Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-29835
Ministerstvo Zdravotnictví Ceské Republiky
16-12454S
Grantová Agentura České Republiky
Mobility Fund
Universität Heidelberg
PubMed
30704035
PubMed Central
PMC6387067
DOI
10.3390/ijms20030588
PII: ijms20030588
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, DNA double strand breaks (DSBs), DNA repair, DNA repair foci, cancer radiotherapy, damage to lysosomes, metal nanoparticles, single-molecule localization microscopy (SMLM), super-resolution microscopy, tumor cell radiosensitization,
- MeSH
- dvouřetězcové zlomy DNA účinky záření MeSH
- gadolinium chemie MeSH
- HeLa buňky MeSH
- konfokální mikroskopie MeSH
- kovové nanočástice chemie terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- poškození DNA účinky záření MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
- zlato MeSH
From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
Czech Academy of Sciences Institute of Biophysics v v i Kralovopolska 135 612 65 Brno Czech Republic
German Cancer Research Center Im Neuenheimer Feld 280 69120 Heidelberg Germany
Institute UTINAM UMR CNRS 6213 Université de Bourgogne Franche Comté 25020 Besançon Cedex France
Zobrazit více v PubMed
Atun R., Jaffray D.A., Barton M.B., Bray F., Baumann M., Vikram B., Hanna T.P., Knaul F.M., Lievens Y., Lui T.Y.M., et al. Expanding global access to radiotherapy. Lancet Oncol. 2015;16:1153–1186. doi: 10.1016/S1470-2045(15)00222-3. PubMed DOI
Wenz F., Tiefenbacher U., Willeke F., Weber K.-J. Auf der Suche nach der Therapeutischen breite in der Radioonkologie. Oncol. Res. Treat. 2001;24:51–55. doi: 10.1159/000055187. PubMed DOI
Löffler H., Bochtler T., Fritz B., Tews B., Ho A.D., Lukas J., Bartek J., Krämer A. DNA Damage-Induced Accumulation of Centrosomal Chk1 Contributes to its Checkpoint Function. Cell Cycle. 2007;6:2541–2548. doi: 10.4161/cc.6.20.4810. PubMed DOI
Tomita K., Kuwahara Y., Takashi Y., Igarashi K., Nagasawa T., Nabika H., Kurimasa A., Fukumoto M., Nishitani Y., Sato T. Clinically relevant radioresistant cells exhibit resistance to H2O2 by decreasing internal H2O2 and lipid peroxidation. Tumour Biol. 2018;40 doi: 10.1177/1010428318799250. PubMed DOI
Lam W.W., Oakden W., Murray L., Klein J., Iorio C., Screaton R.A., Koletar M.M., Chu W., Liu S.K., Stanisz G.J. Differentiation of Normal and Radioresistant Prostate Cancer Xenografts Using Magnetization Transfer-Prepared MRI. Sci. Rep. 2018;8:10447. doi: 10.1038/s41598-018-28731-0. PubMed DOI PMC
Gu H., Huang T., Shen Y., Liu Y., Zhou F., Jin Y., Sattar H., Wei Y. Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer. Oxid. Med. Cell. Longev. 2018;2018:5801209. doi: 10.1155/2018/5801209. PubMed DOI PMC
Zhou H., Miki R., Eeva M., Fike F.M., Seligson D., Yang L., Yoshimura A., Teitell M.A., Jamieson C.A.M., Cacalano N.A. Reciprocal Regulation of SOCS1 and SOCS3 Enhances Resistance to Ionizing Radiation in Glioblastoma Multiforme. Clin. Cancer Res. 2007;13:2344–2353. doi: 10.1158/1078-0432.CCR-06-2303. PubMed DOI
Engel L.W., Young N.A. Human breast carcinoma cells in continuous culture: A review. Cancer Res. 1978;38:4327–4339. PubMed
Lacroix M., Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 2004;83:249–289. doi: 10.1023/B:BREA.0000014042.54925.cc. PubMed DOI
Durante M., Orecchia R., Loeffler J.S. Charged-particle therapy in cancer: Clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 2017;14:483–495. doi: 10.1038/nrclinonc.2017.30. PubMed DOI
