Method for Isolation of Myxozoan Proliferative Stages from Fish at High Yield and Purity: An Essential Prerequisite for In Vitro, In Vivo and Genomics-Based Research Developments
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-28399X, 20-30321Y
Czech Science Foundation
LTAUSA19108, LTAUSA17201
Ministry of Education, Youth and Sport of the Czech Republic
PubMed
35159187
PubMed Central
PMC8833907
DOI
10.3390/cells11030377
PII: cells11030377
Knihovny.cz E-zdroje
- Klíčová slova
- Sphaerospora, anti-carp antibody, blood stages, cell separation, common carp, cytometry, diethylaminoethyl (DEAE) cellulose, parasite, teleost,
- MeSH
- genomika MeSH
- kapři * MeSH
- Myxozoa * genetika MeSH
- nemoci ryb * MeSH
- protilátky MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protilátky MeSH
Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99-100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.
Zobrazit více v PubMed
Carraro L., Bertuzzo E., Mari L., Fontes I., Hartikainen H., Strepparava N., Schmidt-Posthaus H., Wahli T., Jokela J., Gatto M., et al. Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proc. Natl. Acad. Sci. USA. 2017;114:11992–11997. doi: 10.1073/pnas.1713691114. PubMed DOI PMC
Bruneaux M., Visse M., Gross R., Pukk L., Saks L., Vasemägi A. Parasite infection and decreased thermal tolerance: Impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct. Ecol. 2017;31:216–226. doi: 10.1111/1365-2435.12701. DOI
Borgwardt F., Unfer G., Auer S., Waldner K., El-Matbouli M., Bechter T. Direct and indirect climate change impacts on brown trout in Central Europe: How thermal regimes reinforce physiological stress and support the emergence of diseases. Front. Environ. Sci. 2020;8:59. doi: 10.3389/fenvs.2020.00059. DOI
Yang Y., Xiong J., Zhou Z., Huo F., Miao W., Ran C., Liu Y., Zhang J., Feng J., Wang M., et al. The genome of the Myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol. Evol. 2014;6:3182–3198. doi: 10.1093/gbe/evu247. PubMed DOI PMC
Alama-Bermejo G., Holzer A.S. Advances and Discoveries in Myxozoan Genomics. Trends Parasitol. 2021;37:552–568. doi: 10.1016/j.pt.2021.01.010. PubMed DOI
Gu Q., Liu Y., Zhai Y., Gu Z. A fast and effective method for dissecting parasitic spores: Myxozoans as an example. J. Exp. Biol. 2020;223 doi: 10.1242/jeb.214916. PubMed DOI
Chase J., Dawson-Coates J., Haddow J., Stewart M., Haines L., Whitaker D., Ken M., Olafson R., Pearson T. Analysis of Kudoa thyrsites (Myxozoa: Myxosporea) spore antigens using monoclonal antibodies. Dis. Aquat. Org. 2001;45:121–129. doi: 10.3354/dao045121. PubMed DOI
Holzer A., Sommerville C., Wootten R. Tracing the route of Sphaerospora truttae from the entry locus to the target organ of the host, Salmo salar L., using an optimized and specific in situ hybridization technique. J. Fish Dis. 2003;26:647–655. doi: 10.1046/j.1365-2761.2003.00501.x. PubMed DOI
Eszterbauer E., Székely C. Molecular phylogeny of the kidney-parasitic Sphaerospora renicola from common carp (Cyprinus carpio) and Sphaerospora sp. from goldfish (Carassius auratus auratus) Acta Vet. Hung. 2004;52:469–478. doi: 10.1556/avet.52.2004.4.9. PubMed DOI
Piriatinskiy G., Atkinson S.D., Park S., Morgenstern D., Brekhman V., Yossifon G., Bartholomew J.L., Lotan T. Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Sci. Rep. 2017;7:9010. doi: 10.1038/s41598-017-09955-y. PubMed DOI PMC
Alama-Bermejo G., Meyer E., Atkinson S.D., Holzer A.S., Wiśniewska M.M., Kolísko M., Bartholomew J.L. Transcriptome-wide comparisons and virulence gene polymorphisms of host-associated genotypes of the cnidarian parasite Ceratonova shasta in salmonids. Genome Biol. Evol. 2020;12:1258–1276. doi: 10.1093/gbe/evaa109. PubMed DOI PMC
Korytář T., Wiegertjes G.F., Zusková E., Tomanová A., Lisnerová M., Patra S., Sieranski V., Šíma R., Born-Torrijos A., Wentzel A.S., et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasites Vectors. 2019;12:208. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC
Lom J., Dyková I., Pavlásková M., Grupcheva G. Sphaerospora molnari sp.nov. (Myxozoa:Myxosporea), an agent of gill, skin and blood sphaerosporosis of common carp in Europe. Parasitology. 1983;86:529–535. doi: 10.1017/S003118200005071X. DOI
Eszterbauer E., Sipos D., Forró B., Bartošová P., Holzer A.S. Molecular characterization of Sphaerospora molnari (Myxozoa), the agent of gill sphaerosporosis in common carp Cyprinus carpio carpio. Dis. Aquat. Org. 2013;104:59–67. doi: 10.3354/dao02584. PubMed DOI
Pavlásková M., Strelkov O.N. First record of Sphaerospora renicola Dyková et Lom, 1982 and Myxobolus encephalicus Mulsow, 1911, pathogenic protozoans of carp from the U.S.S.R. Folia Parasitol. (Praha) 1987;34:285–286. PubMed
Baska F., Molnar K. Blood stages of Sphaerospora spp. (Myxosporea) in cyprinid fishes. Dis. Aquat. Org. 1988;5:23–28. doi: 10.3354/dao005023. DOI
Lom J., Desser S.S., Dykova I. Some little-known and new protozoan parasites of fish from Lake Sasajewun, Algonquin Park, Ontario. Can. J. Zool. 1989;67:1372–1379. doi: 10.1139/z89-195. DOI
Supamattaya K., Fischer-Scherl T., Hoffmann R.W., Boonyaratpalin S. Sphaerospora epinepheli n. sp. (Myxosporea: Sphaerosporidae) observed in grouper (Epinephelus malabaricus) J. Protozool. 1991;38:448–454. doi: 10.1111/j.1550-7408.1991.tb04815.x. PubMed DOI
Hartigan A., Estensoro I., Vancová M., Bílý T., Patra S., Eszterbauer E., Holzer A.S. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC
Holzer A., Pimentel-Santos J. Sphaerospora molnari. In: Sitja-Bobadilla A., Bron J., Wiegertjes G., Piazzon M., editors. Fish Parasites: A Handbook of Protocols for Their Isolation, Culture and Transmission. European Association of Fish Pathologists (EAFP)/5M Publishing; Sheffield, UK: 2021. pp. 174–188.
