Method for Isolation of Myxozoan Proliferative Stages from Fish at High Yield and Purity: An Essential Prerequisite for In Vitro, In Vivo and Genomics-Based Research Developments

. 2022 Jan 23 ; 11 (3) : . [epub] 20220123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35159187

Grantová podpora
19-28399X, 20-30321Y Czech Science Foundation
LTAUSA19108, LTAUSA17201 Ministry of Education, Youth and Sport of the Czech Republic

Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99-100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.

Zobrazit více v PubMed

Carraro L., Bertuzzo E., Mari L., Fontes I., Hartikainen H., Strepparava N., Schmidt-Posthaus H., Wahli T., Jokela J., Gatto M., et al. Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proc. Natl. Acad. Sci. USA. 2017;114:11992–11997. doi: 10.1073/pnas.1713691114. PubMed DOI PMC

Bruneaux M., Visse M., Gross R., Pukk L., Saks L., Vasemägi A. Parasite infection and decreased thermal tolerance: Impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct. Ecol. 2017;31:216–226. doi: 10.1111/1365-2435.12701. DOI

Borgwardt F., Unfer G., Auer S., Waldner K., El-Matbouli M., Bechter T. Direct and indirect climate change impacts on brown trout in Central Europe: How thermal regimes reinforce physiological stress and support the emergence of diseases. Front. Environ. Sci. 2020;8:59. doi: 10.3389/fenvs.2020.00059. DOI

Yang Y., Xiong J., Zhou Z., Huo F., Miao W., Ran C., Liu Y., Zhang J., Feng J., Wang M., et al. The genome of the Myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol. Evol. 2014;6:3182–3198. doi: 10.1093/gbe/evu247. PubMed DOI PMC

Alama-Bermejo G., Holzer A.S. Advances and Discoveries in Myxozoan Genomics. Trends Parasitol. 2021;37:552–568. doi: 10.1016/j.pt.2021.01.010. PubMed DOI

Gu Q., Liu Y., Zhai Y., Gu Z. A fast and effective method for dissecting parasitic spores: Myxozoans as an example. J. Exp. Biol. 2020;223 doi: 10.1242/jeb.214916. PubMed DOI

Chase J., Dawson-Coates J., Haddow J., Stewart M., Haines L., Whitaker D., Ken M., Olafson R., Pearson T. Analysis of Kudoa thyrsites (Myxozoa: Myxosporea) spore antigens using monoclonal antibodies. Dis. Aquat. Org. 2001;45:121–129. doi: 10.3354/dao045121. PubMed DOI

Holzer A., Sommerville C., Wootten R. Tracing the route of Sphaerospora truttae from the entry locus to the target organ of the host, Salmo salar L., using an optimized and specific in situ hybridization technique. J. Fish Dis. 2003;26:647–655. doi: 10.1046/j.1365-2761.2003.00501.x. PubMed DOI

Eszterbauer E., Székely C. Molecular phylogeny of the kidney-parasitic Sphaerospora renicola from common carp (Cyprinus carpio) and Sphaerospora sp. from goldfish (Carassius auratus auratus) Acta Vet. Hung. 2004;52:469–478. doi: 10.1556/avet.52.2004.4.9. PubMed DOI

Piriatinskiy G., Atkinson S.D., Park S., Morgenstern D., Brekhman V., Yossifon G., Bartholomew J.L., Lotan T. Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Sci. Rep. 2017;7:9010. doi: 10.1038/s41598-017-09955-y. PubMed DOI PMC

Alama-Bermejo G., Meyer E., Atkinson S.D., Holzer A.S., Wiśniewska M.M., Kolísko M., Bartholomew J.L. Transcriptome-wide comparisons and virulence gene polymorphisms of host-associated genotypes of the cnidarian parasite Ceratonova shasta in salmonids. Genome Biol. Evol. 2020;12:1258–1276. doi: 10.1093/gbe/evaa109. PubMed DOI PMC

Korytář T., Wiegertjes G.F., Zusková E., Tomanová A., Lisnerová M., Patra S., Sieranski V., Šíma R., Born-Torrijos A., Wentzel A.S., et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasites Vectors. 2019;12:208. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC

Lom J., Dyková I., Pavlásková M., Grupcheva G. Sphaerospora molnari sp.nov. (Myxozoa:Myxosporea), an agent of gill, skin and blood sphaerosporosis of common carp in Europe. Parasitology. 1983;86:529–535. doi: 10.1017/S003118200005071X. DOI

Eszterbauer E., Sipos D., Forró B., Bartošová P., Holzer A.S. Molecular characterization of Sphaerospora molnari (Myxozoa), the agent of gill sphaerosporosis in common carp Cyprinus carpio carpio. Dis. Aquat. Org. 2013;104:59–67. doi: 10.3354/dao02584. PubMed DOI

Pavlásková M., Strelkov O.N. First record of Sphaerospora renicola Dyková et Lom, 1982 and Myxobolus encephalicus Mulsow, 1911, pathogenic protozoans of carp from the U.S.S.R. Folia Parasitol. (Praha) 1987;34:285–286. PubMed

Baska F., Molnar K. Blood stages of Sphaerospora spp. (Myxosporea) in cyprinid fishes. Dis. Aquat. Org. 1988;5:23–28. doi: 10.3354/dao005023. DOI

Lom J., Desser S.S., Dykova I. Some little-known and new protozoan parasites of fish from Lake Sasajewun, Algonquin Park, Ontario. Can. J. Zool. 1989;67:1372–1379. doi: 10.1139/z89-195. DOI