González W., Prezado Y. Spatial fractionation of the dose in heavy ions therapy: An optimization study. Med. Phys. 2018;45:2620–2627. doi: 10.1002/mp.12902. PubMed DOI
Jánváry L.Z., Ferenczi Ö., Takácsi-Nagy Z., Bajcsay A., Polgár C. Application of CyberKnife stereotactic radiosurgery in the treatment of head and neck cancer. Magy. Onkol. 2018;62:180–185. PubMed
Zhang H., Wan C., Huang J., Yang C., Qin Y., Lu Y., Ma J., Wu B., Xu S., Wu G., et al. In Vitro Radiobiological Advantages of Hypofractionation Compared with Conventional Fractionation: Early-Passage NSCLC Cells are Less Aggressive after Hypofractionation. Radiat. Res. 2018 doi: 10.1667/RR14951.1. PubMed DOI
Sammer M., Greubel C., Girst S., Dollinger G. Optimization of beam arrangements in proton minibeam radiotherapy by cell survival simulations. Med. Phys. 2017;44:6096–6104. doi: 10.1002/mp.12566. PubMed DOI
Prezado Y., Renier M., Bravin A. A new method of creating minibeam patterns for synchrotron radiation therapy: A feasibility study. J. Synchrotron Radiat. 2009;16:582–586. doi: 10.1107/S0909049509012503. PubMed DOI
Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: A high-resolution microscopy analysis of γH2AX/53BP1 foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI
Girst S., Greubel C., Reindl J., Siebenwirth C., Zlobinskaya O., Walsh D.W.M., Ilicic K., Aichler M., Walch A., Wilkens J.J., et al. Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model. Int. J. Radiat. Oncol. 2016;95:234–241. doi: 10.1016/j.ijrobp.2015.10.020. PubMed DOI
Hofer M., Hoferová Z., Depeš D., Falk M. Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome-A Concise Review. Molecules. 2017;22:834. doi: 10.3390/molecules22050834. PubMed DOI PMC
Hofer M., Hoferová Z., Falk M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? Int. J. Mol. Sci. 2017;18:1385. doi: 10.3390/ijms18071385. PubMed DOI PMC
Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., Pagáčová E., Štefančíková L., Weiterová L., Angelis K.J., et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J. Med. Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI
Štefančíková L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., Lux F., Depeš D., Kozubek S., Falk M. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J. Nanobiotechnol. 2016;14:63. doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC
Ngwa W., Boateng F., Kumar R., Irvine D.J., Formenti S., Ngoma T., Herskind C., Veldwijk M.R., Hildenbrand G.L., Hausmann M., et al. Smart Radiation Therapy Biomaterials. Int. J. Radiat. Oncol. Biol. Phys. 2017;97:624–637. doi: 10.1016/j.ijrobp.2016.10.034. PubMed DOI PMC
Hildenbrand G., Metzler P., Pilarczyk G., Bobu V., Kriz W., Hosser H., Fleckenstein J., Krufczik M., Bestvater F., Wenz F., et al. Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells. PLoS ONE. 2018;13:e0190183. doi: 10.1371/journal.pone.0190183. PubMed DOI PMC
Ngwa W., Kumar R., Sridhar S., Korideck H., Zygmanski P., Cormack R.A., Berbeco R., Makrigiorgos G.M. Targeted radiotherapy with gold nanoparticles: Current status and future perspectives. Nanomedicine. 2014;9:1063–1082. doi: 10.2217/nnm.14.55. PubMed DOI PMC
Lux F., Tran V.L., Thomas E., Dufort S., Rossetti F., Martini M., Truillet C., Doussineau T., Bort G., Denat F., et al. AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br. J. Radiol. 2018 doi: 10.1259/bjr.20180365. PubMed DOI PMC
Kuncic Z., Lacombe S. Nanoparticle radio-enhancement: Principles, progress and application to cancer treatment. Phys. Med. Biol. 2018;63:02TR01. doi: 10.1088/1361-6560/aa99ce. PubMed DOI
