Stimulatory action of cyclooxygenase inhibitors on hematopoiesis: a review

. 2012 May 10 ; 17 (5) : 5615-25. [epub] 20120510

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid22576231

The presented review summarizes experimental data obtained with a mouse model when investigating the relationship between inhibition of prostaglandin production and hematopoiesis. While prostaglandin E2 acts in a negative feedback control of myelopoiesis, inhibition of cyclooxygenases, responsible for its production, shifts the feedback to positive control. Based on these relationships, agents inhibiting cyclo-oxygenases, known as non-steroidal anti-inflammatory drugs (NSAIDs), can activate hematopoiesis and be protective or curative under myelosuppressive states. The effectiveness of therapeutic use of NSAIDs in these situations is expressive especially under the selective inhibition of cyclooxygenase-2 (COX-2), when undesirable side effects of cyclooxygenase-1 inhibition, like gastrointestinal damage, are absent. The effects of the clinically approved selective COX-2 inhibitor, meloxicam, were investigated and demonstrated significant hematopoiesis-stimulating and survival-enhancing actions of this drug in sublethally or lethally γ-irradiated mice. These effects were connected with the ability of meloxicam to increase serum levels of the granulocyte colony-stimulating factor. It can be inferred from these findings that selective COX-2 inhibitors might find their use in the treatment of myelosuppressions of various etiologies.

Zobrazit více v PubMed

Kaushansky K., Lichtman M., Beutler E., Kipps T., Prchal J., Seligsohn U. Williams Hematology. 8th. McGraw-Hill, Inc.; New York, NY, USA: 2010.

Zion L.I. Hematopoiesis: A Developmental Approach. Oxford University Press; New York, NY, USA: 2001.

Brady R.H., Serhan C.N. Immunology and Inflammation, Basic Mechanisms and Clinical Consequences. McGraw-Hill, Inc.; New York, NY, USA: 1993. The prostaglandin, leukotrienes, lipoxins, and platele-activating factor; pp. 271–286.

Smith W.L., DeWitt D.L., Garavito R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000;68:145–182. PubMed

Garavito R.M., Mulichak A.M. The structure of mammalian cyclooxygenases. Annu. Rev. Biophys. Biomol. Struct. 2003;32:183–206. doi: 10.1146/annurev.biophys.32.110601.141906. PubMed DOI

Gentile P., Byer D., Pelus L.M. In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2. Blood. 1983;62:1100–1107. PubMed

Pelus L.M., Broxmeyer H.E., Kurland J.I., Moore M.A.S. Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferin. J. Exp. Med. 1979;150:277–292. doi: 10.1084/jem.150.2.277. PubMed DOI PMC

Boorman G.A., Luster M.I., Dean J.H., Luebke R.W. Effect of indomethacin on the bone marrow and immune system of the mouse. J. Clin. Lab. Immunol. 1982;7:119–126. PubMed

Kurland J., Moore M.A.S. Modulation of hemopoiesis by prostaglandins. Exp. Hematol. 1977;5:357–373. PubMed

Fontagné J., Adolphe M., Semichon M., Zizine L., Lechat P. Effect of in vivo treatment with indomethacin on mouse granulocyte-macrophage colony-forming cells in culture (CFUc). Possible role of prostaglandins. Exp. Hematol. 1980;8:1157–1164. PubMed

Pelus L.M. Modulation of myelopoiesis by prostaglandin E2: Demonstration of a novel mechanism of action in vivo. Immunol. Res. 1989;8:176–184. doi: 10.1007/BF02918143. PubMed DOI

Maravic M., Berge C., Daures J.P., Boissier M.C. Practices for managing a flare of long-standing rheumatoid arthritis: Survey among French rheumatologists. Clin. Exp. Rheumatol. 2005;23:36–42. PubMed

Harris R.E., Beebe-Donk J., Doss H., Doss D.B. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: A critical review of non-selective COX-2 blockade. Oncol. Rep. 2005;13:559–583. PubMed

