Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P506/12/1258
Grantová Agentura České Republiky - International
GBP505/12/G112
Grantová Agentura České Republiky - International
PROGRES Q43
Univerzita Karlova v Praze - International
UNCE 204017
Univerzita Karlova v Praze - International
SVV 244-260432/2017
Univerzita Karlova v Praze - International
MUNI/A/1362/2016
Masarykova Univerzita - International
InterBioMed LO1302
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.02.1.01/0.0/0.0/16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy - International
RVO 61388963
Akademie Věd České Republiky - International
PubMed
29510760
PubMed Central
PMC5840727
DOI
10.1186/s13071-018-2666-2
PII: 10.1186/s13071-018-2666-2
Knihovny.cz E-zdroje
- Klíčová slova
- Blood digestion, Cathepsin, Cysteine peptidase, Diplozoidae, Eudiplozoon nipponicum, Fish parasite, Haematophagy, Monogenea, Protease, S2 subsite,
- MeSH
- gastrointestinální trakt parazitologie MeSH
- hydrolýza MeSH
- interakce hostitele a parazita MeSH
- kapři parazitologie MeSH
- kathepsin B chemie genetika izolace a purifikace metabolismus MeSH
- kathepsin L chemie genetika izolace a purifikace metabolismus MeSH
- proteolýza MeSH
- rekombinantní proteiny analýza genetika izolace a purifikace MeSH
- stanovení celkové genové exprese MeSH
- Trematoda enzymologie genetika MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kathepsin B MeSH
- kathepsin L MeSH
- rekombinantní proteiny MeSH
BACKGROUND: Cysteine peptidases of clan CA, family C1 account for a major part of proteolytic activity in the haematophagous monogenean Eudiplozoon nipponicum. The full spectrum of cysteine cathepsins is, however, unknown and their particular biochemical properties, tissue localisation, and involvement in parasite-host relationships are yet to be explored. METHODS: Sequences of cathepsins L and B (EnCL and EnCB) were mined from E. nipponicum transcriptome and analysed bioinformatically. Genes encoding two EnCLs and one EnCB were cloned and recombinant proteins produced in vitro. The enzymes were purified by chromatography and their activity towards selected substrates was characterised. Antibodies and specific RNA probes were employed for localisation of the enzymes/transcripts in tissues of E. nipponicum adults. RESULTS: Transcriptomic analysis revealed a set of ten distinct transcripts that encode EnCLs. The enzymes are significantly variable in their active sites, specifically the S2 subsites responsible for interaction with substrates. Some of them display unusual structural features that resemble cathepsins B and S. Two recombinant EnCLs had different pH activity profiles against both synthetic and macromolecular substrates, and were able to hydrolyse blood proteins and collagen I. They were localised in the haematin cells of the worm's digestive tract and in gut lumen. The EnCB showed similarity with cathepsin B2 of Schistosoma mansoni. It displays molecular features typical of cathepsins B, including an occluding loop responsible for its exopeptidase activity. Although the EnCB hydrolysed haemoglobin in vitro, it was localised in the vitelline cells of the parasite and not the digestive tract. CONCLUSIONS: To our knowledge, this study represents the first complex bioinformatic and biochemical characterisation of cysteine peptidases in a monogenean. Eudiplozoon nipponicum adults express a variety of CLs, which are the most abundant peptidases in the worms. The properties and localisation of the two heterologously expressed EnCLs indicate a central role in the (partially extracellular?) digestion of host blood proteins. High variability of substrate-binding sites in the set of EnCLs suggests specific adaptation to a range of biological processes that require proteolysis. Surprisingly, a single cathepsin B is expressed by the parasite and it is not involved in digestion, but probably in vitellogenesis.
Zobrazit více v PubMed
Denis A, Gabron C, Lambert A. Presence en France du deux parasites d’origine Est-asiatique: Diplozoon nipponicum Goto 1891 et Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda) chez Cyprinus carpio (Teleostei, Cyprinidae) Bull Fr Piscic. 1983;289:128–134. doi: 10.1051/kmae:1983012. DOI
Matějusová I, Koubková B, D’ Amelio S, Cunningham CO. Genetic characterization of six species of diplozoids (Monogenea; Diplozoidae) Parasitology. 2001;123:465–474. PubMed
Fisheries and Aquaculture Department. About us - Fisheries and Aquaculture Department.. http://www.fao.org/fishery/about/en Updated 17 March 2017.
Kawatsu H. Studies on the anemia of fish-IX, hypochromic microcytic anemia of crucian carp caused by infestation with a trematode, Diplozoon nipponicum. Bull Japan Soc Sci fish. 1978;44:1315–1319. doi: 10.2331/suisan.44.1315. DOI
Smyth JD, Halton DW. The Monogenean - functional morphology. In: Smyth JD, Halton DW, editors. The Physiology of Trematodes. Cambridge: Cambridge University Press; 1983. p. 250–88.