Supamattaya K., Fischer-Scherl T., Hoffmann R.W., Boonyaratpalin S. Sphaerospora epinepheli n. sp. (Myxosporea: Sphaerosporidae) observed in grouper (Epinephelus malabaricus) J. Protozool. 1991;38:448–454. doi: 10.1111/j.1550-7408.1991.tb04815.x. PubMed DOI

Hartigan A., Estensoro I., Vancová M., Bílý T., Patra S., Eszterbauer E., Holzer A.S. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC

Holzer A., Pimentel-Santos J. Sphaerospora molnari. In: Sitja-Bobadilla A., Bron J., Wiegertjes G., Piazzon M., editors. Fish Parasites: A Handbook of Protocols for Their Isolation, Culture and Transmission. European Association of Fish Pathologists (EAFP)/5M Publishing; Sheffield, UK: 2021. pp. 174–188.

Choudhury A.R. Cell isolation. Mater. Methods. 2017;7:2260. doi: 10.13070/mm.en.7.2260. DOI

Lanham S.M. Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature. 1968;218:1273–1274. doi: 10.1038/2181273a0. PubMed DOI

Lejon V., Büscher P., Nzoumbou-Boko R., Bossard G., Jamonneau V., Bucheton B., Truc P., Lemesre J.L., Solano P., Vincendeau P. The separation of trypanosomes from blood by anion exchange chromatography: From Sheila Lanham’s discovery 50 years ago to a gold standard for sleeping sickness diagnosis. PLoS Negl. Trop. Dis. 2019;13:e0007051. doi: 10.1371/journal.pntd.0007051. PubMed DOI PMC

Korytář T., Chan J.T.H., Vancová M., Holzer A.S. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari. Parasite Immunol. 2020;42 doi: 10.1111/pim.12683. PubMed DOI PMC

Lanham S.M., Godfrey D.G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp. Parasitol. 1970;28:521–534. doi: 10.1016/0014-4894(70)90120-7. PubMed DOI

Seaman G.V.F., Uhlenbruck G. The surface structure of erythrocytes from some animal sources. Arch. Biochem. Biophys. 1963;100:493–502. doi: 10.1016/0003-9861(63)90117-6. PubMed DOI

Souto-Padrón T. The surface charge of trypanosomatids. An. Acad. Bras. Ciências. 2002;74:649–675. doi: 10.1590/S0001-37652002000400007. PubMed DOI

Morris D.J., Adams A., Richards R.H. Studies of the PKX parasite in rainbow trout via immunohistochemistry and immunogold electron microscopy. J. Aquat. Anim. Health. 1997;9:265–272. doi: 10.1577/1548-8667(1997)009<0265:SOTPPI>2.3.CO;2. DOI

Secombes C.J., van Groningen J.J.M., van Muiswinkel W.B., Egberts E. Ontogeny of the immune system in carp (Cyprinus carpio L.). The appearance of antigenic determinants on lymphoid cells detected by mouse anti-carp thymocyte monoclonal antibodies. Dev. Comp. Immunol. 1983;7:455–464. doi: 10.1016/0145-305X(83)90030-7. PubMed DOI

Köllner B., Mundt E., Fischer U. A monoclonal antibody recognizing a complex tubular structure in rainbow trout pillar cells. J. Fish Biol. 1998;53:853–865. doi: 10.1006/JFBI.1998.0757. DOI

Hamilton A.J., Canning E.U. The production of mouse anti-Myxosoma cerebralis antiserum from Percoll-purified spores and its use in immunofluorescent labelling of Historesin-embedded cartilage derived from infected rainbow trout, Salmo gairdneri Richardson. J. Fish Dis. 1988;11:185–190. doi: 10.1111/j.1365-2761.1988.tb00538.x. DOI

Wentzel A.S., Janssen J.J.E., de Boer V.C.J., van Veen W.G., Forlenza M., Wiegertjes G.F. Fish macrophages show distinct metabolic signatures upon polarization. Front. Immunol. 2020;11:152. doi: 10.3389/fimmu.2020.00152. PubMed DOI PMC

Maciuszek M., Rydz L., Świtakowska I., Verburg-van Kemenade B.M.L., Chadzińska M. Effects of stress and cortisol on the polarization of carp macrophages. Fish Shellfish Immunol. 2019;94:27–37. doi: 10.1016/j.fsi.2019.08.064. PubMed DOI

Feist S.W., Morris D.J., Alama-Bermejo G., Holzer A.S. Development and life cycles: Cellular processes in myxozoans. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. pp. 139–154.

Sela-Culang I., Kunik V., Ofran Y. The structural basis of antibody-antigen recognition. Front. Immunol. 2013;4:302. doi: 10.3389/fimmu.2013.00302. PubMed DOI PMC

Ganeva V.O., Korytář T., Pecková H., McGurk C., Mullins J., Yanes-Roca C., Gela D., Lepič P., Policar T., Holzer A.S. Natural feed additives modulate immunity and mitigate infection with Sphaerospora molnari (Myxozoa:Cnidaria) in common carp: A pilot study. Pathogens. 2020;9:1013. doi: 10.3390/pathogens9121013. PubMed DOI PMC

Hartigan A., Kosakyan A., Pecková H., Eszterbauer E., Holzer A.S. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics. 2020;21:404. doi: 10.1186/s12864-020-6705-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...