Variations among glioblastoma cell lines in boron-mediated enhancement of cell killing by proton beams
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
21-06451S
Grantová Agentura České Republiky
PubMed
40789893
PubMed Central
PMC12340007
DOI
10.1038/s41598-025-14658-w
PII: 10.1038/s41598-025-14658-w
Knihovny.cz E-zdroje
- Klíčová slova
- Cell survival, Glioblastoma cell lines, Proton beams, Proton-boron capture therapy, Secondary neutrons,
- MeSH
- bor * farmakologie MeSH
- glioblastom * radioterapie patologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory mozku * radioterapie patologie MeSH
- protonová terapie * metody MeSH
- protony MeSH
- terapie metodou neutronového záchytu (bor-10) * metody MeSH
- viabilita buněk účinky záření účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bor * MeSH
- protony MeSH
Enhancement in cell killing by proton beams in the presence of boron (natural mixture natB: 80% 11B, 20% 10B) was reported, selectively in the Bragg peak region, putatively due to the proton-11B capture reaction. However, as some groups observed no such enhancement or assigned it to secondary neutron-10B capture, proton-boron capture therapy (PBCT) remains controversial. We previously validated this concept for U-87 MG glioblastoma cells. To test its generality and potential applicability for these tumours, we assessed PBCT using three further cell lines widely used in glioblastoma research. In U251 cells, natB enhanced cell killing by protons in Bragg peak but also in plateau regions, effects of 10B were even higher, and were found also for 18MV but not 6 MV photon beams (above and below photo-neutron production thresholds, respectively), suggesting a key role of secondary neutrons. For A172 and T98G cells, no enhancement was found at all. This variability among cell lines may stem from differences in boron uptake and/or in intercellular signalling likely needed to amplify the initial events in a few hit cells to population-level effects. Together with recent negative studies, the results suggest that potential clinical applications of PBCT are less promising than originally thought.
Bulovka University Hospital Budínova 67 2 Praha 180 81 Czech Republic
Czech Metrology Institute Okružní 31 Brno 638 00 Czech Republic
Nuclear Physics Institute of the Czech Academy of Sciences Husinec Řež 130 Řež 250 68 Czech Republic
Proton Therapy Center Czech Budínova 2437 1a Prague Prague 180 00 Czech Republic
Zobrazit více v PubMed
Delaney, G., Jacob, S., Featherstone, C. & Barton, M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. PubMed
Mohan, R. A review of proton therapy – Current status and future directions. PubMed PMC
Chen, Z., Dominello, M. M., Joiner, M. C. & Burmeister, J. W. Proton versus photon radiation therapy: A clinical review. PubMed PMC
Newhauser, W. D. & Zhang, R. The physics of proton therapy. PubMed PMC
Yoon, D. K., Jung, J. Y. & Suh, T. S. Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study.
Cirrone, G. A. P. et al. First experimental proof of proton boron capture therapy (PBCT) to enhance protontherapy effectiveness. PubMed PMC
Barth, R. F., Zhang, Z. & Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. PubMed PMC
Hideghéty, K. et al. 11Boron delivery agents for boron proton-capture enhanced proton therapy. PubMed
Tinganelli, W. & Durante, M. Carbon ion radiobiology. PubMed PMC
Manandhar, M. et al. Effect of boron compounds on the biological effectiveness of proton therapy. PubMed
Hosobuchi, M. et al. Experimental verification of efficacy of PBCT in terms of physical and biological aspects.
Shtam, T. et al. Experimental validation of proton boron capture therapy for glioma cells. PubMed PMC
Mazzone, A., Finocchiaro, P., Lo Meo, S. & Colonna, N. On the (un)effectiveness of proton boron capture in proton therapy.
Tabbakh, F. & Hosmane, N. S. Enhancement of radiation effectiveness in proton therapy: comparison between fusion and fission methods and further approaches. PubMed PMC
Meyer, H. J., Titt, U. & Mohan, R. Technical note: Monte Carlo study of the mechanism of proton-boron fusion therapy. PubMed PMC
Safavi-Naeini, M. et al. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. PubMed PMC
Jacobsen, V. L., Johansen, J. G., Fynbo, H. O. U. & Bassler, N. A Monte Carlo study of high-LET particle production in proton boron therapy.
Jelínek Michaelidesová, A. et al. First independent validation of the proton-boron capture therapy concept. PubMed PMC
Bláha, P. et al. The proton-boron reaction increases the radiobiological effectiveness of clinical low- and high-energy proton beams: novel experimental evidence and perspectives. PubMed PMC
Ricciardi, V. et al. A new low-energy proton irradiation facility to unveil the mechanistic basis of the proton-boron capture therapy approach.
International Atomic Energy Agency. Handbook on Photonuclear Data for Applications Cross-sections and Spectra, IAEA-TECDOC-11m78, IAEA, Vienna. ; (2000). https://www-pub.iaea.org/MTCD/publications/PDF/te_1178_prn.pdf
Braselmann, H., Michna, A., Heß, J. & Unger, K. CFAssay: statistical analysis of the colony formation assay. PubMed PMC
Werner, C. J. MCNP
Králík, M. et al. Spectral fluence of neutrons generated by radiotherapeutic Linacs. PubMed
Werner, C. J. et al. MCNP Version 6.2 Release Notes. Los Alamos National Laboratory LA-UR-18-20808 (2018).
