• This record comes from PubMed

Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika

. 2021 Aug 18 ; 10 (8) : . [epub] 20210818

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
P505/12/G112 Grantová Agentura České Republiky
GA19-13573S Grantová Agentura České Republiky
1513419N Fonds Wetenschappelijk Onderzoek
P 32691 Austrian Science Fund
GOH3817N Fonds Wetenschappelijk Onderzoek
BOF20TT06 Universiteit Hasselt
e-INFRA LM2018140 Ministerstvo Školství, Mládeže a Tělovýchovy

Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.

See more in PubMed

Angel M.V. Biodiversity of the pelagic ocean. Conserv. Biol. 1993;7:760–772. doi: 10.1046/j.1523-1739.1993.740760.x. DOI

Lowe-McConnell R. Fish communities in the African Great Lakes. Environ. Biol. Fishes. 1996;45:219–235. doi: 10.1007/BF00003090. DOI

Vadeboncoeur Y., Mcintyre P.B., Jake Vander Zanden M. Borders of biodiversity: Life at the edge of the World’s large lakes. Bioscience. 2011;61:526–537. doi: 10.1525/bio.2011.61.7.7. DOI

Hellberg M.E., Burton R.S., Neigel J.E., Palumbi S.R. Genetic assessment of connectivity among marine populations. Bull. Mar. Sci. 2002;70:273–290.

Savoca S., Grifó G., Panarello G., Albano M., Giacobbe S., Capillo G., Spanó N., Consolo G. Modelling prey-predator interactions in Messina beachrock pools. Ecol. Modell. 2020;434:109206. doi: 10.1016/j.ecolmodel.2020.109206. DOI

Norris R.D. Pelagic species diversity, biogeography, and evolution. Paleobiology. 2000;26:236–258. doi: 10.1666/0094-8373(2000)26[236:PSDBAE]2.0.CO;2. DOI

Præbel K., Knudsen R., Siwertsson A., Karhunen M., Kahilainen K.K., Ovaskainen O., Østbye K., Peruzzi S., Fevolden S.-E., Amundsen P.-A. Ecological speciation in postglacial European whitefish: Rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecol. Evol. 2013;3:4970–4986. doi: 10.1002/ece3.867. PubMed DOI PMC

Boxshall G.A. Host specificity in copepod parasites of deep-sea fishes. J. Mar. Syst. 1998;15:215–223. doi: 10.1016/S0924-7963(97)00058-4. DOI

Bray R.A., Littlewood D.T.J., Herniou E.A., Williams B., Henderson R.E. Digenean parasites of deep-sea teleosts: A review and case studies of intrageneric phylogenies. Parasitology. 1999;119:S125–S144. doi: 10.1017/S0031182000084687. PubMed DOI

Campbell R.A., Headrich R.L., Munroe T.A. Parasitism and ecological relationships among deep-see benthic fishes. Mar. Biol. 1980;57:301–313. doi: 10.1007/BF00387573. DOI

Klimpel S., Busch M.W., Sutton T., Palm H.W. Meso- and bathy-pelagic fish parasites at the Mid-Atlantic Ridge (MAR): Low host specificity and restricted parasite diversity. Deep. Res. Part. I Oceanogr. Res. Pap. 2010;57:596–603. doi: 10.1016/j.dsr.2010.01.002. DOI

Klimpel S., Busch M.W., Kellermans E., Kleinertz S., Palm H.W. Metazoan Deep-Sea Fish Parasites. Volume 11. Verlag Natur & Wissenschaft; Solingen, Germany: 2009.

