An insight into the functional genomics and species classification of Eudiplozoon nipponicum (Monogenea, Diplozoidae), a haematophagous parasite of the common carp Cyprinus carpio
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
GBP505/12/G112
Grantová Agentura České Republiky
20-15989S
Grantová Agentura České Republiky
GBP505/12/G112
Grantová Agentura České Republiky
MUNI/A/1325/2015
Masarykova Univerzita
BOF21PD01
Universiteit Hasselt
P 32691
Austrian Science Fund
PubMed
37380941
PubMed Central
PMC10308649
DOI
10.1186/s12864-023-09461-8
PII: 10.1186/s12864-023-09461-8
Knihovny.cz E-resources
- Keywords
- Annotation, Assembly, Genome, Helminths, Host–parasite interaction, Illumina, Mitochondrial genome, Monogenea, Nanopore, Sequencing,
- MeSH
- Phylogeny MeSH
- Genomics MeSH
- Carps * genetics MeSH
- Parasites * MeSH
- Trematoda * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS: We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS: Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
See more in PubMed
Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W. Homage to Linnaeus: How many parasites? How many hosts? Proc Natl Acad Sci. 2008;105(Suppl 1):11482–11489. doi: 10.1073/pnas.0803232105. PubMed DOI PMC
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10. doi: 10.1016/j.molbiopara.2016.11.005. PubMed DOI PMC
Zarowiecki M, Berriman M. What helminth genomes have taught us about parasite evolution. Parasitology. 2015;142:S85–97. doi: 10.1017/S0031182014001449. PubMed DOI PMC
Doyle SR. Improving helminth genome resources in the post-genomic era. Trends Parasitol. 2022;38:831–840. doi: 10.1016/j.pt.2022.06.002. PubMed DOI
International Helminth Genomes Consortium Comparative genomics of the major parasitic worms. Nat Genet. 2019;51:163–174. doi: 10.1038/s41588-018-0262-1. PubMed DOI PMC
Maizels RM, Smits HH, McSorley HJ. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity. 2018;49:801–818. doi: 10.1016/j.immuni.2018.10.016. PubMed DOI PMC
Hodžić A, Dheilly NM, Cabezas-Cruz A, Berry D. The helminth holobiont: a multidimensional host–parasite–microbiota interaction. Trends Parasitol. 2023;39:91–100. doi: 10.1016/j.pt.2022.11.012. PubMed DOI
Coakley G, Buck AH, Maizels RM. Host parasite communications—messages from helminths for the immune system. Mol Biochem Parasitol. 2016;208:33–40. doi: 10.1016/j.molbiopara.2016.06.003. PubMed DOI PMC
Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, et al. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep. 2022;41:111522. doi: 10.1016/j.celrep.2022.111522. PubMed DOI PMC
Chaabane A, Du Preez L, Johnston GR, Verneau O. Revision of the systematics of the Polystomoidinae (Platyhelminthes, Monogenea, Polystomatidae) with redefinition of Polystomoides Ward, 1917 and Uteropolystomoides Tinsley. Parasite. 2022;29:56. doi: 10.1051/parasite/2022056. PubMed DOI PMC
Whittington ID, Cribb BW, Hamwood TE, Halliday JA. Host-specificity of monogenean (platyhelminth) parasites: a role for anterior adhesive areas? Int J Parasitol. 2000;30:305–320. doi: 10.1016/S0020-7519(00)00006-0. PubMed DOI