Smyth JD, Halton DW. The Monogenean – physiology. In: Smyth JD, Halton DW, editors. The Physiology of Trematodes. Cambridge: Cambridge University Press; 1983. p. 289–320.
Hodová I, Matějusová I, Gelnar M. The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitizing carp (Cyprinus carpio L.) Cent Eur J Biol. 2010;5:702–709.
Valigurová A, Hodová I, Sonnek R, Koubková B, Gelnar M. Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialized adaptation for ectoparasitic lifestyle. Parasitol Res. 2011;108:383–94. PubMed
Konstanzová V, Koubková B, Kašný M, Ilgová J, Dzika E, Gelnar M. Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea) Parasitol Res. 2015;114:1485–1494. doi: 10.1007/s00436-015-4331-4. PubMed DOI
Sonenshine D. Biology of ticks. Volume 1. New York: Oxford University Press; 1991.
Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI
Jedličková L, Dvořáková H, Kašný M, Ilgová J, Potěšil D, Zdráhal Z, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae) Parasitology. 2016;143:494–506. doi: 10.1017/S0031182015001808. PubMed DOI
Sajid M, JH MK. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002;120:1–21. doi: 10.1016/S0166-6851(01)00438-8. PubMed DOI
Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol. 2003;19:417–423. doi: 10.1016/S1471-4922(03)00189-2. PubMed DOI
Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, JH MK, et al. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J Biol Chem. 2004;279:35950–35957. doi: 10.1074/jbc.M405842200. PubMed DOI
Delcroix M, Sajid M, Caffrey CR, Lim KC, Dvořák J, Hsieh I, et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem. 2006;281:39316–39329. doi: 10.1074/jbc.M607128200. PubMed DOI
Atkinson H, Babbitt P, Sajid M. The global cysteine peptidase landscape in parasites. Trends Parasitol. 2009;25:573–581. doi: 10.1016/j.pt.2009.09.006. PubMed DOI PMC
Kašný M, Mikeš L, Hampl V, Dvořák J, Caffrey CR, Dalton JP, et al. Peptidases of trematodes. Adv Parasitol. 2009;69:205–297. doi: 10.1016/S0065-308X(09)69004-7. PubMed DOI
Robinson MW, Dalton JP. Cysteine proteases of pathogenic organisms (Vol. 712) Boston: Springer; 2011.
McVeigh P, Maule AG, Dalton JP, Robinson MW. Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect. 2012;14:301–310. doi: 10.1016/j.micinf.2011.11.012. PubMed DOI
NCBI Resource Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44:D7–19. PubMed PMC
Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44:D343–D350. doi: 10.1093/nar/gkv1118. PubMed DOI PMC
The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169. doi: 10.1093/nar/gkw1099. PubMed DOI PMC
Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol. 2016;1374:23–54. doi: 10.1007/978-1-4939-3167-5_2. PubMed DOI
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Mashima J, Kodama Y, Kosuge T, Fujisawa T, Katayama T, Nagasaki H, et al. DNA data bank of Japan (DDBJ) progress report. Nucleic Acids Res. 2016;44:D51–D57. doi: 10.1093/nar/gkv1105. PubMed DOI PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597–W603. doi: 10.1093/nar/gks400. PubMed DOI PMC
Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, KT-BG S, et al. Precision mapping of the human O-GalNAc glycoproteome through Simple Cell technology. EMBO J. 2013;32:1478–1488. doi: 10.1038/emboj.2013.79. PubMed DOI PMC
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–D65. doi: 10.1093/nar/gkl842. PubMed DOI PMC
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite - a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10. doi: 10.1016/j.molbiopara.2016.11.005. PubMed DOI PMC
Frickey T, Lupas A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004;20:3702–4. doi: 10.1093/bioinformatics/bth444. PubMed DOI
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Caffrey CR, Salter JP, Lucas KD, Khiem D, Hsieh I, Lim K-C, et al. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol Biochem Parasitol. 2002;121:49–61. doi: 10.1016/S0166-6851(02)00022-1. PubMed DOI
Dvořák J, Delcroix M, Rossi A, Vopálenský V, Pospíšek M, Šedinová M, et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol. 2005;35:895–910. doi: 10.1016/j.ijpara.2005.02.018. PubMed DOI