Klimpel S., Palm H.W., Busch M.W., Kellermanns E., Rückert S. Fish parasites in the Arctic deep-sea: Poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006;53:1167–1181. doi: 10.1016/j.dsr.2006.05.009. DOI

Mauchline J., Gordon J.D.M. Incidence of parasitic worms in stomachs of pelagic and demersal fish of the Rockall Trough, northeastern Atlantic Ocean. J. Fish. Biol. 1984;24:281–285. doi: 10.1111/j.1095-8649.1984.tb04799.x. DOI

Nieberding C.M., Olivieri I. Parasites: Proxies for host genealogy and ecology? Trends Ecol. Evol. 2007;22:156–165. doi: 10.1016/j.tree.2006.11.012. PubMed DOI

Barson M., Přikrylová I., Vanhove M.P.M., Huyse T. Parasite hybridization in African Macrogyrodactylus spp. (Monogenea, Platyhelminthes) signals historical host distribution. Parasitology. 2010;137:1585–1595. doi: 10.1017/S0031182010000302. PubMed DOI

Criscione C.D., Cooper B., Blouin M.S. Parasite genotypes identify source populations of migratory fish more accurately than fish genotypes. Ecology. 2006;87:823–828. doi: 10.1890/0012-9658(2006)87[823:PGISPO]2.0.CO;2. PubMed DOI

Criscione C.D., Blouin M.S. Parasite phylogeographical congruence with salmon host evolutionarily significant units: Implications for salmon conservation. Mol. Ecol. 2006;16:993–1005. doi: 10.1111/j.1365-294X.2006.03220.x. PubMed DOI

Hoberg E.P. Phylogeny and historical reconstruction: Host-parasite systems as keystones in biogeography and ecology. In: Reaka-Kudla M.L., Wilson D.E., Wilson E.O., Henry A.J., editors. Biodiversity II: Understanding and Protecting Our Biological Resources. Joseph Henry Press; Washington, DC, USA: 1997. pp. 243–261.

Kearn G.C. Parasitism and the Platyhelminths. Chapman & Hall Ltd.; London, UK: 1998.

Kearn G.C. Evolutionary expansion of the Monogenea. Int. J. Parasitol. 1994;24:1227–1271. doi: 10.1016/0020-7519(94)90193-7. PubMed DOI

Hecky R.E. The pelagic ecosystem. In: Coulter G.W., editor. Lake Tanganyika and Its Life. Natural History Musem & Oxford University Press; London, UK: Oxford, UK: New York, NY, USA: 1991. pp. 91–110.

Mannini P., Aro E., Katonda K.I., Kassaka B., Mambona C., Milindi G., Paffen P., Verburg P. Pelagic Fish Stocks of Lake Tanganyika: Biology and Exploitation. Research for the Management of the Fisheries of Lake Tanganyika. FAO; Rome, Italy: Finnish International Development Agency; Helsinki, Finland: 1996.

Ronco F., Matschiner M., Böhne A., Boila A., Büscher H.H., El Taher A., Indermaur A., Malinsky M., Ricci V., Kahmen A., et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature. 2021;589:76–81. doi: 10.1038/s41586-020-2930-4. PubMed DOI

Salzburger W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 2018;19:705–717. doi: 10.1038/s41576-018-0043-9. PubMed DOI

Vanhove M.P.M., Pariselle A., Van Steenberge M., Raeymaekers J.A.M., Hablützel P.I., Gillardin C., Hellemans B., Breman F.C., Koblmüller S., Sturmbauer C., et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 2015;5:13669. doi: 10.1038/srep13669. PubMed DOI PMC

Cruz-Laufer A.J., Artois T., Smeets K., Pariselle A., Vanhove M.P.M. The cichlid–Cichlidogyrus network: A blueprint for a model system of parasite evolution. Hydrobiologia. 2020;848:3847–3863. doi: 10.1007/s10750-020-04426-4. DOI

Coulter G.W. Pelagic Fish. In: Coulter G.W., editor. Lake Tanganyika and Its Life. Natural History Musem & Oxford University Press; London, UK: Oxford, UK: New York, NY, USA: 1991. pp. 111–150.

Konings A. Tanganyika Cichlids in their Natural Habitat. 4th ed. Hollywood Import & Export Inc.; Gainesville, FL, USA: 2019.

