First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29348437
PubMed Central
PMC5773549
DOI
10.1038/s41598-018-19258-5
PII: 10.1038/s41598-018-19258-5
Knihovny.cz E-zdroje
- MeSH
- alfa částice terapeutické užití MeSH
- bor chemie terapeutické užití MeSH
- borohydridy chemie MeSH
- buněčná smrt účinky záření MeSH
- chromozomální aberace účinky záření MeSH
- cyklotrony MeSH
- DNA nádorová genetika metabolismus účinky záření MeSH
- fluorescenční barviva chemie MeSH
- izotopy uhlíku chemie MeSH
- karyotypizace MeSH
- kombinovaná terapie přístrojové vybavení metody MeSH
- lidé MeSH
- lineární přenos energie MeSH
- nádorové buněčné linie MeSH
- nádory prostaty patologie radioterapie MeSH
- neutrony * MeSH
- poškození DNA MeSH
- protonová terapie * přístrojové vybavení metody MeSH
- relativní biologická účinnost MeSH
- sulfhydrylové sloučeniny chemie MeSH
- terapie metodou neutronového záchytu (bor-10) přístrojové vybavení metody MeSH
- vztah dávky záření a odpovědi MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bor MeSH
- borohydridy MeSH
- DNA nádorová MeSH
- fluorescenční barviva MeSH
- izotopy uhlíku MeSH
- mercaptoundecahydrododecaborate MeSH Prohlížeč
- sulfhydrylové sloučeniny MeSH
Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy's ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.
Fondazione Bruno Kessler Micro Nano Facility Via Sommarive 18 38123 Povo Trento Italy
INFN Naples Section Complesso Universitario di Monte S Angelo Via Cintia Naples Italy
Institute of Molecular Bioimaging and Physiology National Research Council Italy
Institute of Physics ASCR v v i ELI Beamlines Project Na Slovance 2 Prague 18221 Czech Republic
Istituto Nazionale di Fisica Nucleare Laboratori Nazionali dei Sud via S Sofia 62 Catania Italy
Physics Department University of Catania via S Sofia 64 Catania Italy
Physics Department University of Naples Federico 2 Naples Italy
Zobrazit více v PubMed
Nuclear Physics European Collaboration Committee (NuPECC), Nuclear Physics for Medicine, NuPECC Report, European Science Foundation (2014)
Particle Therapy Co-Operative Group. Particle Therapy Centers. Available at: http://www.ptcog.ch/ (last accessed on line August 2016).
Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487–491. doi: 10.1148/47.5.487. PubMed DOI
Bragg W, Kleemann R. On the α-particles of radium and their loss of range in passing through various atoms and molecules. Phil. Mag. 1905;10:318–340. doi: 10.1080/14786440509463378. DOI
Loeffler JS, Durante M. Charged particle therapy–optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 2013;10:411–424. doi: 10.1038/nrclinonc.2013.79. PubMed DOI
Uhl M, Herfarth K, Debus J. Comparing the use of protons and carbon ions for treatment. Cancer J. 2014;20:433–439. doi: 10.1097/PPO.0000000000000078. PubMed DOI
Verma, V. et al. Cost-comparativeness of proton versus photon therapy. Chin. Clin Oncol. 10.21037/cco.2016.06.03. (2016). [Epub ahead of print] PubMed
Tommasino F, Durante M. Proton radiobiology. Cancers. 2015;12:7353–7381. PubMed PMC
Doyen J, Falk AT, Floquet V, Hérault J, Hannoun-Lévi JM. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat. Rev. 2016;43:104–112. doi: 10.1016/j.ctrv.2015.12.007. PubMed DOI
Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 2006;65:1–7. doi: 10.1016/j.ijrobp.2006.01.027. PubMed DOI
Kraft G. The radiobiological and physical basis of radiotherapy with protons and heavier ions. Strahlenther. Onkol. 1990;166:10–13. PubMed
International Commission on Radiation Units and Measurements (ICRU). Prescribing, Recording, and Reporting Proton-Beam Therapy (Report 78), J ICRU7, Oxford University Press, Oxford (2007).