Wang B-L, Xu Y, Wu C-Q, Xu Y-M, Wang H-H. Cloning, expression, and refolding of a secretory protein ESAT-6 of Mycobacterium tuberculosis. Protein Expr Purif. 2005;39:184–188. doi: 10.1016/j.pep.2004.09.020. PubMed DOI
Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, et al. Chemical approaches for functionally probing the proteome. Mol Cell Proteomics. 2002;1:60–68. doi: 10.1074/mcp.T100003-MCP200. PubMed DOI
Sajid M, JH MK, Hansell E, Mathieu MA, Lucas KD, Hsieh I, et al. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol Biochem Parasitol. 2003;131:65–75. doi: 10.1016/S0166-6851(03)00194-4. PubMed DOI
Quack T, Knobloch J, Beckmann S, Vicogne J, Dissous C, Grevelding CG. The formin-homology protein SmDia interacts with the Src Kinase SmTK and the GTPase SmRho1 in the gonads of Schistosoma mansoni. PLoS One. 2009;4:e6998. doi: 10.1371/journal.pone.0006998. PubMed DOI PMC
ECH H, Donaldson ME, Saville BJ. Detection of antisense RNA transcripts by strand-specific RT-PCR. Methods Mol Biol. 2010;630:125–138. doi: 10.1007/978-1-60761-629-0_9. PubMed DOI
Šácha P, Knedlík T, Schimer J, Tykvart J, Parolek J, Navrátil V, et al. iBodies: modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties. Angew Chem Int Ed Engl. 2016;55:2356–2360. doi: 10.1002/anie.201508642. PubMed DOI PMC
Baig S, Damian RT, Peterson DS. A novel cathepsin B active site motif is shared by helminth bloodfeeders. Exp Parasitol. 2002;101:83–89. doi: 10.1016/S0014-4894(02)00105-4. PubMed DOI
Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP. Proteinases and associated genes of parasitic helminths. Adv Parasitol. 1999;43:161–266. doi: 10.1016/S0065-308X(08)60243-2. PubMed DOI
Dalton JP, Caffrey CR, Sajid M, Stack C, Donnelly S, Loukas A, et al. Proteases in trematode biology. In: Maule A, Marks N, editors. Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. Cambridge: CABI; 2006. p. 348–68.
Smooker PM, Whisstock JC, Irving JA, Siyaguna S, Spithill TW, Pike RN. A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Protein Sci. 2000;9:2567–2572. doi: 10.1110/ps.9.12.2567. PubMed DOI PMC
Stack CM, Caffrey CR, Donnelly SM, Seshaadri A, Lowther J, Tort JF, et al. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J Biol Chem. 2008;283:9896–9908. doi: 10.1074/jbc.M708521200. PubMed DOI PMC
Norbury LJ, Hung A, Beckham S, Pike RN, Spithill TW, Craik CS, et al. Analysis of Fasciola cathepsin L5 by S2 subsite substitutions and determination of the P1-P4 specificity reveals an unusual preference. Biochimie. 2012;94:1119–1127. doi: 10.1016/j.biochi.2012.01.011. PubMed DOI
Pillay D, Boulangé AF, THT C. Expression, purification and characterisation of two variant cysteine peptidases from Trypanosoma congolense with active site substitutions. Protein Expr Purif. 2010;74:264–271. doi: 10.1016/j.pep.2010.06.021. PubMed DOI
Lecaille F, Choe Y, Brandt W, Li Z, Craik CS, Brömme D. Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry. 2002;41:8447–8454. doi: 10.1021/bi025638x. PubMed DOI
Corvo I, Cancela M, Cappetta M, Pi-Denis N, Tort JF, Roche L. The major cathepsin L secreted by the invasive juvenile Fasciola hepatica prefers proline in the S2 subsite and can cleave collagen. Mol Biochem Parasitol. 2009;167:41–47. doi: 10.1016/j.molbiopara.2009.04.005. PubMed DOI
Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem. 2006;281:12824–12832. doi: 10.1074/jbc.M513331200. PubMed DOI
Brömmes D, Bonneaug PR, Lachance P, Storer AC. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L-and cathepsin B-like specificity. J Biol Chem. 1994;269:30238–30242. PubMed
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007;7:S4. doi: 10.1186/1471-2148-7-S1-S4. PubMed DOI PMC
Dolečková K, Kašný M, Mikeš L, Cartwright J, Jedelský P, Schneider EL, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol. 2009;39:201–211. doi: 10.1016/j.ijpara.2008.06.010. PubMed DOI PMC
McGrath ME. The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct. 1999;28:181–204. doi: 10.1146/annurev.biophys.28.1.181. PubMed DOI
Mikeš L, Man P. Purification and characterization of a saccharide-binding protein from penetration glands of Diplostomum pseudospathaceum - a bifunctional molecule with cysteine protease activity. Parasitology. 2003;127:69–77. PubMed