Poulin R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 2014;44:581–589. doi: 10.1016/j.ijpara.2014.02.003. PubMed DOI

Kmentová N., Gelnar M., Mendlová M., Van Steenberge M., Koblmüller S., Vanhove M.P.M. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity. Sci. Rep. 2016;6:39605. doi: 10.1038/srep39605. PubMed DOI PMC

Rahmouni C., Vanhove M.P.M., Šimková A. Seven new species of Cichlidogyrus Paperna, 1960 (Monogenea: Dactylogyridae) parasitizing the gills of Congolese cichlids from northern Lake Tanganyika. PeerJ. 2018;6:e5604. doi: 10.7717/peerj.5604. PubMed DOI PMC

Justine J.-L., Beveridge I., Boxshall G.A., Bray R.A., Miller T.L., Moravec F., Trilles J.-P., Whittington I.D. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish. Aquat. Biosyst. 2012;8:22. doi: 10.1186/2046-9063-8-22. PubMed DOI PMC

Rohde K. Host specificity indices of parasites and their application. Experientia. 1980;36:1369–1371. doi: 10.1007/BF01960103. DOI

Schoelinck C., Cruaud C., Justine J.-L. Are all species of Pseudorhabdosynochus strictly host specific? A molecular study. Parasitol. Int. 2012;61:356–359. doi: 10.1016/j.parint.2012.01.009. PubMed DOI

Kmentová N., Koblmüller S., Van Steenberge M., Raeymaekers J.A.M., Artois T., De Keyzer E.L.R., Milec L., Muterezi Bukinga F., N’sibula T.M., Mulungula P.M., et al. Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int. J. Parasitol. 2020;50:471–486. doi: 10.1016/j.ijpara.2020.02.002. PubMed DOI

Rahmouni C., Van Steenberge M., Vanhove M.P.M., Šimková A. Intraspecific morphological variation in Cichlidogyrus (Monogenea) parasitizing two cichlid hosts from Lake Tanganyika exhibiting different dispersal capacities. Hydrobiologia. 2021;848:3833–3845. doi: 10.1007/s10750-020-04429-1. DOI

Mendlová M., Šimková A. Evolution of host specificity in monogeneans parasitizing African cichlid fish. Parasit. Vectors. 2014;7:69. doi: 10.1186/1756-3305-7-69. PubMed DOI PMC

Pariselle A., Muterezi Bukinga F., Van Steenberge M., Vanhove M.P.M. Ancyrocephalidae (Monogenea) of Lake Tanganyika: IV: Cichlidogyrus parasitizing species of Bathybatini (Teleostei, Cichlidae): Reduced host-specificity in the deepwater realm? Hydrobiologia. 2015;748:99–119. doi: 10.1007/s10750-014-1975-5. DOI

Fannes W., Vanhove M.P.M., Huyse T., Paladini G. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus. Parasitol. Res. 2015;114:2031–2034. doi: 10.1007/s00436-015-4446-7. PubMed DOI

Blanco-Bercial L., Bucklin A. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus. Mol. Ecol. 2016;25:1566–1580. doi: 10.1111/mec.13581. PubMed DOI

Kumar G., Kocour M. Applications of next-generation sequencing in fisheries research: A review. Fish. Res. 2017;186:11–22. doi: 10.1016/j.fishres.2016.07.021. DOI

Carlton J., Silva J., Hall N. The genome of model malaria parasites, and comparative genomics. Curr. Issues Mol. Biol. 2005;7:23–37. doi: 10.21775/cimb.007.023. PubMed DOI

Young N.D., Jex A.R., Li B., Liu S., Yang L., Xiong Z., Li Y., Cantacessi C., Hall R.S., Xu X., et al. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 2012;44:221–225. doi: 10.1038/ng.1065. PubMed DOI

Koblmüller S., Zangl L., Börger C., Daill D., Vanhove M.P.M., Sturmbauer C., Sefc K.M. Only true pelagics mix: Comparative phylogeography of deepwater bathybatine cichlids from Lake Tanganyika. Hydrobiologia. 2019;832:93–103. doi: 10.1007/s10750-018-3752-3. PubMed DOI PMC

Ergens R., Lom J. Causative Agents of Fish Diseases. Academia; Prague, Czech Republic: 1970.

