First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness

. 2018 Jan 18 ; 8 (1) : 1141. [epub] 20180118

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29348437
Odkazy

PubMed 29348437
PubMed Central PMC5773549
DOI 10.1038/s41598-018-19258-5
PII: 10.1038/s41598-018-19258-5
Knihovny.cz E-zdroje

Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy's ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.

Zobrazit více v PubMed

Nuclear Physics European Collaboration Committee (NuPECC), Nuclear Physics for Medicine, NuPECC Report, European Science Foundation (2014)

Particle Therapy Co-Operative Group. Particle Therapy Centers. Available at: http://www.ptcog.ch/ (last accessed on line August 2016).

Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487–491. doi: 10.1148/47.5.487. PubMed DOI

Bragg W, Kleemann R. On the α-particles of radium and their loss of range in passing through various atoms and molecules. Phil. Mag. 1905;10:318–340. doi: 10.1080/14786440509463378. DOI

Loeffler JS, Durante M. Charged particle therapy–optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 2013;10:411–424. doi: 10.1038/nrclinonc.2013.79. PubMed DOI

Uhl M, Herfarth K, Debus J. Comparing the use of protons and carbon ions for treatment. Cancer J. 2014;20:433–439. doi: 10.1097/PPO.0000000000000078. PubMed DOI

Verma, V. et al. Cost-comparativeness of proton versus photon therapy. Chin. Clin Oncol. 10.21037/cco.2016.06.03. (2016). [Epub ahead of print] PubMed

Tommasino F, Durante M. Proton radiobiology. Cancers. 2015;12:7353–7381. PubMed PMC

Doyen J, Falk AT, Floquet V, Hérault J, Hannoun-Lévi JM. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat. Rev. 2016;43:104–112. doi: 10.1016/j.ctrv.2015.12.007. PubMed DOI

Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 2006;65:1–7. doi: 10.1016/j.ijrobp.2006.01.027. PubMed DOI

Kraft G. The radiobiological and physical basis of radiotherapy with protons and heavier ions. Strahlenther. Onkol. 1990;166:10–13. PubMed

International Commission on Radiation Units and Measurements (ICRU). Prescribing, Recording, and Reporting Proton-Beam Therapy (Report 78), J ICRU7, Oxford University Press, Oxford (2007).

Belli M, et al. Inactivation of human normal and tumour cells irradiated with low energy protons. Int.J. Radiat. Biol. 2000;76:831–839. doi: 10.1080/09553000050028995. PubMed DOI

Chaudhary P, et al. Relative biological effectiveness variation along monoenergetic and modulated Bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int. J. Radiat. Oncol. Biol. Phys. 2014;90:27–35. doi: 10.1016/j.ijrobp.2014.05.010. PubMed DOI

Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 2014;59:R419–472. doi: 10.1088/0031-9155/59/22/R419. PubMed DOI

Girdhani S, Sachs R, Hlatky L. Biological effects of proton radiation: What we know and don’t know. Radiat. Res. 2013;179:257–272. doi: 10.1667/RR2839.1. PubMed DOI

Durante M. New challenges in high-energy particle radiobiology. Br. J. Radiol. 2014;87:20130626. doi: 10.1259/bjr.20130626. PubMed DOI PMC

Schulz-Ertner D, Tsujii H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 2007;25:953–964. doi: 10.1200/JCO.2006.09.7816. PubMed DOI

Amaldi U, Kraft G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 2005;68:1861–1882. doi: 10.1088/0034-4885/68/8/R04. DOI

Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int. J. Radiat. Oncol. Biol. Phys. 2000;48:241–250. doi: 10.1016/S0360-3016(00)00568-X. PubMed DOI

Facoetti A, et al. In vivo radiobiological assessment of the new clinical carbon ion beam at CNAO. Radiat. Prot. Dosim. 2015;166:379–382. doi: 10.1093/rpd/ncv145. PubMed DOI

Ward JF. The complexity of DNA damage: relevance to biological consequences. Int. J. Radiat. Biol. 1994;66:427–432. doi: 10.1080/09553009414551401. PubMed DOI

Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 1994;65:7–17. doi: 10.1080/09553009414550021. PubMed DOI

Hada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation. Radiat. Res. 2006;165:223–230. doi: 10.1667/RR3498.1. PubMed DOI

Gustafsson AS, Hartman T, Stenerlöw B. Formation and repair of clustered damaged DNA sites in high LET irradiated cells. Int. J. Radiat. Biol. 2015;91:820–826. doi: 10.3109/09553002.2015.1068463. PubMed DOI