Chadwick, M. B. et al. ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology.
Conlin, J. L., Haeck, W., Neudecker, D., Parsons, D. K. & White, M. C. Release of ENDF/B-VIII.0-Based ACE data files. Los Alamos National Laboratory LA-UR-18-24034 (2018).
Trellue, H., Little, R., Lee, M. B. & New, A. C. E. F. Neutron and Proton Libraries Based on ENDF/B-VII.0. Los Alamos National Laboratory LA-UR-08-1999 (2008).
Paganetti, H. Relating proton treatments to photon treatments via the relative biological effectiveness – should we revise current clinical practice? PubMed
Stave, S. et al. Understanding the B11(p,α)αα reaction at the 0.675 Mev resonance.
ICRU Report 49. Stopping Powers and Ranges for Protons and Alpha Particles. International Commission on Radiation Units and Measurements (Bethesda, 1993).
Kundrát, P. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy. PubMed
Hatton, I. A. et al. The human cell count and size distribution. PubMed PMC
International Atomic Energy Agency & Vienna Advances in Boron Neutron Capture Therapy. Non-serial Publications (IAEA, 2023). https://www-pub.iaea.org/MTCD/publications/PDF/CRCP-BOR-002_web.pdfaccessed 05-06-2024.
Database, Experimental Nuclear Reaction Data (EXFOR) Database. https://www-nds.iaea.org/exfor/, accessed 02-05-2024.
Otuka, N. et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC).
Sato, T., Masunaga, S. I., Kumada, H. & Hamada, N. Microdosimetric modeling of biological effectiveness for boron neutron capture therapy considering intra- and intercellular heterogeneity in 10B distribution. PubMed PMC
ICRU Report 49 and 73, Stopping of Ions Heavier than Helium. International Commission on Radiation Units and Measurements & Bethesda Maryland, USA ; Errata and Addenda (2009), (2005). https://www.icru.org/wp-content/uploads/2020/12/Errata_and_Addenda_73.pdf
Cammarata, F. P. et al. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. PubMed PMC
Jung, J. Y. et al. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study. PubMed PMC
Jamborová, Z. et al. Radiation damage to DNA plasmids in the presence of borocaptates. PubMed
Watkins, S. & Sontheimer, H. Hydrodynamic cellular volume changes enable glioma cell invasion. PubMed PMC
Friedland, W., Schmitt, E., Kundrát, P., Baiocco, G. & Ottolenghi, A. Track-structure simulations of energy deposition patterns to mitochondria and damage to their DNA. PubMed
Prise, K. M. & O’Sullivan, J. M. Radiation-induced bystander signalling in cancer therapy. PubMed PMC
Nagasawa, H. & Little, J. B. Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect. PubMed
Zhou, H. et al. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. PubMed PMC
Kundrát, P. et al. Boron-enhanced biological effectiveness of proton irradiation: strategy to assess the underpinning mechanism. PubMed
Ferrell, J. E. & Xiong, W. Bistability in cell signalling: how to make continuous processes discontinuous, and reversible processes irreversible. PubMed
Bauer, G. Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. PubMed
Kundrát, P., Bauer, G., Jacob, P. & Friedland, W. Mechanistic modelling suggests that the size of preneoplastic lesions is limited by intercellular induction of apoptosis in oncogenically transformed cells. PubMed PMC
Kundrát, P. & Friedland, W. Enhanced release of primary signals may render intercellular signalling ineffective due to Spatial aspects. PubMed PMC
Ryan, L. A., Smith, R. W., Seymour, C. B. & Mothersill, C. E. Dilution of irradiated cell conditioned medium and the bystander effect. PubMed
Kundrát, P. & Friedland, W. Non-linear response of cells to signals leads to revised characteristics of bystander effects inferred from their modelling. PubMed
Friedland, W., Kundrát, P. & Jacob, P. Track structure calculations on hypothetical subcellular targets for the release of cell-killing signals in bystander experiments with medium transfer. PubMed
Kundrát, P. & Friedland, W. Track structure calculations on intracellular targets responsible for signal release in bystander experiments with transfer of irradiated cell-conditioned medium. PubMed
Kundrát, P. & Friedland, W. Mechanistic modelling of radiation-induced bystander effects. PubMed
Hannafon, B. N. & Ding, W. Q. Intercellular communication by exosome-derived microRNAs in cancer. PubMed PMC
Jella, K. K. et al. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. PubMed PMC
Dai, X. et al. AHIF promotes glioblastoma progression and radioresistance via exosomes. PubMed
Mothersill, C., Saroya, R., Smith, R. W., Singh, H. & Seymour, C. B. Serum serotonin levels determine the magnitude and type of bystander effects in medium transfer experiments. PubMed
Mothersill, C. et al. A laboratory inter-comparison of the importance of serum serotonin levels in the measurement of a range of radiation-induced bystander effects: overview of study and results presentation. PubMed
Chapman, K. L., Al-Mayah, A. H., Bowler, D. A., Irons, S. L. & Kadhim, M. A. No influence of serotonin levels in foetal bovine sera on radiation-induced bystander effects and genomic instability. PubMed