Li S., Porcel E., Remita H., Marco S., Réfrégiers M., Dutertre M., Confalonieri F., Lacombe S. Platinum nanoparticles: An exquisite tool to overcome radioresistance. Cancer Nanotechnol. 2017;8:4. doi: 10.1186/s12645-017-0028-y. PubMed DOI PMC
Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A., Crémillieux Y., Fries P., Coll J.-L., Rodriguez-Lafrasse C., et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br. J. Radiol. 2014;87 doi: 10.1259/bjr.20140134. PubMed DOI PMC
Nikjoo H., Uehara S., Emfietzoglou D., Brahme A. Heavy charged particles in radiation biology and biophysics. New J. Phys. 2008;10:075006. doi: 10.1088/1367-2630/10/7/075006. DOI
Hossain M., Su M. Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy. J. Phys. Chem. C Nanomater. Interfaces. 2012;116:23047–23052. doi: 10.1021/jp306543q. PubMed DOI PMC
Zygmanski P., Liu B., Tsiamas P., Cifter F., Petersheim M., Hesser J., Sajo E. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Phys. Med. Biol. 2013;58:7961–7977. doi: 10.1088/0031-9155/58/22/7961. PubMed DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: Part A—Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: Part B—Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI
Rittich B., Spanová A., Falk M., Benes M.J., Hrubý M. Cleavage of double stranded plasmid DNA by lanthanide complexes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004;800:169–173. doi: 10.1016/j.jchromb.2003.09.011. PubMed DOI
Kratochvílová I., Golan M., Pomeisl K., Richter J., Sedláková S., Šebera J., Mičová J., Falk M., Falková I., Řeha D., et al. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: Correlation with cryopreserved cell viability. RSC Adv. 2017;7:352–360. doi: 10.1039/C6RA25095E. PubMed DOI PMC
Freneau A., Dos Santos M., Voisin P., Tang N., Bueno Vizcarra M., Villagrasa C., Roy L., Vaurijoux A., Gruel G. Relation between DNA double-strand breaks and energy spectra of secondary electrons produced by different X-ray energies. Int. J. Radiat. Biol. 2018:1–10. doi: 10.1080/09553002.2018.1518612. PubMed DOI
Falk M., Lukasova E., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI
Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC
Schipler A., Iliakis G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 2013;41:7589–7605. doi: 10.1093/nar/gkt556. PubMed DOI PMC
Mladenov E., Magin S., Soni A., Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin. Cancer Biol. 2016;37–38:51–64. doi: 10.1016/j.semcancer.2016.03.003. PubMed DOI
Mladenov E., Magin S., Soni A., Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front. Oncol. 2013;3:113. doi: 10.3389/fonc.2013.00113. PubMed DOI PMC
Burger N., Biswas A., Barzan D., Kirchner A., Hosser H., Hausmann M., Hildenbrand G., Herskind C., Wenz F., Veldwijk M.R. A method for the efficient cellular uptake and retention of small modified gold nanoparticles for the radiosensitization of cells. Nanomed. Nanotechnol. Biol. Med. 2014;10:1365–1373. doi: 10.1016/j.nano.2014.03.011. PubMed DOI
Porcel E., Liehn S., Remita H., Usami N., Kobayashi K., Furusawa Y., Le Sech C., Lacombe S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology. 2010;21:85103. doi: 10.1088/0957-4484/21/8/085103. PubMed DOI
Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010;21:797–802. doi: 10.1021/bc100070g. PubMed DOI
Maeda H., Matsumura Y. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv. Drug Deliv. Rev. 2011;63:129–130. doi: 10.1016/j.addr.2010.05.001. PubMed DOI
Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Prabhakar U., Maeda H., Jain R.K., Sevick-Muraca E.M., Zamboni W., Farokhzad O.C., Barry S.T., Gabizon A., Grodzinski P., Blakey D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412–2417. doi: 10.1158/0008-5472.CAN-12-4561. PubMed DOI PMC
Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009. PubMed DOI PMC
Chithrani D.B. Nanoparticles for improved therapeutics and imaging in cancer therapy. Recent Pat. Nanotechnol. 2010;4:171–180. doi: 10.2174/187221010792483726. PubMed DOI
Chithrani D.B., Jelveh S., Jalali F., van Prooijen M., Allen C., Bristow R.G., Hill R.P., Jaffray D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 2010;173:719–728. doi: 10.1667/RR1984.1. PubMed DOI
Hainfeld J.F., Smilowitz H.M., O’Connor M.J., Dilmanian F.A., Slatkin D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8:1601–1609. doi: 10.2217/nnm.12.165. PubMed DOI PMC
He H., Xie C., Ren J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal. Chem. 2008;80:5951–5957. doi: 10.1021/ac8005796. PubMed DOI
Moser F., Hildenbrand G., Müller P., Al Saroori A., Biswas A., Bach M., Wenz F., Cremer C., Burger N., Veldwijk M.R., et al. Cellular Uptake of Gold Nanoparticles and Their Behavior as Labels for Localization Microscopy. Biophys. J. 2016;110:947–953. doi: 10.1016/j.bpj.2016.01.004. PubMed DOI PMC
Lacombe S., Porcel E., Scifoni E. Particle therapy and nanomedicine: State of art and research perspectives. Cancer Nanotechnol. 2017;8:9. doi: 10.1186/s12645-017-0029-x. PubMed DOI PMC
Stefančíková L., Porcel E., Eustache P., Li S., Salado D., Marco S., Guerquin-Kern J.-L., Réfrégiers M., Tillement O., Lux F., et al. Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol. 2014;5:6. doi: 10.1186/s12645-014-0006-6. PubMed DOI PMC
Yameen B., Choi W.I., Vilos C., Swami A., Shi J., Farokhzad O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release. 2014;190:485–499. doi: 10.1016/j.jconrel.2014.06.038. PubMed DOI PMC
Fernando L.P., Kandel P.K., Yu J., McNeill J., Ackroyd P.C., Christensen K.A. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules. 2010;11:2675–2682. doi: 10.1021/bm1007103. PubMed DOI PMC
Cartiera M.S., Johnson K.M., Rajendran V., Caplan M.J., Saltzman W.M. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials. 2009;30:2790–2798. doi: 10.1016/j.biomaterials.2009.01.057. PubMed DOI PMC
Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 2013;14:976–988. doi: 10.2174/1389200211314090004. PubMed DOI PMC
Lemmer P., Gunkel M., Baddeley D., Kaufmann R., Urich A., Weiland Y., Reymann J., Müller P., Hausmann M., Cremer C. SPDM: Light microscopy with single-molecule resolution at the nanoscale. Appl. Phys. B. 2008;93:1–12. doi: 10.1007/s00340-008-3152-x. DOI
Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI
Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur. Phys. J. D. 2018;72 doi: 10.1140/epjd/e2018-90148-1. DOI
Reindl J., Girst S., Walsh D.W.M., Greubel C., Schwarz B., Siebenwirth C., Drexler G.A., Friedl A.A., Dollinger G. Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Sci. Rep. 2017;7:40616. doi: 10.1038/srep40616. PubMed DOI PMC
Sun H., Jia J., Jiang C., Zhai S. Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine. Int. J. Mol. Sci. 2018;19:754. doi: 10.3390/ijms19030754. PubMed DOI PMC
Duve C. Lysosomes revisited. Eur. J. Biochem. 1983;137:391–397. doi: 10.1111/j.1432-1033.1983.tb07841.x. PubMed DOI
Wattiaux R., Coninck S.W.-D., Jadot M., Hamer I., Bielande V., Beauloye V. Lysosomes as Suicide Bags. In: Courtoy P.J., editor. Endocytosis. Springer; Berlin/Heidelberg, Germany: 1992. pp. 433–437.