Pereg D., Lishner M. Non-steroidal anti-inflammatory drugs for the prevention and treatment of cancer. J. Int. Med. 2005;248:115–123. doi: 10.1111/j.1365-2796.2005.01519.x. PubMed DOI

Fehér I., Gidáli J. Prostaglandin E2 as stimulator of haemopoietic stem cell proliferation. Nature. 1974;247:550–551. doi: 10.1038/247550a0. PubMed DOI

North T.E., Goessling W., Walkley C.R., Lengerke C., Kopani K.R., Lord A.M., Weber G.J., Bowman T.V., Jang I.H., Grosser T., et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–1011. PubMed PMC

Hogatt J., Singh P., Sampath J., Pelus L.M. Prostaglandin E-2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113:5444–5455. doi: 10.1182/blood-2009-01-201335. PubMed DOI PMC

Frölich J.C. A classification of NSAIDs according to the relative inhibition of cyclooxygenase insoenzymes. Trends Pharmacol. Sci. 1997;18:30–34. doi: 10.1016/S0165-6147(96)01017-6. PubMed DOI

Simmons D.L., Botting R.M., Hla T. Cyclooxygenase isoenzymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004;56:387–437. doi: 10.1124/pr.56.3.3. PubMed DOI

Smith W.L., Urade Y., Jakobsson P.-J. Enzymes of the cyclooxygenase pathways of prostanoid synthesis. Chem. Rev. 2011;111:5821–5865. doi: 10.1021/cr2002992. PubMed DOI PMC

Crofford L.J., Lipsky P.E., Brooks P., Abramson S.B., Simon L.S., van de Putte L.B.A. Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum. 2000;43:4–13. doi: 10.1002/1529-0131(200001)43:1<4::AID-ANR2>3.0.CO;2-V. PubMed DOI

Lanas A., Panés J., Piqué J.M. Clinical implications of COX-1 and/or COX/2 inhibition for the distal gastrointestinal tract. Curr. Pharm. Des. 2003;9:2253–2266. doi: 10.2174/1381612033453992. PubMed DOI

Niho Y., Niiro H., Tanaka Y., Nakshima H., Otsuka T. Role of IL-10 in the crossregulation of prostaglandins and cytokines in monocytes. Acta Haematol. 1998;99:165–170. doi: 10.1159/000040831. PubMed DOI

Takahashi H.K., Iwagaki H., Tamura R., Xue D., Sano M., Mori S., Yoshino T., Tanaka N., Nishibori M. Unique regulation profile of prostaglandin E-1 on mononuclear cells. J. Pharmacol. Exp. Therap. 2003;307:1188–1195. doi: 10.1124/jpet.103.056432. PubMed DOI

Chang D.M., Baptiste P., Chur P.H. The effect of antirheumatic drugs on interleukin-1 (IL-1) activity and IL-1 and IL-1 inhibitor production by human monocytes. J. Rheumatol. 1990;17:1148–1157. PubMed

Lozanski G., Ballou S.P., Kushner I. Effect of flurbiprofen on cytokine production by human monocytes and U-937 and THP-1 cell-lines. J. Rheumatol. 1992;19:921–926. PubMed

Estrov Z., Resnitzky P. Enhancement of hemopoietic stem cell proliferation by prostaglandin inhibitor drugs. Exp. Hematol. 1983;11:802–809. PubMed

Boorman G.A., Luster M.I., Dean J.H., Luebke R.W. Effect of indomethacin on the bone marrow and immune system of the mouse. J. Clin. Lab. Immunol. 1982;7:119–126. PubMed

Taniguchi K., Koga Y., Kato M., Nomoto K. The in vivo regulation of splenic T cell population by the prostaglandin-mediated system. J. Clin. Lab. Immunol. 1984;14:195–203. PubMed