Strona G, Galli P, Fattorini S. Fish parasites resolve the paradox of missing coextinctions. Nat Commun. 2013;4:1718. doi: 10.1038/ncomms2723. PubMed DOI
Thoney DA, Hargis WJ. Monogenea (platyhelminthes) as hazards for fish in confinement. Annu Rev Fish Dis. 1991;1:133–153. doi: 10.1016/0959-8030(91)90027-H. DOI
Ogawa K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda) Parasitology. 2015;142:178–195. doi: 10.1017/S0031182014000808. PubMed DOI
Littlewood D. Phylogeny of the Platyhelminthes and the evolution of parasitism. Biol J Lin Soc. 1999;68:257–287. doi: 10.1111/j.1095-8312.1999.tb01169.x. DOI
Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the ‘microturbellarian’ roots of platyhelminth evolutionary innovation. Elife. 2015;4:e05503. doi: 10.7554/eLife.05503. PubMed DOI PMC
Hahn C, Fromm B, Bachmann L. Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata. Genome Biol Evol. 2014;6:1105–1117. doi: 10.1093/gbe/evu078. PubMed DOI PMC
Caña-Bozada V, Robinson MW, Hernández-Mena DI, Morales-Serna FN. Exploring evolutionary relationships within neodermata using putative orthologous groups of proteins, with emphasis on peptidases. Trop Med Infect Dis. 2023;8:59. doi: 10.3390/tropicalmed8010059. PubMed DOI PMC
Mendoza-Palmero CA, Blasco-Costa I, Scholz T. Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes) Parasit Vectors. 2015;8:164. doi: 10.1186/s13071-015-0767-8. PubMed DOI PMC
Mollaret I, Jamieson BGM, Adlard RD, Hugall A, Lecointre G, Chombard C, et al. Phylogenetic analysis of the Monogenea and their relationships with Digenea and Eucestoda inferred from 28S rDNA sequences. Mol Biochem Parasitol. 1997;90:433–438. doi: 10.1016/S0166-6851(97)00176-X. PubMed DOI
Pettersen RA, Junge C, Østbye K, Mo TA, Vøllestad LA. Genetic population structure of the monogenean parasite Gyrodactylus thymalli and its host European grayling (Thymallus thymallus) in a large Norwegian lake. Hydrobiologia. 2021;848:547–561. doi: 10.1007/s10750-020-04431-7. DOI
Kmentová N, Hahn C, Koblmüller S, Zimmermann H, Vorel J, Artois T, et al. Contrasting host-parasite population structure: morphology and mitogenomics of a parasitic flatworm on pelagic deepwater cichlid fishes from Lake Tanganyika. Biology. 2021;10:797. doi: 10.3390/biology10080797. PubMed DOI PMC
Kmentová N, Koblmüller S, van Steenberge M, Raeymaekers JAM, Artois T, de Keyzer ELR, et al. Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int J Parasitol. 2020;50:471–486. doi: 10.1016/j.ijpara.2020.02.002. PubMed DOI
Vorel J, Cwiklinski K, Roudnický P, Ilgová J, Jedličková L, Dalton JP, et al. Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling. BMC Genomics. 2021;22:274. doi: 10.1186/s12864-021-07589-z. PubMed DOI PMC
Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite. 2022;29:51. doi: 10.1051/parasite/2022052. PubMed DOI PMC
Denis A, Gabrion C, Lambert A. Présence en France de deux parasites d’origine est-asiatique: Diplozoon nipponicum Goto, 1891 (Monogenea) et Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda) chez Cyprinus carpio (Teleostei, Cyprinidae). Bulletin Français de Pisciculture. 1983;289:128–34.