Choudhury A.R. Cell isolation. Mater. Methods. 2017;7:2260. doi: 10.13070/mm.en.7.2260. DOI
Lanham S.M. Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature. 1968;218:1273–1274. doi: 10.1038/2181273a0. PubMed DOI
Lejon V., Büscher P., Nzoumbou-Boko R., Bossard G., Jamonneau V., Bucheton B., Truc P., Lemesre J.L., Solano P., Vincendeau P. The separation of trypanosomes from blood by anion exchange chromatography: From Sheila Lanham’s discovery 50 years ago to a gold standard for sleeping sickness diagnosis. PLoS Negl. Trop. Dis. 2019;13:e0007051. doi: 10.1371/journal.pntd.0007051. PubMed DOI PMC
Korytář T., Chan J.T.H., Vancová M., Holzer A.S. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari. Parasite Immunol. 2020;42 doi: 10.1111/pim.12683. PubMed DOI PMC
Lanham S.M., Godfrey D.G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp. Parasitol. 1970;28:521–534. doi: 10.1016/0014-4894(70)90120-7. PubMed DOI
Seaman G.V.F., Uhlenbruck G. The surface structure of erythrocytes from some animal sources. Arch. Biochem. Biophys. 1963;100:493–502. doi: 10.1016/0003-9861(63)90117-6. PubMed DOI
Souto-Padrón T. The surface charge of trypanosomatids. An. Acad. Bras. Ciências. 2002;74:649–675. doi: 10.1590/S0001-37652002000400007. PubMed DOI
Morris D.J., Adams A., Richards R.H. Studies of the PKX parasite in rainbow trout via immunohistochemistry and immunogold electron microscopy. J. Aquat. Anim. Health. 1997;9:265–272. doi: 10.1577/1548-8667(1997)009<0265:SOTPPI>2.3.CO;2. DOI
Secombes C.J., van Groningen J.J.M., van Muiswinkel W.B., Egberts E. Ontogeny of the immune system in carp (Cyprinus carpio L.). The appearance of antigenic determinants on lymphoid cells detected by mouse anti-carp thymocyte monoclonal antibodies. Dev. Comp. Immunol. 1983;7:455–464. doi: 10.1016/0145-305X(83)90030-7. PubMed DOI
Köllner B., Mundt E., Fischer U. A monoclonal antibody recognizing a complex tubular structure in rainbow trout pillar cells. J. Fish Biol. 1998;53:853–865. doi: 10.1006/JFBI.1998.0757. DOI
Hamilton A.J., Canning E.U. The production of mouse anti-Myxosoma cerebralis antiserum from Percoll-purified spores and its use in immunofluorescent labelling of Historesin-embedded cartilage derived from infected rainbow trout, Salmo gairdneri Richardson. J. Fish Dis. 1988;11:185–190. doi: 10.1111/j.1365-2761.1988.tb00538.x. DOI
Wentzel A.S., Janssen J.J.E., de Boer V.C.J., van Veen W.G., Forlenza M., Wiegertjes G.F. Fish macrophages show distinct metabolic signatures upon polarization. Front. Immunol. 2020;11:152. doi: 10.3389/fimmu.2020.00152. PubMed DOI PMC
Maciuszek M., Rydz L., Świtakowska I., Verburg-van Kemenade B.M.L., Chadzińska M. Effects of stress and cortisol on the polarization of carp macrophages. Fish Shellfish Immunol. 2019;94:27–37. doi: 10.1016/j.fsi.2019.08.064. PubMed DOI
Feist S.W., Morris D.J., Alama-Bermejo G., Holzer A.S. Development and life cycles: Cellular processes in myxozoans. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. pp. 139–154.
Sela-Culang I., Kunik V., Ofran Y. The structural basis of antibody-antigen recognition. Front. Immunol. 2013;4:302. doi: 10.3389/fimmu.2013.00302. PubMed DOI PMC
Ganeva V.O., Korytář T., Pecková H., McGurk C., Mullins J., Yanes-Roca C., Gela D., Lepič P., Policar T., Holzer A.S. Natural feed additives modulate immunity and mitigate infection with Sphaerospora molnari (Myxozoa:Cnidaria) in common carp: A pilot study. Pathogens. 2020;9:1013. doi: 10.3390/pathogens9121013. PubMed DOI PMC
Hartigan A., Kosakyan A., Pecková H., Eszterbauer E., Holzer A.S. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics. 2020;21:404. doi: 10.1186/s12864-020-6705-y. PubMed DOI PMC