Cecropin anisaxin-2S has in vitro immunomodulatory, but not antiproliferative and antiviral properties
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40391212
PubMed Central
PMC12086083
DOI
10.3389/fimmu.2025.1567505
Knihovny.cz E-zdroje
- Klíčová slova
- anisaxin, antimicrobial peptide, immunomodulation, red blood cells, white blood cells,
- MeSH
- antivirové látky * farmakologie MeSH
- cekropiny * farmakologie MeSH
- imunologické faktory * farmakologie MeSH
- imunomodulace MeSH
- kapři * imunologie parazitologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nemoci ryb * imunologie MeSH
- proliferace buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- cekropiny * MeSH
- imunologické faktory * MeSH
Helminthic host defense peptides (HDP) are pleiotropic, multifunctional effector molecules of helminth immunity, efficient against Gram-negative and Gram-positive bacteria. Among them, anisaxin-2S (A-2S), membranolytic cecropin-like HDPs produced by the zoonotic nematodes of the genus Anisakis, shows remarkable efficacy even against multidrug-resistant Gram-negative bacteria, yet its immunomodulatory, antiproliferative and antiviral properties have not been elucidated. Therefore, we tested A-2S immunomodulation in the common carp (Cyprinus carpio) blood cells exposed to two pathogens, the zoonotic bacterium Aeromonas hydrophila and the fish parasite Sphaerospora molnari, and in carp in vivo challenged with the parasite. Furthermore, the A-2S antiproliferative activity was tested in vitro in human bladder and lung cancer cell line, while the antiviral protection was tested in common carp brain cell culture exposed to carp rhabdovirus, alloherpesvirus and paramyxovirus, and in a human immortalized myelogenous leukemia cell line infected with tick-borne encephalitis virus. A-2S exerts an immunostimulatory effect on fish blood cells through upregulation of cytokine expression, with the proinflammatory or anti-inflammatory repertoire conditioned by the presence or absence of co-stimulatory antigen. Surprisingly, in the majority of assays conducted, red blood cells demonstrate equal or even stronger regulation of innate immunity genes compared to white blood cells, along with a more extensive repertoire of differentially expressed markers. In contrast, A-2S has only a limited anticancer activity in human bladder cancer and lung adenocarcinoma cells and limited antiviral activity against the three fish viruses and a human tick-borne encephalitis virus. This study provides the first evidence of red blood cell and platelet immunomodulation by an antimicrobial peptide and highlights the induction of a cytokine repertoire. However, future research should address the study's limitations, including the need for longer in vitro assays (e.g., 3-4 days), testing different white blood cell lineages, to better understand antigen-processing interactions, and evaluating the anticipated adaptive immune response. Powerful antimicrobial activity of A-2S, coupled with immunostimulatory properties, warrant further pursuing of preclinical trials with this anisaxin.
Department of Biology Faculty of Science University of Split Split Croatia
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS Australia
University Department of Marine Studies University of Split Split Croatia
Zobrazit více v PubMed
Guha S, Ghimire J, Wu E, Wimley WC. Mechanistic landscape of membrane-permeabilizing peptides. Chem Rev. (2019) 119:6040–85. doi: 10.1021/acs.chemrev.8b00520 PubMed DOI PMC
Haney EF, Straus SK, Hancock RE. Reassessing the host defense peptide landscape. Front Chem. (2019) 7:435645. doi: 10.3389/fchem.2019.00043 PubMed DOI PMC
Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y, et al. . DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. (2022) 50:D488–96. doi: 10.1093/nar/gkab651 PubMed DOI PMC
Mladineo I, Rončević T, Gerdol M, Tossi A. Helminthic host defense peptides: using the parasite to defend the host. Trends Parasitology. (2023) 39:345–57. doi: 10.1016/j.pt.2023.02.004 PubMed DOI
