. PubMed DOI PMC
Takenaka S, Kan S, Seymour B, et al. Towards prognostic functional brain biomarkers for cervical myelopathy: a resting-state fMRI study. Sci Rep. 2019;9:10456. doi:10.1038/s41598-019-46859-5. PubMed DOI PMC
Liu X, Qian W, Jin R, et al. Amplitude of low frequency fluctuation (ALFF) in the cervical spinal cord with stenosis: a resting state fmri study. PLoS One. 2016;11:e0167279. doi:10.1371/journal.pone.0167279. PubMed DOI PMC
Tan Y, Zhou F, Wu L, et al. Alteration of regional homogeneity within the sensorimotor network after spinal cord decompression in cervical spondylotic myelopathy: a resting-state fMRI study. BioMed Research International. 2015;2015:1-6. doi:10.1155/2015/647958. PubMed DOI PMC
Chen Z, Zhao R, Wang Q, et al. Functional connectivity changes of the visual cortex in the cervical spondylotic myelopathy patients. Spine. 2020;45:E272-E279. doi:10.1097/brs.0000000000003245. PubMed DOI
Woodworth DC, Holly LT, Mayer EA, Salamon N, Ellingson BM. Alterations in cortical thickness and subcortical volume are associated with neurological symptoms and neck pain in patients with cervical spondylosis. Neurosurgery. 2019;84:588-598. doi:10.1093/neuros/nyy066. PubMed DOI PMC
Zdunczyk A, Schwarzer V, Mikhailov M, et al. The corticospinal reserve capacity: reorganization of motor area and excitability as a novel pathophysiological concept in cervical myelopathy. Neurosurgery. 2017;83:810-818. doi:10.1093/neuros/nyx437. PubMed DOI
Chen Z, Wang Q, Liang M, et al. Visual cortex neural activity alteration in cervical spondylotic myelopathy patients: a resting-state fMRI study. Neuroradiology. 2018;60:921-932. doi:10.1007/s00234-018-2061-x. PubMed DOI
Peng X, Tan Y, He L, Ou Y. Alterations of functional connectivity between thalamus and cortex before and after decompression in cervical spondylotic myelopathy patients: a resting-state functional MRI study. Neuroreport. 2020;31:365-371. doi:10.1097/wnr.0000000000001346. PubMed DOI
Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. Cerebellum. 2020;19:131-153. doi:10.1007/s12311-019-01091-9. PubMed DOI PMC
Montine TJ, Cholerton BA, Corrada MM, et al. Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimer’s Res Ther. 2019;11:22-23. doi:10.1186/s13195-019-0479-y. PubMed DOI PMC
Witiw CD, Mathieu F, Nouri A, Fehlings MG. Clinico-radiographic discordance: an evidence-based commentary on the management of degenerative cervical spinal cord compression in the absence of symptoms or with only mild symptoms of myelopathy. Global Spine Journal. 2017;8:527-534. doi:10.1177/2192568217745519. PubMed DOI PMC
Nouri A, Cheng JS, Davies B, Kotter M, Schaller K, Tessitore E. Degenerative cervical myelopathy: a brief review of past perspectives, present developments, and future directions. J Clin Med. 2020;9:535. doi:10.3390/jcm9020535. PubMed DOI PMC
Davis L. Body Physics: Motion to Metabolism (Deformation of Tissues). Chapter 52. Portland, OR: Open Oregon Educational Resources. https://openoregon.pressbooks.pub/bodyphysics/chapter/elasticity-and-hookes-law/ accessed May 4, 2021.