Hodová I, Matejusova I, Gelnar M. The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitizing carp (Cyprinus carpio L.) Open Life Sci. 2010;5:702–709. doi: 10.2478/s11535-010-0040-2. DOI
Valigurová A, Hodová I, Sonnek R, Koubková B, Gelnar M. Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialized adaptation for ectoparasitic lifestyle. Parasitol Res. 2011;108:383–394. doi: 10.1007/s00436-010-2077-6. PubMed DOI
Jedličková L, Dvořáková H, Kašný M, Ilgová J, Potěšil D, Zdráhal Z, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae) Parasitology. 2016;143:494–506. doi: 10.1017/S0031182015001808. PubMed DOI
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, et al. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasit Vectors. 2018;11:142. doi: 10.1186/s13071-018-2666-2. PubMed DOI PMC
Jedličková L, Dvořák J, Hrachovinová I, Ulrychová L, Kašný M, Mikeš L. A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro. Int J Parasitol. 2019;49:337–346. doi: 10.1016/j.ijpara.2018.11.010. PubMed DOI
Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, et al. Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea) Parasite. 2018;25:61. doi: 10.1051/parasite/2018062. PubMed DOI PMC
Ilgová J, Jedličková L, Dvořáková H, Benovics M, Mikeš L, Janda L, et al. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci Rep. 2017;7:17526. doi: 10.1038/s41598-017-17598-2. PubMed DOI PMC
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea) PLoS ONE. 2020;15:e0231681. doi: 10.1371/journal.pone.0231681. PubMed DOI PMC
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, et al. Three new Diplozoidae mitogenomes expose unusual compositional biases within the Monogenea class: implications for phylogenetic studies. BMC Evol Biol. 2018;18:133. doi: 10.1186/s12862-018-1249-3. PubMed DOI PMC
Nishihira T, Urabe M. Morphological and molecular studies of Eudiplozoon nipponicum (Goto, 1891) and Eudiplozoon kamegaii sp. n. (Monogenea; Diplozoidae) Folia Parasitol. 2020;2020(67):2020.018. PubMed
Chmúrčiaková N, Kašný M, Orosová M. Cytogenetics of Eudiplozoon nipponicum (Monogenea, Diplozoidae): karyotype, spermatocyte division and 18S rDNA location. Parasitol Int. 2020;76:102031. doi: 10.1016/j.parint.2019.102031. PubMed DOI
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–D592. doi: 10.1093/nar/gkac963. PubMed DOI PMC
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–2122. doi: 10.1093/molbev/msx148. PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022. Nucleic Acids Res. 2023;51:D418–D427. doi: 10.1093/nar/gkac993. PubMed DOI PMC
Hanks SK. Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol. 2003;4:111. doi: 10.1186/gb-2003-4-5-111. PubMed DOI PMC
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22:185–198. doi: 10.1038/s41576-020-00302-y. PubMed DOI
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, et al. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res. 2022;10:2. doi: 10.1186/s40364-021-00345-1. PubMed DOI PMC
Saleem RA, Banerjee-Basu S, Murphy TC, Baxevanis A, Walter MA. Essential structural and functional determinants within the forkhead domain of FOXC1. Nucleic Acids Res. 2004;32:4182–4193. doi: 10.1093/nar/gkh742. PubMed DOI PMC
Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2:202–214. doi: 10.1007/s13238-011-1018-1. PubMed DOI PMC
Samir P, Kanneganti T-D. DEAD/H-box helicases in immunity, inflammation, cell differentiation, and cell death and disease. Cells. 2022;11:1608. doi: 10.3390/cells11101608. PubMed DOI PMC
Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. The EF-hand domain: a globally cooperative structural unit. Protein Sci. 2009;11:198–205. doi: 10.1110/ps.33302. PubMed DOI PMC
Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 2004;13:1435–1448. doi: 10.1110/ps.03554604. PubMed DOI PMC
Kumar S, Leeb AS, Vaughan AM, Kappe SHI. Plasmodium falciparum cysteine rich secretory protein uniquely localizes to one end of male gametes. Mol Biochem Parasitol. 2022;248:111447. doi: 10.1016/j.molbiopara.2022.111447. PubMed DOI PMC
Gibbs GM, Roelants K, O’Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense. Endocr Rev. 2008;29:865–897. doi: 10.1210/er.2008-0032. PubMed DOI
Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–363. doi: 10.1038/nature08144. PubMed DOI PMC
Ohn T, Chiang Y-C, Lee DJ, Yao G, Zhang C, Denis CL. CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4. Nucleic Acids Res. 2007;35:3002–3015. doi: 10.1093/nar/gkm196. PubMed DOI PMC
Hench J, Henriksson J, Abou-Zied AM, Lüppert M, Dethlefsen J, Mukherjee K, et al. The homeobox genes of Caenorhabditis elegans and insights into their spatio-temporal expression dynamics during embryogenesis. PLoS ONE. 2015;10:e0126947. doi: 10.1371/journal.pone.0126947. PubMed DOI PMC
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma. 2016;125:497–521. doi: 10.1007/s00412-015-0543-8. PubMed DOI PMC
Ausio J. Histone variants-the structure behind the function. Brief Funct Genomic Proteomic. 2006;5:228–243. doi: 10.1093/bfgp/ell020. PubMed DOI
Tikhonov DB, Zhorov BS. 3D structures and molecular evolution of ion channels. In: Evolutionary physiology and biochemistry - advances and perspectives. Rijeka: InTech; 2018.