Řehulková E., Mendlová M., Šimková A. Two new species of Cichlidogyrus (Monogenea: Dactylogyridae) parasitizing the gills of African cichlid fishes (Perciformes) from Senegal: Morphometric and molecular characterization. Parasitol. Res. 2013;112:1399–1410. doi: 10.1007/s00436-013-3291-9. PubMed DOI

Thioulouse J., Dufour A.B., Jombart T., Dray S., Siberchicot A., Pavoine S. Multivariate Analysis of Ecological Data with Ade4. Springer; New York, NY, USA: 2018.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. The R Foundation for Statistical Computing; Vienna, Austria: 2019.

Rohlf F. Tpsdig, Digitize Landmarks and Outlines, Version 2.10. State University; Stony Brook, NY, USA: 2006.

Cox C.F., Cox M.A.A. Procrustes analysis. In: Cox C.F., Cox M.A.A., editors. Multidimentional Scaling. 2nd ed. Chapman & Hall; London, UK: 1989. pp. 123–139.

Zelditch M., Swiderski D.L., Sheets H.D. Geometric Morphometrics for Biologists: A Primer. Elsevier; London, UK: 2012.

Klingenberg C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011;11:353–357. doi: 10.1111/j.1755-0998.2010.02924.x. PubMed DOI

Rohlf F.J., Marcus L.F. A revolution morphometrics. Trends Ecol. Evol. 1993;8:129–132. doi: 10.1016/0169-5347(93)90024-J. PubMed DOI

Wickham H. ggplot2. Springer; New York, NY, USA: 2009.

Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

Littlewood D.T.J., Rohde K., Clough K.A. Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. Int. J. Parasitol. 1997;27:1289–1297. doi: 10.1016/S0020-7519(97)00086-6. PubMed DOI

Lockyer A.E., Olson P.D., Littlewood D.T.J. Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): Implications and a review of the cercomer theory. Biol. J. Linn. Soc. 2003;78:155–171. doi: 10.1046/j.1095-8312.2003.00141.x. DOI

Hassouna N., Michot B., Bachellerie J.-P., Narbonne D. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984;12:3563–3583. doi: 10.1093/nar/12.8.3563. PubMed DOI PMC

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC

Tajima F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC

Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI

Leigh J.W., Bryant D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI

Weir B.S., Cockerham C.C. Estimating F-Statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. doi: 10.2307/2408641. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Dierckxsens N., Mardulyn P., Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45:e18. doi: 10.1093/nar/gkw955. PubMed DOI PMC

Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI

Lowe T., Chan P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:54–57. doi: 10.1093/nar/gkw413. PubMed DOI PMC

Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC

Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997

Kofler R., Nolte V., Schlötterer C. The impact of library preparation protocols on the consistency of allele frequency estimates in Pool-Seq data. Mol. Ecol. Resour. 2016;16:118–122. doi: 10.1111/1755-0998.12432. PubMed DOI PMC

Faust G.G., Hall I.M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics. 2014;30:2503–2505. doi: 10.1093/bioinformatics/btu314. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Kofler R., Orozco-terWengel P., De Maio N., Pandey R.V., Nolte V., Futschik A., Kosiol C., Schlötterer C. PoPoolation: A toolbox for population genetic analysis of Next Generation Sequencing data from pooled individuals. PLoS ONE. 2011;6:e15925. doi: 10.1371/journal.pone.0015925. PubMed DOI PMC

Vanhove M.P.M., Briscoe A.G., Jorissen M.W.P., Littlewood D.T.J., Huyse T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae) BMC Genom. 2018;19:520. doi: 10.1186/s12864-018-4893-5. PubMed DOI PMC

Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Cruz-Laufer A.J., Pariselle A., Jorissen M.W.P., Muterezi F., Al Assadi A., Van Steenberge M., Koblmüller S., Smeets K., Huyse T., Artois T., et al. Somewhere I belong: Phylogenetic comparative methods and machine learning to investigate the evolution of a species-rich lineage of parasites. bioRxiv. 2021 doi: 10.1101/2021.03.22.435939. DOI

Chevreux B., Suhai S. Genome sequence assembly using trace signals and additional sequence information; Proceedings of the German Conference on Bioinformatics; Hannover, Germany. 4–6 October 1999; pp. 45–56.

Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. Using SPAdes de novo assembler. Curr. Protoc. Bioinform. 2020;70:e102. doi: 10.1002/cpbi.102. PubMed DOI

Wick R.R., Schultz M.B., Zobel J., Holt K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. doi: 10.1093/bioinformatics/btv383. PubMed DOI PMC

Lagesen K., Hallin P., Rødland E.A., Stærfeldt H.H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Sousa F., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI

Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Caña-Bozada V., Llera-Herrera R., Fajer-Ávila E.J., Morales-Serna F.N. Mitochondrial genome of Scutogyrus longicornis (Monogenea: Dactylogyridea), a parasite of Nile tilapia Oreochromis niloticus. Parasitol. Int. 2021;81:102281. doi: 10.1016/j.parint.2020.102281. PubMed DOI

Koblmüller S., Duftner N., Katongo C., Phiri H., Sturmbauer C. Ancient divergence in bathypelagic Lake Tanganyika deepwater cichlids: Mitochondrial phylogeny of the tribe Bathybatini. J. Mol. Evol. 2005;60:297–314. doi: 10.1007/s00239-004-0033-8. PubMed DOI

Pereya R., Taylor M.I., Turner G.F., Rico C. Variation in habitat preference and population structure among three species of the Lake Malawi cichlid genus Protomelas. Mol. Ecol. 2004;13:2691–2697. doi: 10.1111/j.1365-294X.2004.02224.x. PubMed DOI

Coulter G.W. The biology of Lates species (Nile perch) in Lake Tanganyika, and the status of the pelagic fishery for Lates species and Luciolates stappersii (Blgr.) J. Fish. Biol. 1976;9:235–259. doi: 10.1111/j.1095-8649.1976.tb04676.x. DOI

Thompson A.B., Allison E.H., Ngatunga B.P. Distribution and breeding biology of offshore pelagic cyprinids and catfish in Lake Malawi/Niassa. Environ. Biol. Fishes. 1996;47:27–42. doi: 10.1007/BF00002377. DOI

Hahn C., Genner M.J., Turner G.F., Joyce D.A. The genomic basis of cichlid fish adaptation within the deepwater “twilight zone” of Lake Malawi. Evol. Lett. 2017;1:184–198. doi: 10.1002/evl3.20. PubMed DOI PMC

Kirchberger P.C., Sefc K.M., Sturmbauer C., Koblmüller S. Evolutionary history of Lake Tanganyika’s predatory deepwater cichlids. Int. J. Evol. Biol. 2012;2012:716209. doi: 10.1155/2012/716209. PubMed DOI PMC

Anderson C., Werdenig A., Koblmüller S., Sefc K.M. Same school, different conduct: Rates of multiple paternity vary within a mixed-species breeding school of semi-pelagic cichlid fish (Cyprichromis spp.) Ecol. Evol. 2016;6:37–45. doi: 10.1002/ece3.1856. PubMed DOI PMC

Buchmann K. Interactions between monogenean parasites and their fish hosts. Int. J. Parasitol. 2002;32:309–319. doi: 10.1016/S0020-7519(01)00332-0. PubMed DOI

Poulin R. The evolution of monogenean diversity. Int. J. Parasitol. 2002;32:245–254. doi: 10.1016/S0020-7519(01)00329-0. PubMed DOI

Brazenor A.K., Saunders R.J., Miller T.L., Hutson K.S. Morphological variation in the cosmopolitan fish parasite Neobenedenia girellae (Capsalidae: Monogenea) Int. J. Parasitol. 2018;48:125–134. doi: 10.1016/j.ijpara.2017.07.009. PubMed DOI

Ergens R., Gelnar M. Experimental verification of the effect of temperature on the size of the hard parts of haptor of Gyrodactylus katharineri Malberg 1964. Folia Parasitol. 1985;32:377–380.

