Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome-A Concise Review

. 2017 May 19 ; 22 (5) : . [epub] 20170519

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28534834

The goal of combined pharmacological approaches in the treatment of the acute radiation syndrome (ARS) is to obtain an effective therapy producing a minimum of undesirable side effects. This review summarizes important data from studies evaluating the efficacy of combining radioprotective agents developed for administration prior to irradiation and therapeutic agents administered in a post-irradiation treatment regimen. Many of the evaluated results show additivity, or even synergism, of the combined treatments in comparison with the effects of the individual component administrations. It can be deduced from these findings that the research in which combined treatments with radioprotectors/radiomitigators are explored, tested, and evaluated is well-founded. The requirement for studies highly emphasizing the need to minimize undesirable side effects of the radioprotective/radiomitigating therapies is stressed.

Zobrazit více v PubMed

Singh V.K., Romaine P.L.P., Newman V.L., Seed T.M. Medical countermeasures for unwanted CBRN exposures. Part II radiological and nuclear threats with review of recent countermeasure patents. Expert Opin. Ther. Pat. 2016;26:1399–1408. doi: 10.1080/13543776.2016.1231805. PubMed DOI PMC

Singh V.K., Romaine P.L.P., Seed T.M. Medical countermeasures for radiation exposure and related injuries: Characterization of medicines, FDA-approval status and inclusion into the strategic national stockpile. Health Phys. 2015;108:607–630. doi: 10.1097/HP.0000000000000279. PubMed DOI PMC

Pellmar T.C., Rockwell S. The Radiological/Nuclear Threat Countermeasures Working Group. Priority list of research areas for radiological nuclear threat countermeasures. Radiat. Res. 2005;163:115–123. doi: 10.1667/RR3283. PubMed DOI

Weiss J.F., Kumar K.S., Walden T.L., Neta R., Landauer M.R., Clark E.P. Advances in radioprotection through the use of combined agent regimens. Int. J. Radiat. Biol. 1990;57:709–722. doi: 10.1080/09553009014550881. PubMed DOI

Hosseinimehr S.A. Trends in development of radioprotective agents. Drug Discov. Today. 2007;12:794–805. doi: 10.1016/j.drudis.2007.07.017. PubMed DOI

Brown D.G., Pittock J.W., Rubinstein J.S. Early results of the screening program for radioprotectors. J. Radiat. Oncol. Biol. Phys. 1982;8:565–570. doi: 10.1016/0360-3016(82)90685-X. PubMed DOI

Buschini A., Aneschi E., Carlo-Stella C., Regazzi E., Rizzoli V., Poli P., Rossi C. Amifostine (WR-2721) selective protection against melphalan toxicity. Leukemia. 2000;14:1642–1651. doi: 10.1038/sj.leu.2401877. PubMed DOI

Buschini A., Aneschi E., Carlo-Stella C., Regazzi E., Rizzoli V., Poli P., Rossi C. Bleomycin genotoxicity and amifostine (WR-2721) cell protection in normal leukocytes vs. K562 tumoral cells. Biochem. Pharmacol. 2002;63:967–975. doi: 10.1016/S0006-2952(01)00926-1. PubMed DOI

Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., Pagáčová E., Štefančíková L., Weiterová L., Angelis K.J., et al. Two new faces of amifostine: Protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J. Med. Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI

Weiss J.F., Hoover R.L., Kumar K.S. Selenium pretreatment enhances the radioprotective effect and reduces the lethal toxicity of WR-2721. Free Radic. Res. Commun. 1987;3:33–38. doi: 10.3109/10715768709069767. PubMed DOI

Brown D.Q., Graham W.J., MacKenzie L.J., Pittock J.W., Shaw L.M. Can WR-2721 be improved upon? Pharmacol. Ther. 1988;39:157–168. doi: 10.1016/0163-7258(88)90057-5. PubMed DOI

Kumar K.S., Vaishnav Y.N., Weiss J.F. Radioprotection by antioxidant enzymes and enzyme mimetics. Pharmacol. Ther. 1988;39:301–309. doi: 10.1016/0163-7258(88)90076-9. PubMed DOI