Andrisani O, Liu Q, Kehn P, Leitner WW, Moon K, Vazquez-Maldonado N, et al. Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nat Immunol. 2022;23:354–357. doi: 10.1038/s41590-022-01149-7. PubMed DOI PMC
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Zhang J, Wu X, Xie M, Li A. The complete mitochondrial genome of Pseudochauhanea macrorchis (Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in polyopisthocotylea. Mol Biol Rep. 2012;39:8115–8125. doi: 10.1007/s11033-012-1659-z. PubMed DOI
Zhang J, Wu X, Xie M, Xu X, Li A. The mitochondrial genome of Polylabris halichoeres (Monogenea: Microcotylidae) Mitochondrial DNA. 2011;22:3–5. doi: 10.3109/19401736.2011.588223. PubMed DOI
Poulin R. Determinants of host-specificity in parasites of freshwater fishes. Int J Parasitol. 1992;22:753–758. doi: 10.1016/0020-7519(92)90124-4. PubMed DOI
Řehulková E, Rahmouni I, Pariselle A, Šimková A. Integrating morphological and molecular approaches for characterizing four species of Dactylogyrus (Monogenea: Dactylogyridae) from Moroccan cyprinids, with comments on their host specificity and phylogenetic relationships. PeerJ. 2021;9:e10867. doi: 10.7717/peerj.10867. PubMed DOI PMC
Jirsová D, Koubková B, Jirounková E, Vorel J, Zhou X, Ding X, et al. Redescription of Paradiplozoon opsariichthydis (Jiang, Wu et Wang 1984) Jiang, Wu et Wang, 1989 (Monogenea, Diplozoidae) Parasitol Int. 2021;84:102409. doi: 10.1016/j.parint.2021.102409. PubMed DOI
Řehulková E, Benovics M, Šimková A. Uncovering the diversity of monogeneans (Platyhelminthes) on endemic cypriniform fishes of the Balkan Peninsula: new species of Dactylogyrus and comments on their phylogeny and host-parasite associations in a biogeographic context. Parasite. 2020;27:66. doi: 10.1051/parasite/2020059. PubMed DOI PMC
Konczal M, Przesmycka KJ, Mohammed RS, Phillips KP, Camara F, Chmielewski S, et al. Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Mol Ecol. 2020;29:1494–1507. doi: 10.1111/mec.15421. PubMed DOI
Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 2019;20:92. doi: 10.1186/s13059-019-1715-2. PubMed DOI PMC
Bennett HM, Mok HP, Gkrania-Klotsas E, Tsai IJ, Stanley EJ, Antoun NM, et al. The genome of the sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain lesion. Genome Biol. 2014;15:510. doi: 10.1186/s13059-014-0510-3. PubMed DOI PMC
Cwiklinski K, Dalton JP, Dufresne PJ, la Course J, Williams DJ, Hodgkinson J, et al. The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol. 2015;16:71. doi: 10.1186/s13059-015-0632-2. PubMed DOI PMC
Young ND, Stroehlein AJ, Kinkar L, Wang T, Sohn W-M, Chang BCH, et al. High-quality reference genome for Clonorchis sinensis. Genomics. 2021;113:1605–1615. doi: 10.1016/j.ygeno.2021.03.001. PubMed DOI
Park G-M, Im K, Huh S, Yong T-S. Chromosomes of the liver fluke, Clonorchis sinensis. Korean J Parasitol. 2000;38:201. doi: 10.3347/kjp.2000.38.3.201. PubMed DOI PMC
Kini RM. Toxins in thrombosis and haemostasis: potential beyond imagination. J Thromb Haemost. 2011;9:195–208. doi: 10.1111/j.1538-7836.2011.04279.x. PubMed DOI
Schroeder H, Skelly PJ, Zipfel PF, Losson B, Vanderplasschen A. Subversion of complement by hematophagous parasites. Dev Comp Immunol. 2009;33:5–13. doi: 10.1016/j.dci.2008.07.010. PubMed DOI PMC
Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci. 2008;33:601–608. doi: 10.1016/j.tibs.2008.09.001. PubMed DOI
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl Trop Dis. 2018;12:e0005840. doi: 10.1371/journal.pntd.0005840. PubMed DOI PMC
Yang Y, jun Wen Y, Cai YN, Vallée I, Boireau P, Liu MY, et al. Serine proteases of parasitic helminths. Korean J Parasitol. 2015;53:1–11. doi: 10.3347/kjp.2015.53.1.1. PubMed DOI PMC
Atkinson HJ, Babbitt PC, Sajid M. The global cysteine peptidase landscape in parasites. Trends Parasitol. 2009;25:573–581. doi: 10.1016/j.pt.2009.09.006. PubMed DOI PMC
Hola-Jamriska L, Tort JF, Dalton JP, Day SR, Fan J, Aaskov J, et al. Cathepsin C from Schistosoma japonicum. cDNA encoding the preproenzyme and its phylogenetic relationships. Eur J Biochem. 1998;255:527–534. doi: 10.1046/j.1432-1327.1998.2550527.x. PubMed DOI
Kang J-M, Yoo W-G, Lê HG, Thái TL, Hong S-J, Sohn W-M, et al. Partial characterization of two cathepsin D family aspartic peptidases of Clonorchis sinensis. Korean J Parasitol. 2019;57:671–680. doi: 10.3347/kjp.2019.57.6.671. PubMed DOI PMC
Avnet S, Lamolinara A, Zini N, Solimando L, Quacquaruccio G, Granchi D, et al. Effects of antisense mediated inhibition of cathepsin K on human osteoclasts obtained from peripheral blood. J Orthop Res. 2006;24:1699–1708. doi: 10.1002/jor.20209. PubMed DOI
Strube KH, Kröger B, Bialojan S, Otte M, Dodt J. Isolation, sequence analysis, and cloning of haemadin. An anticoagulant peptide from the Indian leech. J Biol Chem. 1993;268:8590–8595. doi: 10.1016/S0021-9258(18)52916-1. PubMed DOI
Zingali RB, Jandrot-Perrus M, Guillin MC, Bon C. Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition. Biochemistry. 1993;32:10794–10802. doi: 10.1021/bi00091a034. PubMed DOI
Frayha GJ. Comparative metabolism of acetate in the taeniid tapeworms Echinococcus granulosus, E. multilocularis and Taenia hydatigena. Comp Biochem Physiol B. 1971;39:167–170. doi: 10.1016/0305-0491(71)90264-1. PubMed DOI
Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–358. doi: 10.1038/nature08160. PubMed DOI PMC
Reddi AR, Hamza I. Heme mobilization in animals: a metallolipid’s journey. Acc Chem Res. 2016;49:1104–1110. doi: 10.1021/acs.accounts.5b00553. PubMed DOI PMC
Peterková K, Vorel J, Ilgová J, Ostašov P, Fajtová P, Konečný L, et al. Proteases and their inhibitors involved in Schistosoma mansoni egg-host interaction revealed by comparative transcriptomics with Fasciola hepatica eggs. Int J Parasitol. 2023 doi: 10.1016/j.ijpara.2022.12.007. PubMed DOI
deWalick S, Hensbergen PJ, Bexkens ML, Grosserichter-Wagener C, Hokke CH, Deelder AM, et al. Binding of von Willebrand factor and plasma proteins to the eggshell of Schistosoma mansoni. Int J Parasitol. 2014;44:263–268. doi: 10.1016/j.ijpara.2013.12.006. PubMed DOI
Wu K, Zhai X, Huang S, Jiang L, Yu Z, Huang J. Protein kinases: potential drug targets against Schistosoma japonicum. Front Cell Infect Microbiol. 2021;11:691757. doi: 10.3389/fcimb.2021.691757. PubMed DOI PMC
Andrade LF, Nahum LA, Avelar LG, Silva LL, Zerlotini A, Ruiz JC, et al. Eukaryotic Protein Kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genomics. 2011;12:215. doi: 10.1186/1471-2164-12-215. PubMed DOI PMC
Kim D-W, Yoo WG, Lee M-R, Yang H-W, Kim Y-J, Cho S-H, et al. Transcriptome sequencing and analysis of the zoonotic parasite Spirometra erinacei spargana (plerocercoids) Parasit Vectors. 2014;7:368. doi: 10.1186/1756-3305-7-368. PubMed DOI PMC
Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, de Graef J, et al. Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora. BMC Genomics. 2013;14:118. doi: 10.1186/1471-2164-14-118. PubMed DOI PMC
Bennuru S, Meng Z, Ribeiro JMC, Semnani RT, Ghedin E, Chan K, et al. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci. 2011;108:9649–9654. doi: 10.1073/pnas.1011481108. PubMed DOI PMC
Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M, et al. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis. 2012;6:e1897. doi: 10.1371/journal.pntd.0001897. PubMed DOI PMC
Drummond MG, Calzavara-Silva CE, D’Astolfo DS, Cardoso FC, Rajão MA, Mourão MM, et al. Molecular characterization of the Schistosoma mansoni zinc finger protein SmZF1 as a transcription factor. PLoS Negl Trop Dis. 2009;3:e547. doi: 10.1371/journal.pntd.0000547. PubMed DOI PMC
Cantacessi C, Campbell BE, Visser A, Geldhof P, Nolan MJ, Nisbet AJ, et al. A portrait of the “SCP/TAPS” proteins of eukaryotes — developing a framework for fundamental research and biotechnological outcomes. Biotechnol Adv. 2009;27:376–388. doi: 10.1016/j.biotechadv.2009.02.005. PubMed DOI
Logan J, Pearson MS, Manda SS, Choi Y-J, Field M, Eichenberger RM, et al. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl Trop Dis. 2020;14:e0008237. doi: 10.1371/journal.pntd.0008237. PubMed DOI PMC
Boeger WA, Kritsky DC. Phylogeny and a revised classification of the monogenoidea bychowsky, 1937 (Platyhelminthes) Syst Parasitol. 1993;26:1–32. doi: 10.1007/BF00009644. DOI
Vanhove MPM, Tessens B, Schoelinck C, Jondelius U, Littlewood T, Artois T, et al. Problematic barcoding in flatworms: a case-study on monogeneans and rhabdocoels (Platyhelminthes) Zookeys. 2013;365:355–379. doi: 10.3897/zookeys.365.5776. PubMed DOI PMC
Geraerts M, Huyse T, Barson M, Bassirou H, Bilong Bilong CF, Bitja Nyom AR, et al. Mosaic or melting pot: The use of monogeneans as a biological tag and magnifying glass to discriminate introduced populations of Nile tilapia in sub-Saharan Africa. Genomics. 2022;114:110328. doi: 10.1016/j.ygeno.2022.110328. PubMed DOI
Vanhove MPM, Briscoe AG, Jorissen MWP, Littlewood DTJ, Huyse T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae) BMC Genomics. 2018;19:520. doi: 10.1186/s12864-018-4893-5. PubMed DOI PMC
Monnens M, Thijs S, Briscoe AG, Clark M, Frost EJ, Littlewood DTJ, et al. The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. Int J Biol Macromol. 2020;162:454–469. doi: 10.1016/j.ijbiomac.2020.06.025. PubMed DOI
Babraham Bioinformatics - FastQC. A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 19 Oct 2022.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics. 2013;29:308–315. doi: 10.1093/bioinformatics/bts690. PubMed DOI
González-Domínguez J, Schmidt B. ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics. 2016;32:1562–1564. doi: 10.1093/bioinformatics/btw038. PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
ONT Community. https://community.nanoporetech.com/. Accessed 19 Oct 2022.
de Coster W, D’Hert S, Schultz DT, Cruts M, van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi: 10.1093/bioinformatics/bty149. PubMed DOI PMC
Porechop. https://github.com/rrwick/Porechop. Accessed 20 Oct 2022.
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC
Genome Size Estimation Tutorial. https://bioinformatics.uconn.edu/genome-size-estimation-tutorial/. Accessed 4 Nov 2022.
R core team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 12 Nov 2022.
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33:105–110. doi: 10.1016/S0091-679X(08)60516-6. PubMed DOI
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant. 1992;85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x. DOI
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 2013;29:2669–2677. doi: 10.1093/bioinformatics/btt476. PubMed DOI PMC
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol. 2020;16:e1007981. doi: 10.1371/journal.pcbi.1007981. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–4654. doi: 10.1093/molbev/msab199. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–1067. doi: 10.1093/bioinformatics/btm071. PubMed DOI
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34:W435–W439. doi: 10.1093/nar/gkl200. PubMed DOI PMC
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59. doi: 10.1186/1471-2105-5-59. PubMed DOI PMC
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci. 2020;17:9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. https://www.repeatmasker.org/. Accessed 31 Jan 2023.
Lomsadze A. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–6506. doi: 10.1093/nar/gki937. PubMed DOI PMC
Bateman A, Martin M-J, Orchard S, Magrane M, Ahmad S, Alpi E, et al. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2022 doi: 10.1093/nar/gkac1052. PubMed DOI PMC
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022;50:D20–D26. doi: 10.1093/nar/gkab1112. PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. doi: 10.1186/1471-2105-12-491. PubMed DOI PMC
Palmer JM, Stajich JE. Funannotate (computer software). https://github.com/nextgenusfs/funannotate. Accessed 31 Jan 2023.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Kall L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction–the phobius web server. Nucleic Acids Res. 2007;35 Web Server:W429–W433. doi: 10.1093/nar/gkm256. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Annocomba: A flexible genome annotation pipeline combining funannotate and MAKER, snakemake and singularity. https://github.com/reslp/annocomba. Accessed 31 Jan 2023.
Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2522. doi: 10.1093/bioinformatics/bts480. PubMed DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Jovelin R, Justine J-L. Phylogenetic relationships within the polyopisthocotylean monogeneans (Platyhelminthes) inferred from partial 28S rDNA sequences. Int J Parasitol. 2001;31:393–401. doi: 10.1016/S0020-7519(01)00114-X. PubMed DOI
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2016;45:e18. PubMed PMC
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–W57. doi: 10.1093/nar/gkw413. PubMed DOI PMC
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59–64. doi: 10.1093/nar/gkz238. PubMed DOI PMC
Brown SDJ, Collins RA, Boyer S, Lefort M, Malumbres-Olarte J, Vink CJ, et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour. 2012;12:562–565. doi: 10.1111/j.1755-0998.2011.03108.x. PubMed DOI
Sievers F, Higgins DG. Clustal omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–145. doi: 10.1002/pro.3290. PubMed DOI PMC