Kmentová N., Gelnar M., Koblmüller S., Vanhove M.P.M. First insights into the diversity of gill monogeneans of “Gnathochromis” and Limnochromis (Teleostei, Cichlidae) in Burundi: Do the parasites mirror host ecology and phylogenetic history? PeerJ. 2016;4:e1629. doi: 10.7717/peerj.1629. PubMed DOI PMC

Kmentová N., Van Steenberge M., Raeymaekers J.A.R., Koblmüller S., Hablützel P.I., Muterezi Bukinga F., Mulimbwa N’sibula T., Masilya Mulungula P., Nzigidahera B., Ntakimazi G., et al. Monogenean parasites of sardines in Lake Tanganyika: Diversity, origin and intra-specific variability. Contrib. Zool. 2018;87:105–132. doi: 10.1163/18759866-08702004. DOI

Kaci-Chaouch T., Verneau O., Desdevises Y. Host specificity is linked to intraspecific variability in the genus Lamellodiscus (Monogenea) Parasitology. 2008;135:607–616. doi: 10.1017/S003118200800437X. PubMed DOI

Rohde K. Size differences in hamuli of Kuhnia scombri (Monogenea: Polyopisthocotylea) from different geographical areas not due to differences in host size. Int. J. Parasitol. 1991;21:113–114. doi: 10.1016/0020-7519(91)90128-T. PubMed DOI

Schedel F.D.B., Schliewen U.K. Hemibates koningsi spec. nov: A new deep-water cichlid (Teleostei: Cichlidae) from Lake Tanganyika. Zootaxa. 2017;4312:92–112. doi: 10.11646/zootaxa.4312.1.4. DOI

Mendoza-Palmero C.A., Blasco-Costa I., Scholz T. Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes) Parasit. Vectors. 2015;8:164. doi: 10.1186/s13071-015-0767-8. PubMed DOI PMC

Willems W.R., Wallberg A., Jondelius U., Littlewood D.T.J., Backeljau T., Schockaert E.R., Artois T.J. Filling a gap in the phylogeny of flatworms: Relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences. Zool. Scr. 2006;35:1–17. doi: 10.1111/j.1463-6409.2005.00216.x. DOI

Nolan M.J., Cribb T.H. The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv. Parasitol. 2005;60:101–163. doi: 10.1016/S0065-308X(05)60002-4. PubMed DOI

Monnens M., Thijs S., Briscoe A.G., Clark M., Frost E.J., Littlewood D.T.J., Sewell M., Smeets K., Artois T., Vanhove M.P.M. The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. Int. J. Biol. Macromol. 2020;162:454–469. doi: 10.1016/j.ijbiomac.2020.06.025. PubMed DOI

Solà E., Álvarez-Presas M., Frías-López C., Littlewood D.T.J., Rozas J., Riutort M. Evolutionary analysis of mitogenomes from parasitic and free-living flatworms. PLoS ONE. 2015;10:e0120081. doi: 10.1371/journal.pone.0120081. PubMed DOI PMC

Littlewood D.T.J., Lockyer A.E., Webster B.L., Johnston D.A., Le T.H. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol. Phylogenet. Evol. 2006;39:452–467. doi: 10.1016/j.ympev.2005.12.012. PubMed DOI

Ross E., Blair D., Guerrero-Hernández C., Alvarado A.S. Comparative and transcriptome analyses uncover key aspects of coding- and long noncoding RNAs in flatworm mitochondrial genomes. G3 Genes Genomes Genet. 2016;6:1191–1200. doi: 10.1534/g3.116.028175. PubMed DOI PMC