Buntzel J., Micke O., Mucke R., Glatzel M., Schonekaes K.G., Schafer U., Kisters K., Bruns F. Amifostine and selenium during simultaneous radiochemotherapy in head and neck cancer—Redox status data. Trace Elem. Electrol. 2005;22:211–2015. doi: 10.5414/TEP22211. DOI

Ali B.H., Al Moundhri M.S. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: A review of some recent research. Food Chem. Toxicol. 2006;44:1173–1183. doi: 10.1016/j.fct.2006.01.013. PubMed DOI

Weiss J.F., Landauer M.R. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci. 2000;899:44–60. doi: 10.1111/j.1749-6632.2000.tb06175.x. PubMed DOI

Srinivasan V., Weiss J.F. Radioprotection by vitamin-E–injectable vitamin-E administered alone or with WR-3689 enhances survival of irradiated mice. Int. J. Radiat. Oncol. Biol. Phys. 1992;23:841–845. doi: 10.1016/0360-3016(92)90657-4. PubMed DOI

Kaplan B., Orhan O., Yazici C., Karahacioglu E. Radioprotective effects of amifostine (WR 2721) and vitamin E on whole-body-irradiated rat liver. Turk. Klin. Tip Bilim. Derg. 2009;29:1055–1062.

Singh V.K., Fatanmi O.O., Wise S.Y., Newman V.L., Romaine P.L., Seed T.M. Potentiation of the radioprotective efficacy of two medical countermeasures, gamma-tocotrienol and amifostine, by a combination prophylactic modality. Radiat. Prot. Dosim. 2016;172:302–310. doi: 10.1093/rpd/ncw223. PubMed DOI PMC

Hanson W.R. Radioprotection of murine intestine by WR-2721, 16,16-dimethyl-prostaglandin E2 and the combination of both agents. Radiat. Res. 1987;111:361–373. doi: 10.2307/3576992. PubMed DOI

Lu L., Pelus L.M., Broxmeyer H.E. Modulation of expression of HLA-DR (Ia) antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E. Exp. Hematol. 1984;12:741–748. PubMed

Hoggatt J., Singh P., Sampath J., Pelus L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113:5444–5455. doi: 10.1182/blood-2009-01-201335. PubMed DOI PMC

Hanson W.R., Houseman K.A., Collins P.W. Radiation protection in vivo by prostaglandins and related compounds of the arachidonic acid cascade. Pharmacol. Ther. 1988;39:347–356. doi: 10.1016/0163-7258(88)90082-4. PubMed DOI

Mota J.M.S.C., Soares P.M.G., Menezes A.A.J., Lemos H.P., Cunha F.Q., Brito G.A.C., Ribeiro R.A., de Souza M.H.L.P. Amifostine (Wr-2721) prevents indomethacin-induced gastric damage in rats: Role of non-protein sulfhydryl groups and leukocyte adherence. Dig. Dis. Sci. 2007;52:119–125. doi: 10.1007/s10620-006-9496-3. PubMed DOI

Patchen M.L., MacVittie T.J., Jackson W.E. Postirradiation glucan administration enhances the radioprotective effects of WR-2721. Radiat. Res. 1989;117:59–69. doi: 10.2307/3577277. PubMed DOI

Patchen M.L., MacVittie T.J., Weiss J.F. Combined modality radioprotection: The use of glucan and selenium with WR-2721. Int. J. Radiat. Oncol. Biol. Phys. 1990;18:1069–1075. doi: 10.1016/0360-3016(90)90442-M. PubMed DOI

Pillai T.G., Devi P.U. Mushroom beta glucan: Potential candidate for post irradiation protection. Mutat. Res. Genet. Toxicol. Environ. 2013;751:109–115. doi: 10.1016/j.mrgentox.2012.12.005. PubMed DOI

Hofer M., Pospíšil M. Modulation of animal and human hematopoiesis by β-glucans. A review. Molecules. 2011;16:7969–7979. doi: 10.3390/molecules16097969. PubMed DOI PMC