Belli M, et al. Inactivation of human normal and tumour cells irradiated with low energy protons. Int.J. Radiat. Biol. 2000;76:831–839. doi: 10.1080/09553000050028995. PubMed DOI
Chaudhary P, et al. Relative biological effectiveness variation along monoenergetic and modulated Bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int. J. Radiat. Oncol. Biol. Phys. 2014;90:27–35. doi: 10.1016/j.ijrobp.2014.05.010. PubMed DOI
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 2014;59:R419–472. doi: 10.1088/0031-9155/59/22/R419. PubMed DOI
Girdhani S, Sachs R, Hlatky L. Biological effects of proton radiation: What we know and don’t know. Radiat. Res. 2013;179:257–272. doi: 10.1667/RR2839.1. PubMed DOI
Durante M. New challenges in high-energy particle radiobiology. Br. J. Radiol. 2014;87:20130626. doi: 10.1259/bjr.20130626. PubMed DOI PMC
Schulz-Ertner D, Tsujii H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 2007;25:953–964. doi: 10.1200/JCO.2006.09.7816. PubMed DOI
Amaldi U, Kraft G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 2005;68:1861–1882. doi: 10.1088/0034-4885/68/8/R04. DOI
Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int. J. Radiat. Oncol. Biol. Phys. 2000;48:241–250. doi: 10.1016/S0360-3016(00)00568-X. PubMed DOI
Facoetti A, et al. In vivo radiobiological assessment of the new clinical carbon ion beam at CNAO. Radiat. Prot. Dosim. 2015;166:379–382. doi: 10.1093/rpd/ncv145. PubMed DOI
Ward JF. The complexity of DNA damage: relevance to biological consequences. Int. J. Radiat. Biol. 1994;66:427–432. doi: 10.1080/09553009414551401. PubMed DOI
Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 1994;65:7–17. doi: 10.1080/09553009414550021. PubMed DOI
Hada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation. Radiat. Res. 2006;165:223–230. doi: 10.1667/RR3498.1. PubMed DOI
Gustafsson AS, Hartman T, Stenerlöw B. Formation and repair of clustered damaged DNA sites in high LET irradiated cells. Int. J. Radiat. Biol. 2015;91:820–826. doi: 10.3109/09553002.2015.1068463. PubMed DOI
Raju MR, et al. A heavy particle comparative study. Part III: OER and RBE. Br. J. Radiol. 1978;51:712–719. doi: 10.1259/0007-1285-51-609-712. PubMed DOI
Held KD, et al. Effects of Charged Particles on Human Tumor Cells. Front. Oncol. 2016;12:6–23. PubMed PMC
Ogata T, et al. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol-3-kinase/Akt signaling pathway. J. Radiat. Res. 2011;52:374–379. doi: 10.1269/jrr.10102. PubMed DOI
Fujita M, et al. Carbon-ion irradiation suppresses migration and invasiveness of human pancreatic carcinoma cells MIAPaCa-2 via Rac1 and RhoA Degradation. Int. J. Radiat. Oncol.Biol. Phys. 2015;93:173–180. doi: 10.1016/j.ijrobp.2015.05.009. PubMed DOI
Fujita M, et al. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1. in vitro. 2012;103:677–683. PubMed PMC
Lin Y, McMahon SJ, Paganetti H, Schuemann J. Biological modeling of gold nanoparticle enhancers radiotherapy for proton therapy. Phys. Med. Biol. 2015;60:4149–4168. doi: 10.1088/0031-9155/60/10/4149. PubMed DOI
Do-Kun Y, Joo-Young J, Tae SS. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study. Appl. Phys. Lett. 2014;105:223507. doi: 10.1063/1.4903345. DOI
Oliphant M, Rutheford L. Experiments on the transmutation of elements by protons. Proc. R. Soc. Lond. A. 1933;141:259–272. doi: 10.1098/rspa.1933.0117. DOI
Dee PI, Gilbert CW. The disintegration of Boron into three α-particles. Proc. R. Soc. Lond. A. 1936;154:279. doi: 10.1098/rspa.1936.0051. DOI
Barth RF. From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy. Appl. Radiat. Isot. 2015;106:22–28. doi: 10.1016/j.apradiso.2015.06.016. PubMed DOI
Doi A, Kawabata S, Lida K, Yokoyama K, Kajimoto Y, et al. Tumour-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. Neurooncol. 2008;87:287–294. doi: 10.1007/s11060-008-9522-8. PubMed DOI
Anderson RM, et al. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha particles. Int. J. Radiat. Biol. 2000;76:31–42. doi: 10.1080/095530000138989. PubMed DOI
Spraker MC, et al. The 11B(p, α)8Be → α + α and the 11B(α, α)11B reactions at energies below 5.4 MeV. J. Fusion Energ. 2012;31:357–367. doi: 10.1007/s10894-011-9473-5. DOI
Sikora MH, Weller HR. A. new evaluation of the 11B(p, α)αα reaction rates. J. Fusion. Energ. 2016;35:538–543. doi: 10.1007/s10894-016-0069-y. DOI
Stave S, et al. H.R., Understanding the 11B(p, α)αα reaction at the 0.675 MeV resonance. Phys. Lett. B. 2011;696:26–29. doi: 10.1016/j.physletb.2010.12.015. DOI
Rostoker N, Binderbauer MW, Monkhorst HJ. Colliding beam fusion reactor. Science. 1997;278:1419–1422. doi: 10.1126/science.278.5342.1419. PubMed DOI
Picciotto A, et al. Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser. Phys. Rev. X. 2014;4:031030.