Caña-Bozada V., Llera-Herrera R., Fajer-Ávila E.J., Morales-Serna F.N. Mitochondrial genome of Rhabdosynochus viridisi (Monogenea: Diplectanidae), a parasite of Pacific white snook Centropomus viridis. J. Helminthol. 2021;95:e21. doi: 10.1017/S0022149X21000146. PubMed DOI

Zhang D., Li W.X., Zou H., Wu S.G., Li M., Jakovlić I., Zhang J., Chen R., Wang G.T. Mitochondrial genomes and 28S rDNA contradict the proposed obsoletion of the order Tetraonchidea (Platyhelminthes: Monogenea) Int. J. Biol. Macromol. 2020;143:891–901. doi: 10.1016/j.ijbiomac.2019.09.150. PubMed DOI

Shaughnessy D.T., McAllister K., Worth L., Haugen A.C., Meyer J.N., Domann F.E., Van Houten B., Mostoslavsky R., Bultman S.J., Baccarelli A.A., et al. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 2015;122:1271–1278. doi: 10.1289/ehp.1408418. PubMed DOI PMC

Le T.H., Blair D., McManus D.P. Mitochondrial genomes of parasitic flatworms. Trends Parasitol. 2002;18:206–213. doi: 10.1016/S1471-4922(02)02252-3. PubMed DOI

Wolstenholme D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992;141:173–216. doi: 10.1016/S0074-7696(08)62066-5. PubMed DOI

Nakao M., Sako Y., Ito A. The mitochondrial genome of the tapeworm Taenia solium: A finding of the abbreviated stop codon U. J. Parasitol. 2003;89:633–635. doi: 10.1645/0022-3395(2003)089[0633:TMGOTT]2.0.CO;2. PubMed DOI

Egger B., Bachmann L., Fromm B. Atp8 is in the ground pattern of flatworm mitochondrial genomes. BMC Genom. 2017;18:414. doi: 10.1186/s12864-017-3807-2. PubMed DOI PMC

Ruiz-Trillo I., Riutort M., Fourcade H.M., Baguñà J., Boore J.L. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol. Phylogenet. Evol. 2004;33:321–332. doi: 10.1016/j.ympev.2004.06.002. PubMed DOI

Bachmann L., Fromm B., Patella De Azambuja L., Boeger W.A. The mitochondrial genome of the egg-laying flatworm Aglaiogyrodactylus forficulatus (Platyhelminthes: Monogenoidea) Parasites Vectors. 2016;9:285. doi: 10.1186/s13071-016-1586-2. PubMed DOI PMC

Ye F., King S.D., Cone D.K., You P. The mitochondrial genome of Paragyrodactylus variegatus (Platyhelminthes: Monogenea): Differences in major non-coding region and gene order compared to Gyrodactylus. Parasites Vectors. 2014;7:377. doi: 10.1186/1756-3305-7-377. PubMed DOI PMC

Zhang D., Li W.X., Zou H., Wu S.G., Li M., Jakovlić I., Zhang J., Chen R., Wang G.T. Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements. Parasites Vectors. 2018;11:601. doi: 10.1186/s13071-018-3144-6. PubMed DOI PMC

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. doi: 10.1071/ZO9660275. PubMed DOI

Castellana S., Vicario S., Saccone C. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein–coding genes. Genome Biol. Evol. 2011;3:1067–1079. doi: 10.1093/gbe/evr040. PubMed DOI PMC

Castoe T.A., Jiang Z.J., Gu W., Wang Z.O., Pollock D.D. Adaptive evolution and functional redesign of core metabolic proteins in snakes. PLoS ONE. 2008;3:e2201. doi: 10.1371/journal.pone.0002201. PubMed DOI PMC