Macková N.O., Fedoročko P. Combined radioprotective effect of Broncho-Vaxom® and WR-2721 on hematopoiesis and circulating blood-cells. Neoplasma. 1995;42:25–30. PubMed

Fedoročko P., Brezáni P., Macková N.P. Radioprotective effects of WR-2721, Broncho-Vaxom® and their combinations—Survival, myelopoietic restoration and induction of colony-stimulating activity in mice. Int. J. Immunopharmacol. 1994;16:177–184. doi: 10.1016/0192-0561(94)90074-4. PubMed DOI

Jiang S.Q., Shen X.R., Liu Y.M., He Y., Jiang D.W., Chen W. Radioprotective effects of Sinpulus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice. J. Radiat. Res. 2015;56:515–522. doi: 10.1093/jrr/rrv009. PubMed DOI PMC

Liu W., Chen Q., Wu S., Xia X.C., Wu A.Q., Cui F.M., Gu Y.P., Zhang X.G., Cao J.P. Radioprotector WR-2721 and mitigating peptidoglycan synergistically promote mouse survival through the amelioration of intestinal and bone marrow damage. J. Radiat. Res. 2015;56:278–286. doi: 10.1093/jrr/rru100. PubMed DOI PMC

Nagata S. In: The Cytokine Handbook. Thomson A., editor. Academic Press; New York, NY, USA: 1994. p. 371.

Drouet M., Delaunay C., Grenier N., Garrigou P., Mayol J.F., Hérodin F. Cytokines in combination to treat radiation-induced myelosuppression: Evaluation of SCF + glycosylated EPO + pegylated G-CSF as an emergency treatment in highly irradiated monkeys. Haematol. Hematol. J. 2008;93:465–466. doi: 10.3324/haematol.12183. PubMed DOI

Hofer M., Pospíšil M., Komůrková D., Hoferová Z. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: A concise review. Molecules. 2014;19:4770–4778. doi: 10.3390/molecules19044770. PubMed DOI PMC

Patchen M.L., MacVittie T.J., Souza L.M. Postirradiation treatment with granulocyte colony-stimulating factor and preirradiation WR-2721 administration synergize to enhance hematopoietic recostitution and increase survival. Int. J. Radiat. Oncol. Biol. Phys. 1992;22:773–779. doi: 10.1016/0360-3016(92)90522-J. PubMed DOI

Patchen M.L. Amifostine plus granulocyte colony-stimulating factor therapy enhances recovery from supralethal radiation exposures—Preclinical experience in animal-models. Eur. J. Cancer. 1995;31A:S17–S21. doi: 10.1016/0959-8049(95)00147-B. PubMed DOI

Neumeister P., Jaeger G., Eibl M., Sormann S., Zinke W., Linkesch W. Amifostine in combination with erythropoietin and G-CSF promotes multilineage hematopoiesis in patients with myelodysplastic syndrome. Leuk. Lymphoma. 2001;40:345–349. doi: 10.3109/10428190109057933. PubMed DOI

Winczura P., Jassem J. Combined treatment with cytoprotective agents and radiotherapy. Cancer Treat. Rev. 2010;36:268–275. doi: 10.1016/j.ctrv.2009.12.001. PubMed DOI

Miller R.C., Murley J.S., Grdina D.J. Metformin exhibits radiation countermeasures efficacy when used alone or in combination with sulfhydryl containing drugs. Radiat. Res. 2014;181:464–470. doi: 10.1667/RR13672.1. PubMed DOI PMC

Zucali J.R. Mechanisms of protection of hematopoietic stem-cells from irradiation. Leuk. Lymphoma. 1994;13:27–32. doi: 10.3109/10428199409051648. PubMed DOI

Pospíšil M., Hofer M., Netíková J., Pipalová I., Vacek A., Bartoníčková A., Volenec K. Elevation of extracellular adenosine induces radioprotective effects in mice. Radiat. Res. 1995;134:323–330. doi: 10.2307/3578192. PubMed DOI

Hofer M., Pospisil M., Weiterova L., Hoferova Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules. 2011;16:675–685. doi: 10.3390/molecules16010675. PubMed DOI PMC