Kalaidjieva V. Modulation of erythropoiesis in rat bone marrow erythroblastic islands by cyclooxygenase inhibition. Gen. Pharmacol. 1999;32:423–428. doi: 10.1016/S0306-3623(98)00206-7. PubMed DOI

Hofer M., Pospíšil M. Stimulated recovery of perturbed haematopoiesis by inhibition of prostaglandin production—Promising therapeutic strategy. Cent. Eur. J. Biol. 2006;1:584–593. doi: 10.2478/s11535-006-0033-3. DOI

Furuta Y., Hunter N., Barkley T., Hall E., Milas L. Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res. 1988;48:3008–3013. PubMed

Kozubík A., Pospíšil M., Netíková J. The stimulatory effect of single-dose pre-irradiation administration of indomethacin and dicofenac on hematopoietic recovery in the spleen of gamma-irradiated mice. Stud. Biophys. 1989;131:93–101.

Nishiguchi I., Furuta Y., Hunter N., Murray D., Milas L. Radioprotection of haematopoietic tissue by indomethacin. Radiat. Res. 1990;122:188–192. doi: 10.2307/3577605. PubMed DOI

Kozubík A., Hofmanová J., Holá J., Netíková J. The effect of nordihydroguairetic acid, an inhibitor of prostaglandin and leukotriene biosynthesis, on hematopoiesis of gamma-irradiated mice. Exp. Hematol. 1993;21:138–142. PubMed

Pospíšil M., Netíková J., Kozubík A. Enhancement of haemopoietic recovery by indomethacin after sublethal whole-body gamma irradiation. Acta Radiol. Oncol. 1986;25:195–198. doi: 10.3109/02841868609136404. PubMed DOI

Pospíšil M., Netíková J., Kozubík A., Pipalová I. Effect of indomethacin, diclofenac sodium and sodium salicylate on peripheral blood cell counts in sublethally gamma-irradiated mice. Strahlenther. Onkol. 1989;165:627–631. PubMed

Serushago B.A., Tanaka K., Koga Y., Taniguchi K., Nomoto K. Positive effects of indomethacin on restoration of splenic nucleated cell population in mice given sublethal irradiation. Immunopharmacology. 1987;14:21–26. doi: 10.1016/0162-3109(87)90005-1. PubMed DOI

Sklobovskaya I.E., Zhavoronkov L.P., Dubovik R.V. Haemostimulating efficiency of prostaglandin biosynthesis inhibitors in conditions of fractionated irradiation (in Russian) Radiobiologiya. 1986;26:185–188. PubMed

Hofer M., Pospíšil M., Pipalová I. Radioprotective effects of flurbiprofen. Folia Biol. (Praha) 1996;42:267–269. PubMed

Hofer M., Pospíšil M., Pipalová I., Holá J. Modulation of haemopoietic radiation response of mice by diclofenac in fractionated treatment. Physiol. Res. 1996;45:213–220. PubMed

Mišúrová E., Kropáčová K., Chlebovský O., Pado D. The effect of indomethacin on nucleic acids in blood, hemopoietic and lymphoid tissues in continuously irradiated rats. Neoplasma. 1989;36:541–547. PubMed

Kozubík A., Pospíšil M., Viklická Š., Tkadleček L., Netíková J. Effect of indomethacin on the proliferation and differentiation activity in the haemopoietic system of lethally irradiated mice after syngeneic bone marrow transplantation. Folia Biol. (Praha) 1987;33:418–423. PubMed

Kozubík A., Hofmanová J., Pospíšil M., Netíková J., Holá J., Lojek A. Effects of drugs inhibiting prostaglandin or leukotriene biosynthesis on postirradiation haematopoiesis in mice. Int. J. Radiat. Biol. 1994;65:369–377. doi: 10.1080/09553009414550431. PubMed DOI

Hofer M., Hoferová Z., Fedoročko P., Macková N.O. Hematopoiesis-stimulating and anti-tumor effects of repeated administration of diclofenac in mice with transplanted fibrosarcoma cells. Physiol. Res. 2002;51:629–632. PubMed