Giuffrida, L., Margarone, D., Cirrone, G.A.P. & Picciotto, A. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions, arXiv:1608.06778 AIP Advances 6, 105204 (2016)
Petringa, G. et al. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications, Journal of Instrumentation 12(03) (2017)
Petringa G, et al. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy. Journal of Instrumentation. 2017;12(03):C03059–C03059. doi: 10.1088/1748-0221/12/03/C03059. DOI
Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: status and future prospects. Clin. Cancer Res. 2005;11:3987–4002. doi: 10.1158/1078-0432.CCR-05-0035. PubMed DOI
Schwint AE, Trivillin VA. 'Close-to-ideal' tumor boron targeting for boron neutron capture therapy is possible with 'less-than-ideal' boron carriers approved for use in humans. Ther Deliv. 2015;6:269–272. doi: 10.4155/tde.14.108. PubMed DOI
Yasui L, et al. Boron neutron capture in prostate cancer cells. Appl. Radiat. Isot. 2012;70:6–12. doi: 10.1016/j.apradiso.2011.07.001. PubMed DOI
Savage JR, Tucker JD. Nomenclature systems for FISH-painted chromosome aberrations. Mutat. Res. 1996;366:153–161. doi: 10.1016/S0165-1110(96)90036-6. PubMed DOI
Bedford JS, Mitchell JB, Griggs HG, Bender MA. Radiation-Induced Cellular Reproductive Death and Chromosome Aberrations. Radiat. Res. 1978;76:573–586. doi: 10.2307/3574806. PubMed DOI
Brenner DJ, Sachs RK. Chromosomal “fingerprints” of prior exposure to densely ionizing radiation. Radiat. Res. 1994;140:134–142. doi: 10.2307/3578579. PubMed DOI
George K, et al. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat. Res. 2003;160:425–435. doi: 10.1667/RR3064. PubMed DOI
Barth RF, et al. Current status of Boron neutron capture therapy for high grade gliomas and recurrent head and neck cancer. Radiation Oncology. 2012;7:146. doi: 10.1186/1748-717X-7-146. PubMed DOI PMC
Kankaanranta L, Seppala T, Koivunoro H, Saarilahti K, et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a Phase I/II trial. Int. Jour.of Rad. Onc. Biol. Phys. 2012;82:e67–e75. doi: 10.1016/j.ijrobp.2010.09.057. PubMed DOI
Polf JC, et al. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl. Phys. Lett. 2011;98:193702. doi: 10.1063/1.3589914. PubMed DOI PMC
Schmid TE, et al. The effectiveness of the high-LET radiations from the boron neutron capture [10B(n,a)7Li] reaction determined for induction of chromosome aberrations and apoptosis in lymphocytes of human blood samples. Radiat. Environ. Biophys. 2015;54:91–102. doi: 10.1007/s00411-014-0577-y. PubMed DOI
Barquinero JF, Stephan G, Schmid E. Effect of americium-241 ▯-particles on the dose–response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization. Int. J. Radiat. Biol. 2004;80:155–164. doi: 10.1080/09553002310001655430. PubMed DOI
Schwint AE, Trivillin VA. ’Close-to-ideal’ tumor boron targeting for boron neutron capture therapy is possible with ‘less-than-ideal’ boron carriers. Ther. Deliv. 2015;6:269–272. doi: 10.4155/tde.14.108. PubMed DOI
Shin H-B, Yoon DK, Jung JY, Kim MS, Suh TS. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study. Phys. Med. 2016;32:1271–1275. doi: 10.1016/j.ejmp.2016.05.053. PubMed DOI
Kumar C, et al. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int. J. Radiat. Biol. 2016;92:173–186. doi: 10.3109/09553002.2016.1144944. PubMed DOI
Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–268. doi: 10.1016/S1046-2023(03)00032-X. PubMed DOI
Becker HW, Rolfs C, Trautvetter HP. Low-energy cross sections for 11B(p,3α), Z. Phys. A Atomic Nuclei. 1987;327:341–355. doi: 10.1007/BF01284459. DOI
Segel RE, Hanna SS, Allas RG. States in C12 between 16.4 and 19.6 MeV. Phys. Rev. 1965;139:818–830. doi: 10.1103/PhysRev.139.B818. DOI
Cuttone G, et al. Use of 62 MeV proton beam for medical applications at INFN-LNS: CATANA project. Physica Medica. 2001;17:23–25.
Cirrone GAP, et al. A 62 MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans. Nucl. Sci. 2004;51:860–865. doi: 10.1109/TNS.2004.829535. DOI
International Atomic Energy Agency, TRS-398, Absorbed dose determination in external beam radiotherapy - An international code of practice for dosimetry based on standards of absorbed dose to water (V.12), http://www-naweb.iaea.org/nahu/DMRP/documents/CoP_V12_2006-06-05.pdf (2006).
Durante M, Furusawa Y, Gotoh E. A simple method for simultaneous interphase-metaphase chromosome analysis in biodosimetry. Int. J. Radiat. Biol. 1998;74:457–462. doi: 10.1080/095530098141320. PubMed DOI
Manti L, et al. Measurements of metaphase and interphase chromosome aberrations transmitted through early cell replication rounds in human lymphocytes exposed to low-LET protons and high-LET 12C ions. Mutat. Res. 2006;596:151–165. doi: 10.1016/j.mrfmmm.2005.12.010. PubMed DOI