Quinn GA, Heymans R, Rondaj F, Shaw C, de Jong-Brink M. Schistosoma mansoni dermaseptin-like peptide: structural and functional characterization. J Parasitology. (2005) 91:1340–51. doi: 10.1645/GE-540R.1 PubMed DOI
Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, Norton RS, et al. . A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides. PloS Pathogens. (2011) 7:e1002042. doi: 10.1371/journal.ppat.1002042 PubMed DOI PMC
Santos BP, Alves ES, Ferreira CS, Ferreira-Silva A, Góes-Neto A, Verly RM, et al. . Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta (BBA). (2021) 1865:129989. doi: 10.1016/j.bbagen.2021.129989 PubMed DOI
Rončević T, Gerdol M, Mardirossian M, Maleš M, Cvjetan S, Benincasa M, et al. . Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Acta Biomaterialia. (2022) 146:131–44. doi: 10.1016/j.actbio.2022.04.025 PubMed DOI
Hotz MJ, Qing D, Shashaty MG, Zhang P, Faust H, Sondheimer N, et al. . Red blood cells homeostatically bind mitochondrial DNA through TLR9 to maintain quiescence and to prevent lung injury. Am J Respiratory Crit Care Medicine. (2018) 197:470–80. doi: 10.1164/rccm.201706-1161OC PubMed DOI PMC
Anderson HL, Brodsky IE, Mangalmurti NS. The evolving erythrocyte: red blood cells as modulators of innate immunity. J Immunol. (2018) 201:1343–51. doi: 10.4049/jimmunol.1800565 PubMed DOI PMC
Lam LM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, et al. . DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Trans Medicine. (2021) 13:eabj1008. doi: 10.1126/scitranslmed.abj1008 PubMed DOI PMC
Ortega-Villaizan MD, Coll J, Rimstad E. The role of red blood cells in the immune response of fish. Front Immunol. (2022) 13:1005546. doi: 10.3389/fimmu.2022.1005546 PubMed DOI PMC
Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S. NMR Structure of Pardaxin, a Pore-forming Antimicrobial Peptide, in Lipopolysaccharide Micelles: Mechanism of outer membrane permeabilization 2. J Biol Chem. (2010) 285:3883–95. doi: 10.1074/jbc.M109.065672 PubMed DOI PMC
Bhunia A, Saravanan R, Mohanram H, Mangoni ML, Bhattacharjya S. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem. (2011) 286:24394–406. doi: 10.1074/jbc.M110.189662 PubMed DOI PMC
Pulido D, Nogués M, Boix E, Torrent M. Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. J Innate Immunity. (2012) 4:327–36. doi: 10.1159/000336713 PubMed DOI PMC
Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE. Impact of LL-37 on anti-infective immunity. J Leukocyte Biol. (2005) 77:451–9. doi: 10.1189/jlb.0704380 PubMed DOI
Mookherjee N, Lippert DN, Hamill P, Falsafi R, Nijnik A, Kindrachuk J, et al. . Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol. (2009) 183:2688–96. doi: 10.4049/jimmunol.0802586 PubMed DOI
Yu J, Mookherjee N, Wee K, Bowdish DM, Pistolic J, Li Y, et al. . Host defense peptide LL-37, in synergy with inflammatory mediator IL-1β, augments immune responses by multiple pathways. J Immunol. (2007) 179:7684–91. doi: 10.4049/jimmunol.179.11.7684 PubMed DOI
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-γ: an overview of signals, mechanisms and functions. J Leucocyte Biol. (2004) 75:163–89. doi: 10.1189/jlb.0603252 PubMed DOI
Zou J, Secombes CJ. The function of fish cytokines. Biology. (2016) 5:23. doi: 10.3390/biology5020023 PubMed DOI PMC
Costa MM, Maehr T, Diaz-Rosales P, Secombes CJ, Wang T. Bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-6: effects on macrophage growth and antimicrobial peptide gene expression. Mol Immunol. (2011) 48:1903–16. doi: 10.1016/j.molimm.2011.05.027 PubMed DOI
Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PloS One. (2014) 9:e94188. doi: 10.1371/journal.pone.0094188 PubMed DOI PMC
Korytář T, Wiegertjes GF, Zusková E, Tomanová A, Lisnerová M, Patra S, et al. . The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari . Parasites Vectors. (2019) 12:1–6. doi: 10.1186/s13071-019-3462-3 PubMed DOI PMC
Piazzon MC, Savelkoul HF, Pietretti D, Wiegertjes GF, Forlenza M. Carp Il10 has anti-inflammatory activities on phagocytes, promotes proliferation of memory T cells, and regulates B cell differentiation and antibody secretion. J Immunol. (2015) 194:187–99. doi: 10.4049/jimmunol.1402093 PubMed DOI
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. . Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. (2007) 449:564–9. doi: 10.1038/nature06116 PubMed DOI
Lee EY, Lee MW, Wong GC. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol. (2019) 88:173–84. doi: 10.1016/j.semcdb.2018.02.002 PubMed DOI PMC
Amagai R, Takahashi T, Terui H, Fujimura T, Yamasaki K, Aiba S, et al. . The antimicrobial peptide cathelicidin exerts immunomodulatory effects via scavenger receptors. Int J Mol Sci. (2023) 24:875. doi: 10.3390/ijms24010875 PubMed DOI PMC
Ghosh TK, Mickelson DJ, Fink J, Solberg JC, Inglefield JR, Hook D, et al. . Toll-like receptor (TLR) 2–9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses. Cell Immunol. (2006) 243:48–57. doi: 10.1016/j.cellimm.2006.12.002 PubMed DOI
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. Fish Shellfish Immunol. (2019) 90:150–64. doi: 10.1016/j.fsi.2019.04.002 PubMed DOI
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To react or not to react: The dilemma of fish immune systems facing myxozoan infections. Front Immunol. (2021) 12:734238. doi: 10.3389/fimmu.2021.734238 PubMed DOI PMC
Korytář T, Chan JT, Vancová M, Holzer AS. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari . Parasite Immunol. (2020) 42(8):10.1111/pim.12683. doi: 10.1111/pim.12683 PubMed DOI PMC
Strzelec M, Detka J, Mieszczak P, Sobocinska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol. (2023) 14:1127704. doi: 10.3389/fimmu.2023.1127704 PubMed DOI PMC
Van Der Does AM, Joosten SA, Vroomans E, Bogaards SJ, Van Meijgaarden KE, Ottenhoff TH, et al. . The antimicrobial peptide hLF1–11 drives monocyte-dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17 polarization. J Innate Immunity. (2012) 4:284–92. doi: 10.1159/000332941 PubMed DOI PMC
Pena OM, Afacan N, Pistolic J, Chen C, Madera L, Falsafi R, et al. . Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PloS One. (2013) 8:e52449. doi: 10.1371/journal.pone.0052449 PubMed DOI PMC
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta (BBA)-Biomembranes. (2008) 1778:357–75. doi: 10.1016/j.bbamem.2007.11.008 PubMed DOI PMC
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. (2017) 8:46635. doi: 10.18632/oncotarget.16743 PubMed DOI PMC
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, et al. . Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Med Res. (2021) 8:1–25. doi: 10.1186/s40779-021-00343-2 PubMed DOI PMC
Lyu Z, Yang P, Lei J, Zhao J. Biological function of antimicrobial peptides on suppressing pathogens and improving host immunity. Antibiotics. (2023) 12:1037. doi: 10.3390/antibiotics12061037 PubMed DOI PMC
Xu D, Lu W. Defensins: a double-edged sword in host immunity. Front Immunol. (2020) 11:764. doi: 10.3389/fimmu.2020.00764 PubMed DOI PMC
Klotman ME, Rapista A, Teleshova N, Micsenyi A, Jarvis GA, Lu W, et al. . Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. J Immunol. (2008) 180:6176–85. doi: 10.4049/jimmunol.180.9.6176 PubMed DOI PMC
Valere K, Rapista A, Eugenin E, Lu W, Chang TL. Human alpha-defensin HNP1 increases HIV traversal of the epithelial barrier: a potential role in STI-mediated enhancement of HIV transmission. Viral Immunol. (2015) 28:609–15. doi: 10.1089/vim.2014.0137 PubMed DOI PMC
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, et al. . Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front Immunol. (2021) 12:628054. doi: 10.3389/fimmu.2021.628054 PubMed DOI PMC
Wu J, Zhou X, Chen Q, Chen Z, Zhang J, Yang L, et al. . Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect Dis Poverty. (2022) 11:71. doi: 10.1186/s40249-022-00996-8 PubMed DOI PMC
Kuipers BJ, Gruppen H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography– mass spectrometry analysis. J Agric Food Chem. (2007) 55:5445–51. doi: 10.1021/jf070337l PubMed DOI
Wu J, Zhou X, Chen Q, Chen Z, Zhang J, Yang L, et al. . Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect Dis Poverty. (2022) 11:71. doi: 10.1186/s40249-022-00996-8 PubMed DOI PMC
Rombout JH, Koumans-van Diepen JC, Emmer PM, Taverne-Thiele JJ, Taverne N. Characterization of carp thrombocytes with specific monoclonal antibodies. J Fish Biol. (1996) 49:521–31. doi: 10.1111/j.1095-8649.1996.tb00047.x DOI
Majstorović J, Kyslík J, Klak K, Maciuszek M, Chan JT, Korytář T, et al. . Erythrocytes of the common carp are immune sentinels that sense pathogen molecular patterns, engulf particles and secrete pro-inflammatory cytokines against bacterial infection. Front Immunol. (2024) 15:1407237. doi: 10.3389/fimmu.2024.1407237 PubMed DOI PMC
Born-Torrijos A, Kosakyan A, Patra S, Pimentel-Santos J, Panicucci B, Chan JT, et al. . Method for isolation of myxozoan proliferative stages from fish at high yield and purity: An essential prerequisite for in vitro, in vivo and genomics-based research developments. Cells. (2022) 11:377. doi: 10.3390/cells11030377 PubMed DOI PMC
Mladineo I, Charouli A, Jelić F, Chakroborty A, Hrabar J. In vitro culture of the zoonotic nematode Anisakis pegreffii (Nematoda, Anisakidae). Parasites Vectors. (2023) 16:51. doi: 10.1186/s13071-022-05629-5 PubMed DOI PMC
De Madrid AT, Porterfield JS. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organization. (1969) 40:113. PubMed PMC
Palus M, Vancova M, Sirmarova J, Elsterova J, Perner J, Ruzek D. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity. Virology. (2017) 507:110–22. doi: 10.1016/j.virol.2017.04.012 PubMed DOI
Quackenbush J. Microarray data normalization and transformation. Nat Genet. (2002) 32:496–501. doi: 10.1038/ng1032 PubMed DOI
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. . gplots: Various R programming tools for plotting data. (2009) 2:1. Available online at: https://cran.r-project.org/web/packages/gplots/index.html (Accessed September 25, 2024).
Wickham H, Wickham H. Programming with ggplot2. In: Ggplot2: elegant graphics for data analysis. Springer, New York, USA: (2016). p. 241–53.
Robette N. 2023_seqhandbook: Miscellaneous Tools for Sequence Analysis_. R package version 0.1.1. Available online at: https://CRAN.R-project.org/package=seqhandbook (Accessed September 25, 2024).
Clarke KR, Warwick RM. Change in marine communities. An approach to statistical analysis and interpretation. PRIMER-E Ltd, Plymouth, UK, Vol. 2. (2001). pp. 1–68.
Elsterova J, Palus M, Sirmarova J, Kopecky J, Niller HH, Ruzek D. Tick-borne encephalitis virus neutralization by high dose intravenous immunoglobulin. Ticks tick-borne diseases. (2017) 8:253–8. doi: 10.1016/j.ttbdis.2016.11.007 PubMed DOI
Yu F, Li J, Li H, Tang Y, Wang M, Hu W, et al. . Effects of glucose on biochemical immune responses and hepatic gene expression in common carp, Cyprinus carpio L. Biotechnol Biotechnol Equipment. (2018) 32:1440–6. doi: 10.1080/13102818.2018.1534554 DOI
Baloch AA, Steinhagen D, Gela D, Kocour M, Piačková V, Adamek M. Immune responses in carp strains with different susceptibility to carp edema virus disease. PeerJ. (2023) 11:e15614. doi: 10.7717/peerj.15614 PubMed DOI PMC
Ribeiro CM, Pontes MJ, Bird S, Chadzinska M, Scheer M, Verburg-van Kemenade BL, et al. . Trypanosomiasis-induced Th17-like immune responses in carp. PloS One. (2010) 5:e13012. doi: 10.1371/journal.pone.0013012 PubMed DOI PMC
Embregts CW, Tadmor-Levi R, Veselý T, Pokorová D, David L, Wiegertjes GF, et al. . Intra-muscular and oral vaccination using a Koi Herpesvirus ORF25 DNA vaccine does not confer protection in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. (2019) 85:90–8. doi: 10.1016/j.fsi.2018.03.037 PubMed DOI
Zhang P, Liu X, Li H, Chen Z, Yao X, Jin J, et al. . TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci Reports. (2017) 7:3158. doi: 10.1038/s41598-017-03230-w PubMed DOI PMC
Easlick J, Szubin R, Lantz S, Baumgarth N, Abel K. The early interferon alpha subtype response in infant macaques infected orally with SIV. JAIDS J Acquired Immune Deficiency Syndromes. (2010) 55:14–28. doi: 10.1097/QAI.0b013e3181e696ca PubMed DOI PMC
Zerin T, Lee M, Jang WS, Nam KW, Song HY. Anti-inflammatory potential of ursolic acid in Mycobacterium tuberculosis-sensitized and Concanavalin A-stimulated cells. Mol Med Reports. (2016) 13:2736–44. doi: 10.3892/mmr.2016.4840 PubMed DOI