Kmentová N., Koblmüller S., Van Steenberge M., Artois T., Muterezi Bukinga F., Mulimbwa N’sibula T., Muzumani Risasi D., Masilya Mulungula P., Gelnar M., Vanhove M.P.M. Failure to diverge in African Great Lakes: The case of Dolicirroplectanum lacustre gen. nov. comb. nov. (Monogenea, Diplectanidae) infecting latid hosts. J. Great Lakes Res. 2020;46:1113–1130. doi: 10.1016/j.jglr.2019.09.022. DOI

Zhang D., Zou H., Wu S.G., Li M., Jakovlić I., Zhang J., Chen R., Li W.X., Wang G.T. Evidence for adaptive selection in the mitogenome of a mesoparasitic monogenean flatworm Enterogyrus malmbergi. Genes. 2019;10:863. doi: 10.3390/genes10110863. PubMed DOI PMC

Consuegra S., John E., Verspoor E., De Leaniz C.G. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet. Sel. Evol. 2015;47:58. doi: 10.1186/s12711-015-0138-0. PubMed DOI PMC

Theis A., Ronco F., Indermaur A., Salzburger W., Egger B. Adaptive divergence between lake and stream populations of an East African cichlid fish. Mol. Ecol. 2014;23:5304–5322. doi: 10.1111/mec.12939. PubMed DOI

Seguin-Orlando A., Schubert M., Clary J., Stagegaard J., Alberdi M.T., Prado J.L., Prieto A., Willerslev E., Orlando L. Ligation bias in illumina next-generation DNA libraries: Implications for sequencing ancient genomes. PLoS ONE. 2013;8:e78575. doi: 10.1371/journal.pone.0078575. PubMed DOI PMC

Ekblom R., Smeds L., Ellegren H. Patterns of sequencing coverage bias revealed by ultra-deep sequencing of vertebrate mitochondria. BMC Genom. 2014;15:467. doi: 10.1186/1471-2164-15-467. PubMed DOI PMC

Roberts D.M., Boag B., Hunter F., Tarlton J., Mackenzie K., Neilson R. Genetic variability of Arthurdendyus triangulatus (Dendy, 1894), a non-native invasive land planarian. Zootaxa. 2020;4808:38–50. doi: 10.11646/zootaxa.4808.1.2. PubMed DOI

Kowal K., Tkaczyk A., Pierzchała M., Bownik A., Ślaska B. Identification of mitochondrial DNA (NUMTs) in the nuclear genome of Daphnia magna. Int. J. Mol. Sci. 2020;21:8725. doi: 10.3390/ijms21228725. PubMed DOI PMC

Lopez J.V., Yuhki N., Masuda R., Modi W., O’Brien S.J. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 1994;39:174–190. doi: 10.1007/BF00163806. PubMed DOI

Rellstab C., Zoller S., Tedder A., Gugerli F., Fischer M.C. Validation of SNP allele frequencies determined by pooled next-generation sequencing in natural populations of a non-model plant species. PLoS ONE. 2013;8:e80422. doi: 10.1371/journal.pone.0080422. PubMed DOI PMC

Futschik A., Schlötterer C. The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics. 2010;186:207–218. doi: 10.1534/genetics.110.114397. PubMed DOI PMC

Tilk S., Bergland A., Goodman A., Schmidt P., Petrov D., Greenblum S. Accurate allele frequencies from ultra-low coverage Pool-seq samples in evolve-and-resequence experiments. G3 Genes Genomes Genet. 2019;9:4159–4168. doi: 10.1534/g3.119.400755. PubMed DOI PMC

Neethiraj R., Hornett E.A., Hill J.A., Wheat C.W. Investigating the genomic basis of discrete phenotypes using a Pool-Seq-only approach: New insights into the genetics underlying colour variation in diverse taxa. Mol. Ecol. 2017;26:4990–5002. doi: 10.1111/mec.14205. PubMed DOI

Rode N.O., Holtz Y., Loridon K., Santoni S., Ronfort J., Gay L. How to optimize the precision of allele and haplotype frequency estimates using pooled-sequencing data. Mol. Ecol. Resour. 2018;18:194–203. doi: 10.1111/1755-0998.12723. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...