Pospíšil M., Hofer M., Pipalová I., Viklická Š., Netíková J., Šandula J. Enhancement of hematopoietic recovery in gamma-irradiated mice by the joint use of diclofenac, an inhibitor of prostaglandin production, and glucan, a macrophage activator. Exp. Hematol. 1992;20:891–895. PubMed

Hofer M., Pospíšil M., Viklická Š., Vacek A., Pipalová I., Bartoníčková A. Hematopoietic recovery in repeatedly irradiated mice can be enhanced by a repeatedly administered combination of diclofenac and glucan. J. Leukoc. Biol. 1993;53:185–189. PubMed

Fedoročko P. Liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE) promotes hematopoietic recovery in irradiated mouse. Int. J. Radiat. Biol. 1994;65:465–475. doi: 10.1080/09553009414550541. PubMed DOI

Fedoročko P., Macková N.O. Combined modality radioprotection: Enhancement of survival and hematopoietic recovery by the joint use of liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE) and indomethacin. Int. J. Immunopharmacol. 1996;18:329–337. doi: 10.1016/0192-0561(96)00023-9. PubMed DOI

Macková N.O., Fedoročko P. Effect of liposomal muramyl tripeptide phosphatidylethanolamine and indomethacin on hematopoietic recovery in irradiated mice. Physiol. Res. 2002;51:511–521. PubMed

Fedoročko P., Macková N.O., Brezani P., Kopka M. Administration of the bacterial extract Broncho-Vaxom(R) enhances radiation recovery and myelopoietic regeneration. Immunopharmacology. 1994;28:163–170. doi: 10.1016/0162-3109(94)90032-9. PubMed DOI

Fedoročko P., Macková N.O. Radioprotective effects of combination of bronchovaxom, a macrophage activator, and indomethacin, an inhibitor of prostaglandin production: Relationships to myelopoies. Eur. J. Haematol. 1996;56:54–61. PubMed

Sklobovskaya I.E., Zhavoronkov L.P. The combined effect of chemical radioprotective agents and prostaglandin biosynthesis inhibitors on postirradiation recovery of mouse haemopoiesis (in Russian) Radiobiologiya. 1986;26:61–64. PubMed

Kozubík A., Pospíšil M., Netíková J. Enhancement of haemopoietic recovery in sublethally gamma-irradiated mice by the joint use of indomethacin and cystamine. Folia Biol. (Praha) 1990;36:291–300. PubMed

Kozubík A., Pospíšil M., Netíková J. Possibilities of the combined use of non-steroidal anti-inflammatory drugs and sulfyhdryl componds in radioprotection. Strahlenther. Onkol. 1991;167:186–190. PubMed

Besa P.C., Hunter N.R., Milas L. Improvement in radiotherapy for a murine sarcoma by indomethacin plus WR-2721. Radiat. Res. 1993;135:93–97. doi: 10.2307/3578402. PubMed DOI

Fontagné J., Bertin R., Demarco F., Zizine L., Adolphe M., Portet R., Lechat P. In vivo effects of indomethacin and cyclophosphamide on CFU-GM proliferation and cyclic-nucleotide levels in bone marrow of mice. Biomed. Pharmacol. 1983;37:452–457. PubMed

Nickevich D.A., Young M.R., Ellis N.K., Wepsich H.T. Stimulation of hematopoiesis in untreated and cyclophosphamide-treated mice by the inhibition of prostaglandin synthesis. J. Immunopharmacol. 1986;8:299–313. PubMed

O’Reilly M., Gamelli R.L. Indomethacin augments granulocyte-macrophage colony-stimulating factor-induced hematopoiesis following 5-FU treatment. Exp. Hematol. 1990;18:974–978. PubMed