Brady CP, Brindley PJ, Dowd AJ, Dalton JP. Schistosoma mansoni: differential expression of cathepsins L1 and L2 suggests discrete biological functions for each enzyme. Exp Parasitol. 2000;94:75–83. doi: 10.1006/expr.1999.4478. PubMed DOI
Dvořák J, Mashiyama ST, Sajid M, Braschi S, Delcroix M, Schneider EL, et al. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2009;3:e449. doi: 10.1371/journal.pntd.0000449. PubMed DOI PMC
Lowther J, Robinson MW, Donnelly SM, Xu W, Stack CM, Matthews JM, et al. The importance of pH in regulating the function of the Fasciola hepatica cathepsin L1 cysteine protease. PLoS Negl Trop Dis. 2009;3:e369. doi: 10.1371/journal.pntd.0000369. PubMed DOI PMC
Franta Z, Sojka D, Frantová H, Dvořák J, Horn M, Srba J, et al. IrCL1 - the haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int J Parasitol. 2011;41:1253–1262. doi: 10.1016/j.ijpara.2011.06.006. PubMed DOI
Brinker A, Weber E, Stoll D, Voigt J, Müller A, Sewald N, et al. Highly potent inhibitors of human cathepsin L identified by screening combinatorial pentapeptide amide collections. Eur J Biochem. 2000;267:5085–5092. doi: 10.1046/j.1432-1327.2000.01570.x. PubMed DOI
Steverding D. The cathepsin B-selective inhibitors CA-074 and CA-074Me inactivate cathepsin L under reducing conditions. Open Enzym Inhib J. 2011;4:11–16. doi: 10.2174/1874940201104010011. DOI
Steverding D, Sexton DW, Wang X, Gehrke SS, Wagner GK, Caffrey CR. Trypanosoma brucei: chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol. 2012;42:481–488. doi: 10.1016/j.ijpara.2012.03.009. PubMed DOI
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74:69–86. doi: 10.1146/annurev-physiol-012110-142317. PubMed DOI
Chappell CL, Dresden MH. Schistosoma mansoni: Proteinase activity of “hemoglobinase” from the digestive tract of adult worms. Exp Parasitol. 1986;61:160–167. doi: 10.1016/0014-4894(86)90148-7. PubMed DOI
Halton DW. Nutritional adaptations to parasitism within the Platyhelminthes. Int J Parasitol. 1997;27:693–704. PubMed
Dalton JP, Skelly P, Halton DW. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool. 2004;82:211–232. doi: 10.1139/z03-213. DOI
Robinson MW, Corvo I, Jones PM, George AM, Padula MP, To J et al. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica. PLoS Negl Trop Dis. 2011;5:e1012. doi: 10.1371/journal.pntd.0001012. PubMed DOI PMC
Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell. 2010;143:1018–1029. doi: 10.1016/j.cell.2010.11.020. PubMed DOI PMC
Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, et al. Antisense transcripts with rice full-length cDNAs. Genome Biol. 2003;5:R5. doi: 10.1186/gb-2003-5-1-r5. PubMed DOI PMC
Steigele S, Nieselt K. Open reading frames provide a rich pool of potential natural antisense transcripts in fungal genomes. Nucleic Acids Res. 2005;33:5034–5044. doi: 10.1093/nar/gki804. PubMed DOI PMC
Henke C, Strissel PL, Schubert M-T, Mitchell M, Stolt CC, Faschingbauer F, et al. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis. Retrovirology. 2015;12:9. doi: 10.1186/s12977-015-0138-8. PubMed DOI PMC
Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nat Rev Genet. 2013;14:880–893. doi: 10.1038/nrg3594. PubMed DOI
Illy C, Quraishi O, Wang J, Purisima E, Vernet T, Mort JS. Role of the occluding loop in cathepsin B activity. J Biol Chem. 1997;272:1197–1202. doi: 10.1074/jbc.272.2.1197. PubMed DOI
Michel A, Ghoneim H, Resto M, Klinkert MQ, Kunz W. Sequence, characterization and localization of a cysteine proteinase cathepsin L in Schistosoma mansoni. Mol Biochem Parasitol. 1995;73:7–18. doi: 10.1016/0166-6851(95)00092-F. PubMed DOI
Britton C, Murray L. A cathepsin L protease essential for Caenorhabditis elegans embryogenesis is functionally conserved in parasitic nematodes. Mol Biochem Parasitol. 2002;122:21–33. doi: 10.1016/S0166-6851(02)00066-X. PubMed DOI
Pinlaor P, Kaewpitoon N, Laha T, Sripa B, Kaewkes S, Morales ME, et al. Cathepsin F cysteine protease of the human liver fluke. PLoS Negl Trop Dis. 2009;3:e398. doi: 10.1371/journal.pntd.0000398. PubMed DOI PMC
Ogawa K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda) Parasitology. 2015;142:178–195. doi: 10.1017/S0031182014000808. PubMed DOI