• This record comes from PubMed

Brief Story on Prostaglandins, Inhibitors of their Synthesis, Hematopoiesis, and Acute Radiation Syndrome

. 2019 Nov 06 ; 24 (22) : . [epub] 20191106

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
19-09212S Grantová Agentura České Republiky

Links

PubMed 31698831
PubMed Central PMC6891503
DOI 10.3390/molecules24224019
PII: molecules24224019
Knihovny.cz E-resources

Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.

See more in PubMed

Pelus L.M., Hoggatt J. Pleiotropic effects of prostaglandin E2 in hematopoiesis; prostaglandin E2 and other eicosanoids regulate hematopoietic stem and progenitor cell function. Prostaglandins Other Lipid Mediat. 2011;96:3–9. doi: 10.1016/j.prostaglandins.2011.06.004. PubMed DOI PMC

Hofer M., Pospíšil M., Hoferová Z., Weiterová L., Komůrková D. Stimulatory action of cyclooxygenase inhibitors on hematopoiesis: A review. Molecules. 2012;17:5615–5625. doi: 10.3390/molecules17055615. PubMed DOI PMC

Hofer M., Hoferová Z., Falk M. Pharmacological modulation of radiation damage. Does it exist a chance for other substances than hematopoietic growth factors and cytokines? Int. J. Mol. Sci. 2017;18:1385. doi: 10.3390/ijms18071385. PubMed DOI PMC

Moulder J.E. Post-irradiation approaches to treatment of radiation injuries in the context of radiological terrorism and radiation accidents: A review. Int. J. Radiat. Biol. 2004;80:546–555. doi: 10.1080/09553000310001642920. PubMed DOI

Pellmar T.C., Rockwell S. Priority list of reserach areas for radiological nuclear threat countermeasures. Radiat. Res. 2005;163:115–123. doi: 10.1667/RR3283. PubMed DOI

Dainiak N. Medical management of acute radiation syndrome and associated infections in a high-casualty incident. J. Radiat. Res. 2018;59:ii54–ii64. doi: 10.1093/jrr/rry004. PubMed DOI PMC

Fehér O., Gidáli J. Prostaglandin E2 as stimulator of haemopoietic stem cell proliferation. Nature. 1974;247:550–551. doi: 10.1038/247550a0. PubMed DOI

Fontagné J., Adolphe M., Semichon M., Zizina L., Lechat P. Effect of in vivo treatment with indomethacin on mouse granulocyte-macrophage colony-forming cells in culture (CFUc). Possible role of prostaglandins. Exp. Hematol. 1980;8:1157–1164. PubMed

Hanson W.R., Thomas C. 16,16-dimethyl prostaglandin E2 increases survival of murine intestinal stem-cells when given before photo radiation. Radiat. Res. 1983;96:393–398. doi: 10.2307/3576222. PubMed DOI

Kozubík A., Pospíšil M., Netíková J. The stimulatory effect of single-dose pre-irradiation administration of indomethacin and diclofenac on hematopoietic recovery in the spleen of gamma-irradiated mice. Stud. Biophys. 1989;131:93–101.

Pelus L.M., Broxmeyer H.E., Kurland J.I., Moore M.A. Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin. J. Exp. Med. 1979;150:277–292. doi: 10.1084/jem.150.2.277. PubMed DOI PMC

Pelus L.M., Broxmeyer H.E., Moore M.A. Regulation of human myelopoiesis by prostaglandin E and lactoferrin. Cell Tissue Kinet. 1981;14:515–526. doi: 10.1111/j.1365-2184.1981.tb00557.x. PubMed DOI

Kurland J.I., Moore M.A.S. Modulation of hemopoiesis by prostaglandins. Exp. Hematol. 1977;5:357–373. PubMed

Kurland J.I., Broxmeyer H.E., Pelus L.M., Bockman R.S., Moore M.A.S. Role of monocyte-macrophage-derived factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation. Blood. 1978;52:388–407. doi: 10.1182/blood.V52.2.388.388. PubMed DOI

Kurland J.I., Bockman R.S., Broxmeyer H.E., Moore M.A.S. Limitation of excessive myelopoiesis by intrinsic modulation of macrophage-derived prostaglandin-E. Science. 1978;199:552–555. doi: 10.1126/science.304600. PubMed DOI

Gentile P., Byer D., Pelus L.M. In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2. Blood. 1983;62:1100–1107. doi: 10.1182/blood.V62.5.1100.1100. PubMed DOI