Wang J.Y., Yamasaki S., Takeuchi K., Okabe S. Delayed healing of acetic acid-induced gastric ulcers in rats by indomethacin. Gastroenterology. 1989;96:393–402. PubMed

Akarca U.S. Gastrointestinal effects of selective and non-selective non-steroidal anti-inflammatory drugs. Curr. Pharm. Des. 2005;11:1779–1793. doi: 10.2174/1381612053764904. PubMed DOI

Mahmud T., Scott D.L., Bjarnason I. A unifying hypothesis for the mechanism of NSAID related gastrointestinal toxicity. Ann. Rheum. Dis. 1996;55:211–213. doi: 10.1136/ard.55.4.211. PubMed DOI PMC

Floersheim G.L. Allopurinol, indomethacin and riboflavin enhance radiation lethality in mice. Radiat. Res. 1994;139:240–247. doi: 10.2307/3578670. PubMed DOI

Hofer M., Pospíšil M., Tkadleček L., Viklická Š., Pipalová I. Low survival of mice following lethal gamma-irradiation after administration of inhibitors of prostaglandin synthesis. Physiol. Res. 1992;41:157–161. PubMed

Wallace J.L., Reuter B., Cicala C., McKnight W., Grisham M.B., Cirino G. Novel nonsteroidal antiinflammatory drug derivatives with markedly reduced ulcerogenic properties in rats. Gastroenterology. 1994;107:173–179. PubMed

Juchelková L., Hofer M., Pospíšil M., Pipalová I. Radioprotective effects of flurbiprofen and its nitroderivative. Physiol. Res. 1998;47:73–80. PubMed

Michalowski A.S. On radiation damage to normal tissues and its treatment. II. Anti-inflammatory drugs. Acta Oncol. 1994;33:139–157. doi: 10.3109/02841869409098397. PubMed DOI

Shoup M., He L.K., Liu H., Shankar R., Gamelli R. Cyclooxygenase-2 inhibitor NS-398 improves survival and restores leukocyte counts in burn infection. J. Trauma Inj. Infect Crit. Care. 1998;45:215–220. doi: 10.1097/00005373-199808000-00003. PubMed DOI

Ogino K., Hatanaka K., Kawamura M., Ohno T., Harada Y. Meloxicam inhibits prostaglandin E2 generation via cyclooxygenase 2 in the inflammatory site but not that via cyclooxygenase 1 in the stomach. Pharmacology. 2000;61:244–250. doi: 10.1159/000028408. PubMed DOI

Hofer M., Pospíšil M., Znojil V., Holá J., Vacek A., Weiterová L., Štreitová D., Kozubík A. Meloxicam, a cyclooxygenase-2 inhibitor, supports hematopoietic recovery in gamma-irradiated mice. Radiat. Res. 2006;166:556–560. doi: 10.1667/RR3598.1. PubMed DOI

Hofer M., Pospíšil M., Znojil V., Holá J., Vacek A., Štreitová D. Meloxicam, an inhibitor of cyclooxygenase-2, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol. Res. 2008;57:307–310. PubMed

Hofer M., Pospíšil M., Holá J., Vacek A., Štreitová D., Znojil V. Inhibition of cyclooxygenase 2 in mice increases production of G-CSF and induces radioprotection. Radiat. Res. 2008;170:566–571. doi: 10.1667/RR1387.1. PubMed DOI

Jiao W., Kiang J.G., Cary L., Elliot T.B., Pellmar T.C., Ledney G.D. COX-2 inhibitors are contraindicated for treatment of combined injury. Radiat. Res. 2009;172:686–697. doi: 10.1667/RR1581.1. PubMed DOI

Hofer M., Pospíšil M., Dušek L., Hoferová Z., Weiterová L. A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice. Radiat. Res. 2011;176:269–272. doi: 10.1667/RR2614.1. PubMed DOI

Anning P.B., Coles B., Morton J., Wang H., Uddin J., Morrow J.D., Dey S.K., Marnett L.J., O’Donnell V.B. Nitric oxide deficiency promotes vascular side effects of cyclooxygenase inhibitors. Blood. 2006;108:4059–4062. doi: 10.1182/blood-2006-02-005330. PubMed DOI PMC

Staerkel P., Horsmans Y. Meloxicam-induced liver toxicity. Acta Gastroenterol. Belg. 1999;62:255–256. PubMed

Hérodin F., Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp. Hematol. 2005;33:1071–1080. doi: 10.1016/j.exphem.2005.04.007. PubMed DOI

Hérodin F., Drouet M. Myeloprotection following cytotoxic damage: The sooner, the better. Exp. Hematol. 2008;36:769–770. doi: 10.1016/j.exphem.2008.02.005. PubMed DOI

Hofer M., Pospíšil M., Dušek L., Hoferová Z., Weiterová L. Inhibition of cyclooxygenase-2 promotes the stimulatory action of adenosine A3 receptor agonist in sublethally γ-irradiated mice. Biomed. Pharmacother. 2011;65:427–431. doi: 10.1016/j.biopha.2011.04.033. PubMed DOI

Sugimoto Y., Fukada Y., Mori D., Tanaka S., Yamane H., Okuno Y., Deai K., Tsuchiya S., Tsujimoto G., Ichikawa A. Prostaglandin E-2 stimulated granulocyte colony-stimulating factor production via the prostanoid EP2 receptor in mouse peritoneal neutrophils. J. Immunol. 2005;175:2606–2612. PubMed

Goldman A.P., Williams C.S., Sheng H.M., Lamps L.W., Williams V.P., Pairet M., Morrow J.D., DuBois R.N. Meloxicam inhibits the growth of colorectal cancer cells. Carcinogenesis. 1998;19:2195–2199. doi: 10.1093/carcin/19.12.2195. PubMed DOI

Hussey H.J., Tisdale M.J. Effect of the specific cyclooxygenase-2 inhibitor meloxicam on tumour growth and cachexia in a murine model. Int. J. Cancer. 2000;87:95–100. doi: 10.1002/1097-0215(20000701)87:1<95::AID-IJC14>3.0.CO;2-D. PubMed DOI

Kern M.A., Schöneweiß M.M., Sahi D., Bahlo M., Haugg A.M., Kasper H.U., Dienes H.P., Käferstein H., Breuhahn K., Schirmbacher P. Cyclooxygenase-2 inhibitors suppress the growth of human hepatocellular carcinoma implants in nude mice. Carcinogenesis. 2004;25:1193–1199. doi: 10.1093/carcin/bgh110. PubMed DOI

Kuipers G.K., Slotman B.J., Wedekind L.E., Stoter T.R., van der Berg J., Sminia P., Vincent M., Lafleur M. Radiosenzitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: Independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int. J. Radiat. Biol. 2007;83:677–685. doi: 10.1080/09553000701558985. PubMed DOI

Ayakawa S., Shibamoto Y., Sugie C., Ito M., Ogino H., Tomito N., Kumagai M., Murakami H., Sawa H. Antitumor effects of a cyclooxygenase-2 inhibitor, meloxicam, alone or in combination with radiation and/or 5-fluorouracil in cultured tumor cells. Mol. Med. Rep. 2009;2:621–625. PubMed

Crook J., Patil N., Wallace K., Borg J., Zhou D., Ma C., Pond G. A phase III randomized trial of the timing of meloxicam with iodine-125 prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010;77:496–501. doi: 10.1016/j.ijrobp.2009.04.078. PubMed DOI

Lefrere F., Makke J., Fermand J.P., Marolleau J.P., Dal Cortivo L., Alberti C., Mouton V., Benbunan M., Miclea J.M. Blood stem cell collection using chemotherapy with or without G-CSF: Experience in 52 patients with multiple myeloma. Bone Marrow Transplant. 1999;24:463–466. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace