In vitro culture of the zoonotic nematode Anisakis pegreffii (Nematoda, Anisakidae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36732837
PubMed Central
PMC9896804
DOI
10.1186/s13071-022-05629-5
PII: 10.1186/s13071-022-05629-5
Knihovny.cz E-zdroje
- Klíčová slova
- Anisakis pegreffii, In vitro culture, Larval development, SEM, TEM,
- MeSH
- anisakióza * veterinární parazitologie MeSH
- Anisakis * MeSH
- Ascaridoidea * MeSH
- Cetacea MeSH
- králíci MeSH
- larva MeSH
- lidé MeSH
- nemoci ryb * parazitologie MeSH
- prasata MeSH
- reprodukovatelnost výsledků MeSH
- ryby MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Anisakiasis is a foodborne disease caused by the third-stage larvae (L3) of two species belonging to the genus Anisakis: Anisakis pegreffii and Anisakis simplex sensu stricto. Both species have been the subject of different -omics studies undertaken in the past decade, but a reliable in vitro culture protocol that would enable a more versatile approach to functional studies has never been devised. In nature, A. pegreffii shows a polyxenous life-cycle. It reproduces in toothed whales (final host) and disseminates embryonated eggs via cetacean faeces in the water column. In the environment, a first- (L1) and second-stage larva (L2) develops inside the egg, and subsequently hatched L2 is ingested by a planktonic crustacean or small fish (intermediate host). In the crustacean pseudocoelom, the larva moults to the third stage (L3) and grows until the host is eaten by a fish or cephalopod (paratenic host). Infective L3 migrates into the visceral cavity of its paratenic host and remains in the state of paratenesis until a final host preys on the former. Once in the final host's gastric chambers, L3 attaches to mucosa, moults in the fourth stage (L4) and closes its life-cycle by becoming reproductively mature. METHODS: Testing two commercially available media (RPMI 1640, Schneider's Drosophila) in combination with each of the six different heat-inactivated sera, namely foetal bovine, rabbit, chicken, donkey, porcine and human serum, we have obtained the first reliable, fast and simple in vitro cultivation protocol for A. pegreffii. RESULTS: Schneider's Drosophila insect media supplemented with 10% chicken serum allowed high reproducibility and survival of adult A. pegreffii. The maturity was reached already at the beginning of the third week in culture. From collected eggs, hatched L2 were maintained in culture for 2 weeks. The protocol also enabled the description of undocumented morphological and ultrastructural features of the parasite developmental stages. CONCLUSIONS: Closing of the A. pegreffii life-cycle from L3 to reproducing adults is an important step from many research perspectives (e.g., vaccine and drug-target research, transgenesis, pathogenesis), but further effort is necessary to optimise the efficient moulting of L2 to infective L3.
Zobrazit více v PubMed
Bušelić I, Trumbić Ž, Hrabar J, Vrbatović A, Bočina I, Mladineo I. Molecular and cellular response to experimental Anisakis pegreffii (Nematoda, Anisakidae) third-stage larval infection in rats. Front Immunol. 2018;9:2055. PubMed PMC
Hrabar J, Trumbić Ž, Bočina I, Bušelić I, Vrbatović A, Mladineo I. Interplay between proinflammatory cytokines, miRNA, and tissue lesions in Anisakis-infected Sprague-Dawley rats. PLoS Negl Trop Dis. 2019;13:e0007397. PubMed PMC
Mladineo I, Hrabar J, Smodlaka H, Palmer L, Sakamaki K, Keklikoglou K, et al. Functional ultrastructure of the excretory gland cell in zoonotic anisakids (Anisakidae, Nematoda) Cells. 2019;8:1451. PubMed PMC
Stryiński R, Carrera M, Łopieńska-Biernat E. Tissue-specific proteome of Anisakis simplex L4 larvae reveal potential molecular mechanisms involved in parasite development and pathogenicity. Ann Parasitol. 2019;65:s261–s262.
Trumbić Ž, Hrabar J, Palevich N, Carbone V, Mladineo I. Molecular and evolutionary basis for survival, its failure, and virulence factors of the zoonotic nematode Anisakis pegreffii. Genomics. 2021;113:2891–2905. PubMed
Cavallero S, Bellini I, Pizzarelli A, D’Amelio S. What do in vitro and in vivo models tell us about anisakiasis? New tools still to be explored. Pathogens. 2022;11:285. PubMed PMC
Stryiński R, Mateos J, Carrera M, Jastrzębski JP, Bogacka I, Łopieńska-Biernat E. Tandem Mass Tagging (TMT) reveals tissue-specific proteome of L4 larvae of Anisakis simplex s. s.: Enzymes of energy and/or carbohydrate metabolism as potential drug targets in anisakiasis. Int J Mol Sci. 2022;23:4336. PubMed PMC
Robertson L, Arcos SC, Ciordia S, Carballeda-Sanguiao N, Mena MDC, Sánchez-Alonso I, et al. Immunoreactive proteins in the esophageal gland cells of Anisakis simplex sensu stricto detected by maldi-tof/tof analysis. Genes (Basel) 2020;11:683. PubMed PMC
Palomba M, Paoletti M, Colantoni A, Rughetti A, Nascetti G, Mattiucci S. Gene expression profiles of antigenic proteins of third stage larvae of the zoonotic nematode Anisakis pegreffii in response to temperature conditions. Parasite. 2019;26:52. PubMed PMC
Grabda J. Studies on the life cycle and morphogenesis of Anisakis simplex (Rudolphi, 1809) (Nematoda: Anisakidae) cultured in vitro. Acta Ichthyol Piscat. 1809;1976:119–141.
Banning P van. Some notes on a successful rearing of the herring-worm Anisakis marina L. (Nematoda: Heterocheilidae). J du Cons /Cons Perm Int pour l’Exploration la Mer. 1971;34:84–8.
Grabda J. Studies on survival and development in vitro of Anisakis simplex stage 3 larvae in time. Acta Ichthyol Piscat. 1982;12:69–77.
Iglesias L, Valero A, Benítez R, Adroher FJ. In vitro cultivation of Anisakis simplex: Pepsin increases survival and moulting from fourth larval to adult stage. Parasitology. 2001;123:285–291. PubMed
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2. New York: Springer-Verlag, New York; 2016.
Bartie KL, Taslima K, Bekaert M, Wehner S, Syaifudin M, Taggart JB, et al. Species composition in the Molobicus hybrid tilapia strain. Aquaculture. 2020;526:735433.
Nadler SA, Hudspeth DSS. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: Hypotheses of structural and sequence evolution. J Parasitol. 2000;86:380–393. PubMed
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Bowles J, McManus DP. Rapid discrimination of Echinococcus species and strains using a polymerase. Mol Biochem Parasitol. 1993;57:231–230. PubMed
Bowles J, Blair D, McManus DP. A molecular phylogeny of the human schistosomes. Mol. Phylogenet. Evol. 1995. p. 103–9. PubMed
D’Amelio S, Mathiopoulos KD, Santos CP, Pugachev ON, Webb SC, Picanço M, et al. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int J Parasitol. 2000;30:223–226. PubMed
Holland P. Ecdysozoa: insect and meantodes. Oxford: Anim Kingdom A Very Short Introd; 2011.
Barker G, Rees H. Ecdysteroids in menatodes. Parasitol Today. 1990;6:384–387. PubMed
Adroher FJ, Malagón D, Valero A, Benítez R. In vitro development of the fish parasite Hysterothylacium aduncum from the third larval stage recovered from a host to the third larval stage hatched from the egg. Dis Aquat Organ. 2004;58:41–45. PubMed
Adroher-Auroux FJ, Benítez-Rodríguez R. Chapter 21 Hysterothylacium aduncum. In: Sitjà-Bobadilla A, Bron JE, Wiegertjes GF, Piazzon MC, editors. Fish Parasites A Handb Protoc their Isol Cult Transm. Lings, Great Easton, UK: 5M Book; 2021. p. 311–29.
Piletz JE, Drivon J, Eisenga J, Buck W, Yen S, Mclin M, et al. Human cells grown with or without substitutes for fetal bovine serum. Cell Med. 2018;10:1–11. PubMed PMC
Leland SE. Studies on the in vitro growth of parasitic nematodes. I. Complete or partial parasitic development of some gastrointestinal nematodes of sheep and cattle. J Parasitol. 1963;49:600–11. PubMed
Smyth JD, Davies Z. In vitro culture of the strobilar stage of Echinococcus granulosus (sheep strain): a review of basic problems and results. Int J Parasitol. 1974;4:631–644. PubMed
Valles-Vega I, Molina-Fernández D, Benítez R, Hernández-Trujillo S, Adroher FJ. Early development and life cycle of Contracaecum multipapillatum s.l. from a brown pelican Pelecanus occidentalis in the Gulf of California, Mexico. Dis Aquat Organ. 2017;125:167–78. PubMed
Mkandawire TT, Grencis RK, Berriman M, Duque-Correa MA. Hatching of parasitic nematode eggs: a crucial step determining infection. Trends Parasitol. 2022;38:174–187. PubMed
Berry GN, Cannon LRG. The life history of Sulcascaris sulcata (Nematoda: Ascaridoidea), a parasite of marine molluscs and turtles. Int J Parasitol. 1981;11:43–54.
Køie M, Fagerholm H-P. Third-stage larvae emerge from eggs of Contracaecum osculatum (Nematoda, Anisakidae) J Parasitol. 1993;79:777–780. PubMed
Køie M, Berland B, Burt MD. Development to third-stage larvae occurs in the eggs of Anisakis simplex and Pseudoterranova decipiens (Nematoda, Ascaridoidea, Anisakidae) Can J Fish Aquat Sci. 1995;52:134–139.
Køie M. Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae) Can J Zool. 1993;71:1289–1296.
Smith JW, Wootten R. Anisakis and anisakiasis. Adv Parasitol. 1978;16:93–163. PubMed
Højgaard DP. Impact of temperature, salinity and light on hatching of eggs of Anisakis simlex (Nematoda, Anisakidae) isolated by a new method, and some remarks on survival of larvae. Sarsia. 1998;83:21–28.
Geenen PL, Bresciani J, Boes J, Pedersen A, Eriksen L, Fagerholm H-P, et al. The morphogenesis of Ascaris suum to the infective third-stage larvae within the egg. J Parasitol. 1999;85:616–622. PubMed
Abollo E, Pascual S. SEM study of Anisakis brevispiculata Dollfus, 1966 and Pseudoterranova ceticola (Deardoff and Overstreet, 1981) (Nematoda: Anisakidae), parasites of the pygmy sperm whale Kogia breviceps. Sci Mar. 2002;66:249–255.
Quiazon KMA, Santos MD, Yoshinaga T. Anisakis species (Nematoda: Anisakidae) of dwarf sperm whale Kogia sima (Owen, 1866) stranded off the Pacific coast of southern Philippine archipelago. Vet Parasitol. 2013;197:221–230. PubMed
Di Azevedo MIN, Knoff M, Carvalho VL, Mello WN, Lopes Torres EJ, Gomes DC, et al. Morphological and genetic identification of Anisakis paggiae (Nematoda: Anisakidae) in dwarf sperm whale Kogia sima from Brazilian waters. Dis Aquat Organ. 2015;113:103–111. PubMed
Molina-Fernández D, Adroher FJ, Benítez R. A scanning electron microscopy study of Anisakis physeteris molecularly identified: from third stage larvae from fish to fourth stage larvae obtained in vitro. Parasitol Res. 2018;117:2095–2103. PubMed PMC
Cavallero S, Bellini I, Pizzarelli A, Arcà B, D’amelio S. A miRNAs catalogue from third-stage larvae and extracellular vesicles of Anisakis pegreffii provides new clues for host-parasite interplay. Sci Rep. 2022;12:9667. PubMed PMC
Boysen AT, Whitehead B, Stensballe A, Carnerup A, Nylander T, Nejsum P. Fluorescent labeling of helminth extracellular vesicles using an in vivo whole organism approach. Biomedicines. 2020;8:213. PubMed PMC
Foor EW. Zygote formation in Ascaris lumbricoides. J Cell Biol. 1968;39:119–134. PubMed PMC
Wu YJ, Foor EW. Ultrastructure and function of oviduct-uterine junction in Ascaris suum (Nematoda) J Parasitol. 1983;69:121–128. PubMed
Brunanská M. Toxocara canis (Nematoda: Ascaridae): the fine structure of the oviduct, oviduct-uterine junction and uterus. Folia Parasitol (Praha) 1997;44:55–61. PubMed
Brunanská M. Toxocara canis (Nematoda, Ascarididae): ultrastructure of the rachis and the ovarian wall. Folia Parasitol (Praha) 1994;41:149–153. PubMed
Foor EW. Ultrastructural aspects of oocyte development and shell formation in Ascaris lumbricoides. J Parasitol. 1967;53:1245–1261. PubMed
Lee DL, Leštan P. Oogenesis and egg shell formation in. J Zool. 1971;164:189–196.