Zhang R., Piao M.J., Kim K.C., Kim A.D., Choi J.-Y., Choi J., Hyun J.W. Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int. J. Biochem. Cell Biol. 2012;44:224–232. doi: 10.1016/j.biocel.2011.10.019. PubMed DOI
Szegezdi E., Logue S.E., Gorman A.M., Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–885. doi: 10.1038/sj.embor.7400779. PubMed DOI PMC
Zhang F., Zhu X., Gong J., Sun Y., Chen D., Wang J., Wang Y., Guo M., Li W. Lysosome—Mitochondria-mediated apoptosis specifically evoked in cancer cells induced by gold nanorods. Nanomedicine. 2016;11:1993–2006. doi: 10.2217/nnm-2016-0139. PubMed DOI
Dahmen V., Kriehuber R. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides. Int. J. Radiat. Biol. 2012;88:972–979. doi: 10.3109/09553002.2012.702298. PubMed DOI PMC
Hausmann M., Winkler R., Hildenbrand G., Finsterle J., Weisel A., Rapp A., Schmitt E., Janz S., Cremer C. COMBO-FISH: Specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. BioTechniques. 2003;35:564–577. doi: 10.2144/03353rr03. PubMed DOI
Krufczik M., Sievers A., Hausmann A., Lee J.-H., Hildenbrand G., Schaufler W., Hausmann M. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Int. J. Mol. Sci. 2017;18:1005. doi: 10.3390/ijms18051005. PubMed DOI PMC
Müller P., Schmitt E., Jacob A., Hoheisel J., Kaufmann R., Cremer C., Hausmann M. COMBO-FISH enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci. Int. J. Mol. Sci. 2010;11:4094–4105. doi: 10.3390/ijms11104094. PubMed DOI PMC
Zanta M.A., Belguise-Valladier P., Behr J.P. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA. 1999;96:91–96. doi: 10.1073/pnas.96.1.91. PubMed DOI PMC
Chithrani B.D., Ghazani A.A., Chan W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–668. doi: 10.1021/nl052396o. PubMed DOI
Falk M., Lukášová E., Štefančíková L., Baranová E., Falková I., Ježková L., Davídková M., Bačíková A., Vachelová J., Michaelidesová A., et al. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl. Radiat. Isot. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI
Ježková L., Falk M., Falková I., Davídková M., Bačíková A., Štefančíková L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl. Radiat. Isot. 2014;83:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI
Sevcik J., Falk M., Macurek L., Kleiblova P., Lhota F., Hojny J., Stefancikova L., Janatova M., Bartek J., Stribrna J., et al. Expression of human BRCA1Δ17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell. Signal. 2013;25:1186–1193. doi: 10.1016/j.cellsig.2013.02.008. PubMed DOI
Kozubek M., Kozubek S., Lukásová E., Bártová E., Skalníková M., Matula P., Matula P., Jirsová P., Cafourková A., Koutná I. Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells. Cytometry. 2001;45:1–12. doi: 10.1002/1097-0320(20010901)45:1<1::AID-CYTO1138>3.0.CO;2-M. PubMed DOI
Matula P., Maška M., Daněk O., Matula P., Kozubek M. Acquiarium: Free Software for the Acquisition and Analysis of 3D Images of Cells in Fluorescence Microscopy; Proceedings of the IEEE International Symposium on Biomedical Imaging; Boston, MA, USA. 28 June–1 July 2009; pp. 1138–1141.
Eryilmaz M., Schmitt E., Krufczik M., Theda F., Lee J.-H., Cremer C., Bestvater F., Schaufler W., Hausmann M., Hildenbrand G. Localization Microscopy Analyses of MRE11 Clusters in 3D-Conserved Cell Nuclei of Different Cell Lines. Cancers. 2018;10:25. doi: 10.3390/cancers10010025. PubMed DOI PMC