Pelus L.M., Ottmann O.G., Nocka K.H. Synergistic inhibition of human bone marrow granulocyte-macrophage progenitor cells by prostaglandin E and recombinant interferon-alpha, -beta, and -gamma and an effect mediated by tumor necrosis factor. J. Immunol. 1988;140:479–484. PubMed

Dukes P.P., Shore N.A., Hammond D., Ortega J.A., Datta M.C. Enhancement of erythropoiesis by prostaglandins. J. Lab. Clin. Med. 1973;82:704–712. PubMed

DeGowin R.L., Gibson D.P. Prostaglandin-mediated enhancement of erythroid colonies by marrow stromal cells (MSC) Exp. Hematol. 1981;9:274–280. PubMed

Lu L., Pelus L.M., Broxmeyer H.E. Modulation of the expression of HLA-DR (Ia) antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E. Exp. Hematol. 1984;12:741–748. PubMed

Lu L., Pelus L.M., Broxmeyer H.E., Moore M.A., Wachter M., Walker D., Platzer E. Enhancement of the proliferation of human marrow eyrthroid (BFU-E) progenitor cells by prostaglandin E requires the participation of OKT8-positive T lymphocytes and is associated with the density expression of major histocompatibility complex class II antigens on BFU-E. Blood. 1986;68:126–133. PubMed

Lu L., Pelus L.M., Piacibello W., Moore M.A., Hu W., Broxmeyer H.E. Prostaglandin E acts at two levels to enhance colony formation in vitro by erythroid (BFU-E) progenitor cells. Exp. Hematol. 1987;15:765–771. PubMed

Nocka K.H., Ottman O.G., Pelus L.M. The role of marrow accessory cell populations in the augmentation of human erythroid progenitor cell (BFU-E) proliferation by prostaglandin E. Leuk. Res. 1989;13:527–534. doi: 10.1016/0145-2126(89)90119-7. PubMed DOI

Pelus L.M. Association between colony-forming units-granulocyte macrophage expression of Ia-like (HLA-DR) antigen and control of granulocyte and macrophage production. A new role for prostaglandin E. J. Clin. Investig. 1982;70:568–578. doi: 10.1172/JCI110649. PubMed DOI PMC

Dupuis F., Gachard N., Allegraud A., Praloran V., Denizot Y. Prostaglandin E2 stimulates the growth of human blood CD34+ progenitors. Prostaglandins Other Lipid Mediat. 1998;55:179–186. doi: 10.1016/S0090-6980(98)00019-7. DOI

Hoggatt J., Singh P., Sampath J., Pelus L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113:5444–5455. doi: 10.1182/blood-2009-01-201335. PubMed DOI PMC

Pelus L.M., Hoggatt J., Singh P. Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery. Cell Prolif. 2011;44(Suppl. 1):22–29. doi: 10.1111/j.1365-2184.2010.00726.x. PubMed DOI PMC

Donnelly E.H., Nemhauser J.B., Smith J.M., Kazzi Z.N., Farfán E.B., Chang A.S. Acute radiation syndrome: Assessment and management. South. Med. J. 2010;103:541–544. doi: 10.1097/SMJ.0b013e3181ddd571. PubMed DOI

Coleman C.N., Blakely W.F., Fike J.R., Mac Vittie T.J., Metting N.F., Mitchell J.B., Moulder J.E., Preston R.J., Seed T.M., Stone H.B., et al. Molecular and cellular biology of moderate-dose radiation and potential mechanisms of radiation protection: Report of a workshop at Bethesda, Maryland, 17–18 December 2001. Radiat. Res. 2003;159:812–834. doi: 10.1667/RR3021. PubMed DOI

Waselenko J.K., MacVittie T.J., Blakely W.F., Pesik N., Wiley A.L., Dickerson W.E., Tsu H., Confer D.L., Coleman C.N., Seed T., et al. Strategic National Stockpile Working Group. Medical management of the acute radiation syndrome. Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004;40:1037–1051. doi: 10.7326/0003-4819-140-12-200406150-00015. PubMed DOI

Hall E.J. Radiobiology for Radiologists. 5th ed. Lippincott Williams & Wilkins; New York, NY, USA: 2000.

Prasad K.N. Handbook of Radiobiology. 5th ed. CRC Press, Inc.; New York, NY, USA: 2001.

Bond V.P., Fliedner T.M., Archambeau J.O. Mammalian Radiation Lethality. Academic Press; New York, NY, USA: London, UK: 1965. p. 107.