Pospíšil M., Hofer M., Znojil V., Vácha J., Netíková J., Holá J. Synergistic effect of granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on neutrophil production in mice. Blood. 1995;86:3692–3697. PubMed

Pospíšil M., Hofer M., Znojil V., Netíková J., Vácha J., Holá J., Vacek A. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance the haemopoietic reconstitution in irradiated mice. Eur. J. Haematol. 1998;60:172–180. doi: 10.1111/j.1600-0609.1998.tb01019.x. PubMed DOI

Bar-Yehuda S., Madi L., Barak D., Mittelman M., Ardon E., Ochaion A., Cohn S., Fishman P. Agonists to the A3 adenosine receptor induce G-CSF production via NF-kappa B activation: A new class of myeloprotective agents. Exp. Hematol. 2002;30:1390–1398. doi: 10.1016/S0301-472X(02)00962-1. PubMed DOI

Hofer M., Pospíšil M., Šefc L., Dušek L., Vacek A., Holá J., Hoferová Z., Štreitová D. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int. J. Radiat. Biol. 2010;86:649–656. doi: 10.3109/09553001003746075. PubMed DOI

Hofer M., Pospíšil M., Hoferová Z., Weiterová L., Komůrková D. Stimulatory action of cyclooxygenase inhibitors on hematopoiesis. A review. Molecules. 2012;17:5615–5625. doi: 10.3390/molecules17055615. PubMed DOI PMC

Pospíšil M., Hofer M., Pipalová I., Viklická Š. Enhancement of hematopoietic recovery in gamma-irradiated mice by the joint use of diclofenac, an inhibitor of prostaglandin production, and glucan, a macrophage activator. Exp. Hematol. 1992;20:891–895. PubMed

Hofer M., Pospíšil M., Viklická Š., Vacek A., Pipalová I., Bartoníčková A. Hematopoietic recovery in repeatedly irradiated mice can be enhanced by a repeatedly administered combination of diclofenac and glucan. J. Leukoc. Biol. 1993;53:185–189. PubMed

Hofer M., Pospíšil M., Dušek L., Hoferová Z., Weiterová L. Inhibition of cyclooxygenase-2 promotes the stimulatory action of adenosine A3 receptor agonist on hematopoiesis in sublethally γ-irradiated mice. Biomed. Pharmacother. 2011;65:427–431. doi: 10.1016/j.biopha.2011.04.033. PubMed DOI

Hofer M., Pospíšil M., Dušek L., Hoferová Z., Komůrková D. Agonist of the adenosine A3 receptor, IB-MECA, and inhibitor of cyclooxygenase-2, meloxicam, given alone or in a combination early after total body irradiation, enhance survival of γ-irradiated mice. Radiat. Environ. Biophys. 2014;53:211–215. doi: 10.1007/s00411-013-0500-y. PubMed DOI

Hofer M., Pospíšil M., Holá J., Vacek A., Štreitová D., Znojil V. Inhibition of cyclooxygenase 2 in mice increases production of G-CSF and induces radioprotection. Radiat. Res. 2008;170:566–571. doi: 10.1667/RR1387.1. PubMed DOI

Hofer M., Pospíšil M., Znojil V., Holá J., Vacek A., Štreitová D. Meloxicam, a cyclooxygenase-2 inhibitor, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol. Res. 2008;57:307–310. PubMed

Patchen M.L., MacVittie T.J., Solberg B.D., Souza L.M. Survival enhancement and hemopoietic regeneration following radiation exposure: Therapeutic approach using glucan and granulocyte colony-stimulating factor. Exp. Hematol. 1990;18:1042–1048. PubMed

Neta R., Oppenheim J.J., Douches S.D. Interdependence of the radioprotective effects of human recombinant interleukin 1α, tumor necrosis factor α, granulocyte colony-stimulating factor, and murine recombinant granulocy-macrophage colony-stimulating factor. J. Immunol. 1988;140:108–111. PubMed

Patchen M.L., Fischer R., MacVittie T.J. Effects of combined administration of interleukin-6 and granulocyte colony-stimulating factor on recovery from radiation-induced hemopoietic aplasia. Exp. Hematol. 1993;21:338–344. PubMed

Patchen M.L., Fischer R., MacVittie T.J., Seiler F.R., Williams D.E. Mast cell growth factor (C-kit ligand) in combination with granulocyte-macrophage colony-stimulating factor and interleukin-3: In vivo hemopoietic effects in irradiated mice compared to in vitro effects. Biotherapy. 1993;7:13–26. doi: 10.1007/BF01878150. PubMed DOI

Farese A.M., Hérodin F., McKearn J.P., Baum C., Burton E., MacVittie T.J. Acceleration of hematopoietic reconstitution with a synthetic cytokine (SC-55494) after radiation-induced bone marrow aplasia. Blood. 1996;87:581–591. PubMed

MacVittie T.J., Farese A.M., Hérodin F., Grab L.B., Baum C.M., McKearn J.P. Combination therapy for radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor. Blood. 1996;87:4129–4135. PubMed

Neelis K.J., Hartong S.C., Egeland T., Thomas G.R., Eaton D.L., Wagemaker G. The efficacy of single-dose administeration of thrombopoietin with coadministration of either granulocyte/macrophage colony-stimulating factor or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood. 1997;90:2565–2573. PubMed

Farese A.M., Hunt P., Grab L.B., MacVittie T.J. Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J. Clin. Investig. 1996;97:2145–2151. doi: 10.1172/JCI118652. PubMed DOI PMC

Hérodin F., Bourin P., Mayol J.F., Lataillade J.J., Drouet M. Short-term injection of antiapoptotic cytokine combinations soon after lethal gamma-irradiation promotes survival. Blood. 2003;101:2609–2616. doi: 10.1182/blood-2002-06-1634. PubMed DOI

Hérodin F., Roy L., Grenier N., Delaunay C., Bauge S., Vaurijoux A., Gregoire E., Martin C., Alonso A., Mayol L.F., et al. Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigate myelosuppression in nonhuman primates exposed to high radiation dose. Exp. Hematol. 2007;35:1172–1181. doi: 10.1016/j.exphem.2007.04.017. PubMed DOI

Hérodin F., Drouet M. Myeloprotection following cytotoxic damage: The sooner the better. Exp. Hematol. 2008;36:769–770. doi: 10.1016/j.exphem.2008.02.005. PubMed DOI

Hirouchi T., Ito K., Nakano M., Monzen S., Yoshino H., Chiba M., Hazawa M., Nakano A., Ishikawa J., Yamaguchi M., et al. Mitigative effects of a combination of multiple pharmaceutical drugs on the survival of mice exposed to lethal ionizing radiation. Curr. Pharm. Biotechnol. 2016;17:190–199. doi: 10.2174/1389201016666150826125331. PubMed DOI

Singh V.K., Newman V.L., Seed T.M. Colony-stimulating factors for the treatment of the hematopoietic compartment of the acute radiation syndrome (H-ARS): A review. Cytokine. 2015;71:22–37. doi: 10.1016/j.cyto.2014.08.003. PubMed DOI

Vasin M.V., Ushakov I.B., Kovtun V.I., Komarova S.N., Semenova L.A., Koroleva L.V., Galkin A.A. The influence of combined application of quercetin and indralin on post-irradiation repair of hematopoiesis in acute radiation injury. Radiat. Biol. Radioecol. 2011;51:247–251. (in Russian) PubMed

Day R.M., Davis T.A., Barshishat-Kupper M., McCart E.A., Tipton A.S., Landauer M.R. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int. Immunopharmac. 2013;15:348–356. doi: 10.1016/j.intimp.2012.12.029. PubMed DOI

Singh V.K., Wise S.Y., Fatanmi O.O., Beattie L.A., Ducey E.J., Seed T.M. Alpha tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. J. Radiat. Res. 2014;55:41–53. doi: 10.1093/jrr/rrt088. PubMed DOI PMC

Vasil’eva I.N., Bespalov V.G., Baranenko D.A. Radioprotective and apoptotic properties of a combination of alpha-tocopherol acetate and ascorbic acid. Bull. Exp. Biol. Med. 2016;161:248–251. doi: 10.1007/s10517-016-3388-0. PubMed DOI