Raju MR, et al. A heavy particle comparative study. Part III: OER and RBE. Br. J. Radiol. 1978;51:712–719. doi: 10.1259/0007-1285-51-609-712. PubMed DOI

Held KD, et al. Effects of Charged Particles on Human Tumor Cells. Front. Oncol. 2016;12:6–23. PubMed PMC

Ogata T, et al. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol-3-kinase/Akt signaling pathway. J. Radiat. Res. 2011;52:374–379. doi: 10.1269/jrr.10102. PubMed DOI

Fujita M, et al. Carbon-ion irradiation suppresses migration and invasiveness of human pancreatic carcinoma cells MIAPaCa-2 via Rac1 and RhoA Degradation. Int. J. Radiat. Oncol.Biol. Phys. 2015;93:173–180. doi: 10.1016/j.ijrobp.2015.05.009. PubMed DOI

Fujita M, et al. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1. in vitro. 2012;103:677–683. PubMed PMC

Lin Y, McMahon SJ, Paganetti H, Schuemann J. Biological modeling of gold nanoparticle enhancers radiotherapy for proton therapy. Phys. Med. Biol. 2015;60:4149–4168. doi: 10.1088/0031-9155/60/10/4149. PubMed DOI

Do-Kun Y, Joo-Young J, Tae SS. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study. Appl. Phys. Lett. 2014;105:223507. doi: 10.1063/1.4903345. DOI

Oliphant M, Rutheford L. Experiments on the transmutation of elements by protons. Proc. R. Soc. Lond. A. 1933;141:259–272. doi: 10.1098/rspa.1933.0117. DOI

Dee PI, Gilbert CW. The disintegration of Boron into three α-particles. Proc. R. Soc. Lond. A. 1936;154:279. doi: 10.1098/rspa.1936.0051. DOI

Barth RF. From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy. Appl. Radiat. Isot. 2015;106:22–28. doi: 10.1016/j.apradiso.2015.06.016. PubMed DOI

Doi A, Kawabata S, Lida K, Yokoyama K, Kajimoto Y, et al. Tumour-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. Neurooncol. 2008;87:287–294. doi: 10.1007/s11060-008-9522-8. PubMed DOI

Anderson RM, et al. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha particles. Int. J. Radiat. Biol. 2000;76:31–42. doi: 10.1080/095530000138989. PubMed DOI

Spraker MC, et al. The 11B(p, α)8Be → α + α and the 11B(α, α)11B reactions at energies below 5.4 MeV. J. Fusion Energ. 2012;31:357–367. doi: 10.1007/s10894-011-9473-5. DOI

Sikora MH, Weller HR. A. new evaluation of the 11B(p, α)αα reaction rates. J. Fusion. Energ. 2016;35:538–543. doi: 10.1007/s10894-016-0069-y. DOI

Stave S, et al. H.R., Understanding the 11B(p, α)αα reaction at the 0.675 MeV resonance. Phys. Lett. B. 2011;696:26–29. doi: 10.1016/j.physletb.2010.12.015. DOI

Rostoker N, Binderbauer MW, Monkhorst HJ. Colliding beam fusion reactor. Science. 1997;278:1419–1422. doi: 10.1126/science.278.5342.1419. PubMed DOI

Picciotto A, et al. Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser. Phys. Rev. X. 2014;4:031030.

Giuffrida, L., Margarone, D., Cirrone, G.A.P. & Picciotto, A. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions, arXiv:1608.06778 AIP Advances 6, 105204 (2016)

Petringa, G. et al. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications, Journal of Instrumentation 12(03) (2017)

Petringa G, et al. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy. Journal of Instrumentation. 2017;12(03):C03059–C03059. doi: 10.1088/1748-0221/12/03/C03059. DOI

Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: status and future prospects. Clin. Cancer Res. 2005;11:3987–4002. doi: 10.1158/1078-0432.CCR-05-0035. PubMed DOI

Schwint AE, Trivillin VA. 'Close-to-ideal' tumor boron targeting for boron neutron capture therapy is possible with 'less-than-ideal' boron carriers approved for use in humans. Ther Deliv. 2015;6:269–272. doi: 10.4155/tde.14.108. PubMed DOI