Bond V.P., Robertson J.S. Vertebrate radiobiology (lethal actions and associated effects) Ann. Rev. Nucl. Sci. 1957;7:135–162. doi: 10.1146/annurev.ns.07.120157.001031. PubMed DOI

Hanson W.R. Radiation protection of the murine intestine by misoprotol, a prostaglandin-E1 analog, given alone or with WR-2721, is stereospecific. Prostaglandins Leukot. Essent. Fatty Acids. 1988;32:101–105. PubMed

Hanson W.R., Ainsworth E.J. 16,16-dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem-cells. Radiat. Res. 1985;103:196–203. doi: 10.2307/3576574. PubMed DOI

Walden T.L., Patchen M., Snyder J.L. 16,16-dimethyl prostaglandin E2 increases survival in mice following irradiation. Radiat. Res. 1987;109:440–444. doi: 10.2307/3577044. PubMed DOI

Hanson W.R., Zhen W.N., Geng L., Hunter N., Milas L. The prostaglandin E1 analog, misoprostol, a normal tissue protector, does not protect 4 murine tumors in-vivo from radiation injury. Radiat. Res. 1995;142:281–287. doi: 10.2307/3579137. PubMed DOI

Wang J., Shao L., Hendrickson H.P., Liu L., Chang J., Luo Y., SEng J., Pouliot M., Authier S., Zhou D., et al. Total body irradiation in the “hematopoietic” dose range induces substantial injury intestinal in jury in non-human primates. Radiat. Res. 2015;184:545–553. doi: 10.1667/RR14191.1. PubMed DOI PMC

Smith W.L. The eicosanoids and their biochemical mechanisms of action. Biochem. J. 1989;259:315–324. doi: 10.1042/bj2590315. PubMed DOI PMC

Frölich J.C. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol. Sci. 1997;18:30–34. doi: 10.1016/S0165-6147(96)01017-6. PubMed DOI

Marnett L.J., Rowlinson S.W., Goodwin D.C., Kalgutkar A.S., Lanzo C.A. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J. Biol. Chem. 1999;274:22903–22906. doi: 10.1074/jbc.274.33.22903. PubMed DOI

Simmons D.L., Botting R.M., Hla T. Cyclooxygenase isoenzymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004;56:387–437. doi: 10.1124/pr.56.3.3. PubMed DOI

Smith W.L., Urade Y., Jakobsson P.-J. Enzymes of the cyclooxygenase pathways of prostanoid synthesis. Chem. Rev. 2011;111:5821–5865. doi: 10.1021/cr2002992. PubMed DOI PMC

Blain H., Jouzeau J.Y., Netter P., Jeandel C. Non-steroidal anti-inflammatory drugs (NSAIDs) drugs with selective inhibitory activity on cyclooxygenase 2. Interest and future prospects. La Revue de Medecine Interne. 2000;21:978–988. doi: 10.1016/S0248-8663(00)00254-X. PubMed DOI

Patrignani P., Patrono C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim. Biophys. Acta. 2015;1851:422–432. doi: 10.1016/j.bbalip.2014.09.016. PubMed DOI

Hoggatt J., Pelus L.M. How beneficial is the use of NSAIDs in stem cell transplantation? Expert Opin. Pramacother. 2013;14:2453–2456. doi: 10.1517/14656566.2013.849243. PubMed DOI

Lanas A., Panés J., Piqué J.M. Clinical implications of COX-1 and/or COX-2 inhibition for the distal gastrointestinal tract. Curr. Phar. Des. 2003;9:2253–2266. doi: 10.2174/1381612033453992. PubMed DOI

Cohn S.M., Schloeman S., Tessner T., Seibert K., Stenson W.F. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandin synthesis through cyclooxygenase-1. J. Clin. Invetsig. 1997;99:1367–1379. doi: 10.1172/JCI119296. PubMed DOI PMC

Maruyama T., Nakai H. Investigation of prostanoid synthesis. J. Synth. Org. Chem. Jpn. 2007;65:481–491. doi: 10.5059/yukigoseikyokaishi.65.481. DOI

Boorman G.A., Luster M.I., Dean J.H., Luebke R.W. Effect of indomethacin on the bone marrow and immune system of the mouse. J. Clin. Lab. Immunol. 1982;7:119–126. PubMed

Takahashi H.K., Iwagako H., Tamura R., Xue D., Sano M., Mori S., Yoshino T., Tanaka N., Nishibori M. Unique regulation profile of prostaglandin E1 on mononuclear cells. J. Pharmacol. Exp. Therap. 2003;307:1188–1195. doi: 10.1124/jpet.103.056432. PubMed DOI

Chang D.M., Baptiste P., Chur P.H. The effect of antirheumatic drugs on interleukin-1 (IL-1) activity and IL-1 inhibitor production by human monocytes. J. Rheumatol. 1990;17:1148–1157. PubMed

Lozanski G., Ballou S.P., Kushner I. Effect of flurbiprofen on cytokine production by human monocytes and U-937 and THP-1 cell lines. J. Rheumatol. 1992;19:921–926. PubMed

Hofer N., Pospíšil M. Stimulated recovery of perturbed hemartopoiesis by inhibition of prostaglandin production—Promising therapeutic strategy. Cent. Eur. J. Biol. 2006;1:584–593.

Nishiguchi I., Furuta Y., Hunter N., Murray D., Milas L. Radioprotection of haematopoietic tissue by indomethacin. Radiat. Res. 1990;122:188–192. doi: 10.2307/3577605. PubMed DOI

Pospíšil M., Netíková J., Kozubík A., Pipalová I. Effect of indomethacin, diclofenac sodium and sodium salicylate on peripheral blood cell counts in sublethally gamma-irradiated mice. Strahlenther. Onkol. 1989;165:627–631. PubMed

Hofer M., Pospíšil M., Pipalová I., Holá J. Modulation of haemopoietic radiation response of mice by diclofenac in fractionated treatment. Physiol. Res. 1996;45:213–220. PubMed

Hofer M., Pospíšil M., Viklická Š., Vacek A., Pipalová I., Bartoníčková A. Hematopoietic recovery in repeatedly irradiated mice can be enhanced by a repeatedly administered combination of diclofenac and glucan. J. Leukoc. Biol. 1993;53:185–189. doi: 10.1002/jlb.53.2.185. PubMed DOI

Fedoročko P., Macková N.O. Combined modality radioprotection: Enhancement of survival and hematopoietic recovery by the joint use of liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE) and indomethacin. Int. J. Immunopharmacol. 1996;18:329–337. doi: 10.1016/0192-0561(96)00023-9. PubMed DOI

Fedoročko P., Macková N.O. Radioprotective effects of combination of bronchovaxom, a macrophage activator, and indomethacin, an inhibitor of prostaglandin production: Relationships to myelopoiesis. Eur. J. Haematol. 1996;56:54–61. doi: 10.1111/j.1600-0609.1996.tb00294.x. PubMed DOI

Kozubík A., Pospíšil M., Netíková J. Possibilities of the combined use of non-steroidal anti-inflammatory drugs and sulfhydryl compounds in radioprotection. Strahlenther. Onkol. 1991;167:186–190. PubMed

Floersheim G.L. Allopurinol, indomethacin and riboflavin enhance radiation lethality in mice. Radiat. Res. 1994;139:240–247. doi: 10.2307/3578670. PubMed DOI

Hofer M., Popsíšil M., Tkadleček L., Viklická Š., Pipalová I. Low survival of mice following lethal gamma-irradiation after administration of inihibitors of prostaglandin synthesis. Physiol. Res. 1992;41:157–161. PubMed

Wang J.Y., Yamasaki S., Takeuchi K., Okabe S. Delayed healing of acetic acid-induced gastric ulcers in rats by indomethacin. Gastroenterology. 1989;96:393–402. doi: 10.1016/0016-5085(89)91563-1. PubMed DOI

Akarca U.S. Gastrointestinal effects of selective and non-selective non-steroidal anti-inflammatory drugs. Curr. Pharm. Des. 2005;11:1779–1793. doi: 10.2174/1381612053764904. PubMed DOI

Shoup M., He L.K., Liu H., Shankar R., Gamelli R. Cyclooxygenase-2 inhibitor NS-398 improved survival and restores leukocyte counts in burn infection. J. Trauma Inj. Infect. Crit. Care. 1998;45:215–220. doi: 10.1097/00005373-199808000-00003. PubMed DOI

Ogino K., Hatanaka K., Kawamura M., Ohno T., Harada Y. Meloxicam inhibits prostaglandin E2 generation via cyclooxygenase 2 in the inflammatory site but not that via cyclooxygenase 1 in the stomach. Pharmacology. 2000;61:244–250. doi: 10.1159/000028408. PubMed DOI

Hofer M., Pospíšil M., Znojil V., Holá J., Vacek A., Weiterová L., Štreitová D., Kozubík A. Meloxicam, an inhibitor of cyclooxygenase-2, supports hematopoietic recovery in gamma-irradiated mice. Radiat. Res. 2006;166:556–560. doi: 10.1667/RR3598.1. PubMed DOI

Hofer M., Pospíšil M., Holá J., Vack A., Štreitová D., Znojil V. Inhibition of cyclooxygenase 2 in mice increases production of G-CSF and induces radioprotection. Radiat. Res. 2008;170:566–571. doi: 10.1667/RR1387.1. PubMed DOI

Hofer M., Pospíšil M., Znojil V., Holá J., Vacek A., Štreitová D. Meloxicam, an inhibitor of cyclooxygenase-2, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol. Res. 2008;57:307–310. PubMed

Hofer M., Pospíšil M., Dušek L., Hoferová Z., Weiterová L. A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice. Radiat. Res. 2011;176:269–272. doi: 10.1667/RR2614.1. PubMed DOI

Jiao W., Kiang J.G., Cary L., Elliot T.B., Pellmar T.C., Lednay G.D. COX-2 inhibitors are contraindicated for treatment of combined injury. Radiat. Res. 2009;172:686–697. doi: 10.1667/RR1581.1. PubMed DOI

Del Tacca M., Colucci R., Fornal M., Blandizzi C. Efficacy and tolerability of meloxicam, a COX-2 preferential nonsteroidal anti-inflammatory drug—A review. Clin. Drug Investig. 2002;22:799–818. doi: 10.2165/00044011-200222120-00001. DOI

Hofer M., Pospíšil M., Dušek L., Hoferová Z., Komůrková D. Agonist of the adenosine A3 receptor, IB-MECA, and inhibitor of cyclooxygenase-2, meloxicam, given alone or in a combination early after total body irradiation enhance survival of γ-irradiated mice. Radiat. Environ. Biophys. 2014;53:211–215. doi: 10.1007/s00411-013-0500-y. PubMed DOI

Hérodin F., Bourin P., Mayol J.F., Lataillade J.J., Drouet M. Short-term injection of antiapoptotic cytokine combination soon after lethal γ-irradiation promotes survival. Blood. 2003;101:2609–2616. doi: 10.1182/blood-2002-06-1634. PubMed DOI

Hérodin F., Drouet M. Myeloprotection following cytotoxic dmage: The sooner, the better. Exp. Hematol. 2008;36:769–770. doi: 10.1016/j.exphem.2008.02.005. PubMed DOI

Anning P.B., Coles B., Morton J., Wang H., Uddin J., Morrox J.D., Dey S.K., Marnett L.J., O’Donnell V.B. Nitric oxide deficiency promotes vascular side effects of cyclooxygenase inhibitors. Blood. 2006;108:4059–4062. doi: 10.1182/blood-2006-02-005330. PubMed DOI PMC

Staerkel P., Horsmans Y. Meloxicam-induced liver toxicity. Acta Gastro-Enterol. Belg. 1999;62:255–256. PubMed

Hoggatt J., Singh P., Stilger K.N., Plett P.A., Sampson C.H., Chua H.L., Orschell C.M., Pelus L.M. Recovery from hematopoietic injury by modulating prostaglandin E2 signaling post-irradiation. Blood Cells Mol. Dis. 2013;50:147–153. doi: 10.1016/j.bcmd.2012.11.006. PubMed DOI PMC

Weiss J.F., Kumar K.S., Walden T.L., Neta R., Landauer M.R., Clark E.P. Advances in radioprotection through the use of combined agent regimens. Int. J. Radiat. Biol. 1990;57:709–722. doi: 10.1080/09553009014550881. PubMed DOI

Hoseinimehr S.A. Trends in development of radioprotective agents. Drug Discov. Today. 2007;12:794–805. doi: 10.1016/j.drudis.2007.07.017. PubMed DOI

Hofer M., Hoferová Z., Depeš D., Falk M. Combining pharmacological countermeasures to attenuate the acute radiation syndrome—A concise review. Molecules. 2017;22:834. doi: 10.3390/molecules22050834. PubMed DOI PMC

Lorenz M., Slaughter H.S., Wescott D.M., Carter S.I., Schnyder B., Dinchuk J.E., Car B.D. Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Exp. Hematol. 1989;10:1494–1502. doi: 10.1016/S0301-472X(99)00087-9. PubMed DOI

Hofer M., Hoferová Z., Dušek L., Souček K., Gruzdev A. Hematological profile of untreated or ionizing radiation exposed cyclooxygenase-2-deficient mice. Physiol. Res. 2017;66:673–676. PubMed PMC

Hofer M., Hoferová Z., Gruzdev A., Dušek L., Falk M. Impaired post-irradiation survival of cyclooxygenase-2-deficient mice. Physiol. Res. 2018;67:809–812. doi: 10.33549/physiolres.933890. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...