Wambi C., Sanzari J., Wan X.S., Nuth M., Davis J., Ko Y.H., Sayers C.M., Baran M., Ware J.H., Kennedy A.R. Dietary antioxidants protect hematopoietic cells and improve animal survival after total-body irradiation. Radiat. Res. 2008;169:384–396. doi: 10.1667/RR1204.1. PubMed DOI PMC

Wambi C.O., Sanzari J.K., Sayers C.M., Nuth M., Zhou Z.Z., Davis J., Finnberg N., Lewis-Wambi J.S., Ware J.H., El-Deiry W.S., et al. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat. Res. 2009;172:175–186. doi: 10.1667/RR1708.1. PubMed DOI PMC

Gupta M.L, Sankwar S., Verma S., Devi M., Samanta N., Agarwala P.K., Kumar R., Singh P.K. Whole-body protection to lethally irradiated mice by oral administration of semipurified fraction of Podophyllum hexandrum and post irradiation treatment with Picorrhiza kurroa. Tokai J. Exp. Clin. Med. 2008;33:6–12. PubMed

Crescenti E.J.V., Medina V.A., Croci M., Sambuco L.A., Prestifilippo J.P., Elverdin J.C., Bergoc R.M., Rivera E.S. Radioprotection of sensitive rat tissues by oligoelements Se, Zn, Mn plus Lachesis muta venom. J. Radiat. Res. 2011;52:557–567. doi: 10.1269/jrr.11031. PubMed DOI

Taniguchi C.M., Miao Y.R., Diep A.N., Wu C., Rankin E.B., Atwood T.F., Xing L., Giaccia A.J. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl. Med. 2014;6:236ra64. doi: 10.1126/scitranslmed.3008523. PubMed DOI PMC

Olcina M.M., Giaccia A.J. Reducing radiation-induced gastrointestinal toxicity – the role of the PHD/HIF axis. J. Clin. Investig. 2016;126:3708–3715. doi: 10.1172/JCI84432. PubMed DOI PMC

Moulder J.E. Post-irradiation approaches to treatment of radiation injuries in the context of radiological terrorism and radiation accidents. Int. J. Radiat. Biol. 2004;80:3–10. doi: 10.1080/09553000310001642920. PubMed DOI

Dörr H., Meineke V. Acute radiation syndrome caused by accidental radiation exposure—Therapeutic principles. BMC Med. 2011;9:126. doi: 10.1186/1741-7015-9-126. PubMed DOI PMC

Waselenko J.K., MacVittie TJ., Blakely W.F., Pesik N., Wiley A.L., Dickerson W.E., Tsu H., Confer D.L., Coleman C.N., Seed T., et al. Strategic National Stockpile Radiation Working Group: Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004;140:1037–1051. doi: 10.7326/0003-4819-140-12-200406150-00015. PubMed DOI

Moulder J.E., Cohen E.P. Radiation-induced multi-organ involvement and failure: The contribution of radiation effects on the renal system. Br. J. Radiol. 2005;27(Suppl. 2005):82–88. doi: 10.1259/bjr/18309193. DOI

Dainiak N., Ricks R.C. The evolving role of haematopoietic stem cell transplantation in radiation injury: Potentials and limitations. Br. J. Radiol. 2005;27(Suppl. 2005):169–174. doi: 10.1259/bjr/31003240. DOI

Dainiak N., Gent R.N., Carr Z., Schneider R., Bader R., Buglova E., Chao N., Coleman C.N., Ganser A., Gorin C., et al. Literature review and global consensus on management of acute radiation syndrome affecting non-hematopoietic organs systems. Disaster Med. Public Health Prep. 2011;5:183–201. doi: 10.1001/dmp.2011.73. PubMed DOI PMC

Drouet M., Hérodin F. Radiation victim management and the haematologist in the future: Time to revisit therapeutic guidelines? Int. J. Radiat. Biol. 2010;86:636–648. doi: 10.3109/09553001003789604. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...