Yasui L, et al. Boron neutron capture in prostate cancer cells. Appl. Radiat. Isot. 2012;70:6–12. doi: 10.1016/j.apradiso.2011.07.001. PubMed DOI

Savage JR, Tucker JD. Nomenclature systems for FISH-painted chromosome aberrations. Mutat. Res. 1996;366:153–161. doi: 10.1016/S0165-1110(96)90036-6. PubMed DOI

Bedford JS, Mitchell JB, Griggs HG, Bender MA. Radiation-Induced Cellular Reproductive Death and Chromosome Aberrations. Radiat. Res. 1978;76:573–586. doi: 10.2307/3574806. PubMed DOI

Brenner DJ, Sachs RK. Chromosomal “fingerprints” of prior exposure to densely ionizing radiation. Radiat. Res. 1994;140:134–142. doi: 10.2307/3578579. PubMed DOI

George K, et al. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat. Res. 2003;160:425–435. doi: 10.1667/RR3064. PubMed DOI

Barth RF, et al. Current status of Boron neutron capture therapy for high grade gliomas and recurrent head and neck cancer. Radiation Oncology. 2012;7:146. doi: 10.1186/1748-717X-7-146. PubMed DOI PMC

Kankaanranta L, Seppala T, Koivunoro H, Saarilahti K, et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a Phase I/II trial. Int. Jour.of Rad. Onc. Biol. Phys. 2012;82:e67–e75. doi: 10.1016/j.ijrobp.2010.09.057. PubMed DOI

Polf JC, et al. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl. Phys. Lett. 2011;98:193702. doi: 10.1063/1.3589914. PubMed DOI PMC

Schmid TE, et al. The effectiveness of the high-LET radiations from the boron neutron capture [10B(n,a)7Li] reaction determined for induction of chromosome aberrations and apoptosis in lymphocytes of human blood samples. Radiat. Environ. Biophys. 2015;54:91–102. doi: 10.1007/s00411-014-0577-y. PubMed DOI

Barquinero JF, Stephan G, Schmid E. Effect of americium-241 ▯-particles on the dose–response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization. Int. J. Radiat. Biol. 2004;80:155–164. doi: 10.1080/09553002310001655430. PubMed DOI

Schwint AE, Trivillin VA. ’Close-to-ideal’ tumor boron targeting for boron neutron capture therapy is possible with ‘less-than-ideal’ boron carriers. Ther. Deliv. 2015;6:269–272. doi: 10.4155/tde.14.108. PubMed DOI

Shin H-B, Yoon DK, Jung JY, Kim MS, Suh TS. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study. Phys. Med. 2016;32:1271–1275. doi: 10.1016/j.ejmp.2016.05.053. PubMed DOI

Kumar C, et al. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int. J. Radiat. Biol. 2016;92:173–186. doi: 10.3109/09553002.2016.1144944. PubMed DOI

Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–268. doi: 10.1016/S1046-2023(03)00032-X. PubMed DOI

Becker HW, Rolfs C, Trautvetter HP. Low-energy cross sections for 11B(p,3α), Z. Phys. A Atomic Nuclei. 1987;327:341–355. doi: 10.1007/BF01284459. DOI

Segel RE, Hanna SS, Allas RG. States in C12 between 16.4 and 19.6 MeV. Phys. Rev. 1965;139:818–830. doi: 10.1103/PhysRev.139.B818. DOI

Cuttone G, et al. Use of 62 MeV proton beam for medical applications at INFN-LNS: CATANA project. Physica Medica. 2001;17:23–25.

Cirrone GAP, et al. A 62 MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans. Nucl. Sci. 2004;51:860–865. doi: 10.1109/TNS.2004.829535. DOI

International Atomic Energy Agency, TRS-398, Absorbed dose determination in external beam radiotherapy - An international code of practice for dosimetry based on standards of absorbed dose to water (V.12), http://www-naweb.iaea.org/nahu/DMRP/documents/CoP_V12_2006-06-05.pdf (2006).

Durante M, Furusawa Y, Gotoh E. A simple method for simultaneous interphase-metaphase chromosome analysis in biodosimetry. Int. J. Radiat. Biol. 1998;74:457–462. doi: 10.1080/095530098141320. PubMed DOI

Manti L, et al. Measurements of metaphase and interphase chromosome aberrations transmitted through early cell replication rounds in human lymphocytes exposed to low-LET protons and high-LET 12C ions. Mutat. Res. 2006;596:151–165. doi: 10.1016/j.mrfmmm.2005.12.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace