Only true pelagics mix: comparative phylogeography of deepwater bathybatine cichlids from Lake Tanganyika
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 22737
Austrian Science Fund FWF - Austria
P 27605
Austrian Science Fund FWF - Austria
PubMed
30880831
PubMed Central
PMC6394743
DOI
10.1007/s10750-018-3752-3
PII: 3752
Knihovny.cz E-zdroje
- Klíčová slova
- Bathybates, Cichlidae, Hemibates, Panmixis, Pelagic fishes, Phylogeography,
- Publikační typ
- časopisecké články MeSH
In the absence of dispersal barriers, species with great dispersal ability are expected to show little, if at all, phylogeographic structure. The East African Great Lakes and their diverse fish faunas provide opportunities to test this hypothesis in pelagic fishes, which are presumed to be highly mobile and unrestricted in their movement by physical barriers. Here, we address the link between panmixis and pelagic habitat use by comparing the phylogeographic structure among four deepwater cichlid species of the tribe Bathybatini from Lake Tanganyika. We show that the mitochondrial genealogies (based on the most variable part or the control region) of the four species are very shallow (0.8-4% intraspecific divergence across entire distribution ranges) and that all species experienced recent population growth. A lack of phylogeographic structure in the two eupelagic species, Bathybates fasciatus and B. leo, was consistent with expectations and with findings in other pelagic cichlid species. Contrary to expectations, a clear phylogeographic structure was detected in the two benthopelagic species, B. graueri and Hemibates stenosoma. Differences in genetic diversity between eupelagic and benthopelagic species may be due to differences in their dispersal propensity, mediated by their respective predatory niches, rather than precipitated by external barriers to dispersal.
Consultants in Aquatic Ecology and Engineering blattfisch e U Gabelsbergerstraße 7 4600 Wels Austria
Institute of Biology University of Graz Universitätsplatz 2 8010 Graz Austria
Zobrazit více v PubMed
Cohen AS, Lezzar K-E, Tiercelin J-J, Soreghan M. New palaeogeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Research. 1997;9:107–132. doi: 10.1046/j.1365-2117.1997.00038.x. DOI
Coulter GW. Lake Tanganyika and Its Life. Oxford: Oxford University Press; 1991.
Danley PD, Husemann M, Ding B, DiPietro LM, Beverly EJ, Peppe DJ. The impact of the geologic history and paleoclimate on the diversification of East African cichlids. International Journal of Evolutionary Biology. 2012;2012:574851. doi: 10.1155/2012/574851. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Duftner N, Koblmüller S, Sturmbauer C. Evolutionary relationships of the Limnochromini, a tribe of benthic deepwater cichlid fish endemic to Lake Tanganyika, East Africa. Journal of Molecular Evolution. 2005;60:277–289. doi: 10.1007/s00239-004-0017-8. PubMed DOI
Duftner N, Sefc KM, Koblmüller S, Nevado B, Verheyen E, Phiri H, Sturmbauer C. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Molecular Ecology. 2006;15:2381–2396. doi: 10.1111/j.1365-294X.2006.02949.x. PubMed DOI
Duftner N, Sefc KM, Koblmüller S, Salzburger W, Taborsky M, Sturmbauer C. Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/pulcher species complex endemic to Lake Tanganyika. Molecular Phylogenetics and Evolution. 2007;45:706–715. doi: 10.1016/j.ympev.2007.08.001. PubMed DOI
Ellegren H, Galtier N. Determinants of genetic diversity. Nature Reviews Genetics. 2016;17:422–433. doi: 10.1038/nrg.2016.58. PubMed DOI
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows. Molecular Ecology Resources. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Fauvelot C, Borsa P. Patterns of genetic isolation in a widely distributed pelagic fish, the narrow-barred Spanish mackerel (Scomberomorus commerson) Biological Journal of the Linnean Society. 2011;104:886–902. doi: 10.1111/j.1095-8312.2011.01754.x. DOI
Fryer G, Iles TD. The Cichlid Fishes of the Great Lakes of Africa. Neptune: T.H.F; 1972.
García-Rodríguez FJ, García-Gasca SA, La Cruz-Agüero JD, Cota-Gómez VM. A study of the population structure of the Pacific sardine Sardinops sagax (Jenyns, 1842) in Mexico based on morphometric and genetic analyses. Fisheries Research. 2011;107:169–176. doi: 10.1016/j.fishres.2010.11.002. DOI
Genner MJ, Nichols P, Shaw PW, Carvalho GR, Robinson RL, Turner GF. Genetic homogeneity among breeding grounds and nursery areas of an exploited Lake Malawi cichlid fish. Freshwater Biology. 2008;53:1823–1831. doi: 10.1111/j.1365-2427.2008.02004.x. DOI
Genner MJ, Nichols P, Shaw PW, Carvalho GR, Robinson RL, Turner GF. Population structure on breeding grounds of Lake Malawi’s ‘twilight zone’ cichlid fishes. Journal of Biogeography. 2010;37:258–269. doi: 10.1111/j.1365-2699.2009.02196.x. DOI
Genner MJ, Knight ME, Haeseler MP, Turner GF. Establishment and expansion of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Molecular Ecology. 2010;19:170–182. doi: 10.1111/j.1365-294X.2009.04434.x. PubMed DOI
Genner MJ, Turner GF. Timing of population expansions within the Lake Malawi haplochromine cichlid fish radiation. Hydrobiologia. 2015;748:121–132. doi: 10.1007/s10750-014-1884-7. DOI
Graves JE, McDowell JR. Stock structure of the world’s istiophorid billfishes: a genetic perspective. Marine and Freshwater Research. 2003;54:287–298. doi: 10.1071/MF01290. DOI
Hahn C, Genner MJ, Turner GF, Joyce DA. The genomic basis of cichlid fish adaptation within the deepwater “twilight zone” of Lake Malawi. Evolution Letters. 2017;1:184–198. doi: 10.1002/evl3.20. PubMed DOI PMC
Hartl DL, Clark GC. Principles of Population Genetics. 3. Sunderland: Sinauer Associates; 1997.
Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI
Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ, Sullivan J. Evidence for time dependency of molecular rate estimates. Systematic Biology. 2007;56:515–522. doi: 10.1080/10635150701435401. PubMed DOI
Husemann M, Nguyen R, Ding B, Danley PD. A genetic demographic analysis of Lake Malawi rock-dwelling cichlids using spatio-temporal sampling. Molecular Ecology. 2015;24:2686–2701. doi: 10.1111/mec.13205. PubMed DOI
Irisarri, I., P. Singh, S. Koblmüller, J. Torres-Dowdall, F. Henning, P. Franchini, C. Fischer, A. R. Lemmon, E. Moriarty Lemmon, G. G. Thallinger, C. Sturmbauer & A. Meyer, 2018. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nature Communications 9: 3159. PubMed PMC
Kirchberger PC, Sefc KM, Sturmbauer C, Koblmüller S. Evolutionary history of Lake Tanganyika’s predatory deepwater cichlids. International Journal of Evolutionary Biology. 2012;2012:716209. doi: 10.1155/2012/716209. PubMed DOI PMC
Kmentová N, Gelnar M, Mendlová M, Van Steenberge M, Koblmüller S, Vanhove MPM. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity. Sientific Reports. 2016;6:39605. doi: 10.1038/srep39605. PubMed DOI PMC
Koblmüller S, Duftner N, Katongo C, Phiri H, Sturmbauer C. Ancient divergence in bathypelagic Lake Tanganyika deepwater cichlids: mitochondrial phylogeny of the tribe Bathybatini. Journal of Molecular Evolution. 2005;60:297–314. doi: 10.1007/s00239-004-0033-8. PubMed DOI
Koblmüller S, Sefc KM, Duftner N, Warum M, Sturmbauer C. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica. 2007;130:121–131. doi: 10.1007/s10709-006-0027-0. PubMed DOI
Koblmüller S, Sefc KM, Sturmbauer C. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia. 2008;615:5–20. doi: 10.1007/s10750-008-9552-4. DOI
Koblmüller S, Duftner N, Sefc KM, Aigner U, Rogetzer M, Sturmbauer C. Phylogeographic structure and gene flow in the scale-eating cichlid Perissodus microlepis (Teleostei, Perciformes, Cichlidae) in southern Lake Tanganyika. Zoologica Scripta. 2009;38:257–268. doi: 10.1111/j.1463-6409.2008.00378.x. DOI
Koblmüller S, Salzburger W, Obermüller B, Eigner E, Sturmbauer C, Sefc KM. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations. Molecular Ecology. 2011;20:2272–2290. doi: 10.1111/j.1365-294X.2011.05088.x. PubMed DOI
Koblmüller S, Wayne RK, Leonard JA. Impact of Quaternary climatic changes and interspecific competition on the demographic history of a highly mobile generalist carnivore, the coyote. Biology Letters. 2012;8:644–647. doi: 10.1098/rsbl.2012.0162. PubMed DOI PMC
Koblmüller S, Odhiambo EA, Sinyinza D, Sturmbauer C, Sefc KM. Big fish, little divergence: phylogeography of Lake Tanganyika’s giant cichlid, Boulengerochromis microlepis. Hydrobiologia. 2015;748:29–38. doi: 10.1007/s10750-014-1863-z. PubMed DOI PMC
Koblmüller S, Nevado B, Makasa L, Van Steenberge M, Vanhove MPM, Verheyen E, Sturmbauer C, Sefc KM. Phylogeny and phylogeography of Altolamprologus: ancient introgression and recent divergence in a rock-dwelling Lake Tanganyika cichlid genus. Hydrobiologia. 2017;791:35–50. doi: 10.1007/s10750-016-2896-2. DOI
Konings A. Tanganyika Cichlids in Their Natural Habitat. El Paso: Cichlid Press; 1998.
Kuhner MK. Coalescent genealogy samplers: windows into population history. Trends in Ecology and Evolution. 2009;24:86–93. doi: 10.1016/j.tree.2008.09.007. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics anaylsis verion 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Lee W-J, Conroy J, Howell WH, Kocher TD. Structure and evolution of the teleost mitochondrial control region. Journal of Molecular Evolution. 1995;41:54–66. doi: 10.1007/BF00174041. PubMed DOI
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Lu CP, Chen CA, Hui C, Tzeng Y, Yeh S. Population genetic structure of the swordfish, Xiphias gladius, in the Indian Ocean and West Pacific inferred from complete DNA sequence of the mitochondrial control region. Zoological Studies. 2006;45:269–279.
Lyons RP, Scholz CA, Cohen AS, King JW, Brown ET, Ivory SJ, Johnson TC, Deino AL, Reinthal PN, McGlue MM, Blome MW. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proceedings of the national Academy of Sciences. 2015;112:15568–15573. PubMed PMC
McGlue MM, Lezzar KE, Cohen AS, Russell JM, Tiercelin J-J, Felton AA, Mbede E, Nkotagu HH. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. Journal of Paleolimnology. 2008;40:635–653. doi: 10.1007/s10933-007-9187-x. DOI
Meyer BS, Matschiner M, Salzburger W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Molecular Phylogenetics and Evolution. 2015;83:56–71. doi: 10.1016/j.ympev.2014.10.009. PubMed DOI PMC
Nebel C, Gamauf A, Haring E, Segelbacher G, Villers A, Zachos FE. Mitochondrial DNA analysis reveals Holarctic homogeneity and a distinct Mediterranean lineage in the Golden eagle (Aquila chrysaetos) Biological Journal of the Linnean Society. 2015;116:328–340. doi: 10.1111/bij.12583. DOI
Perrin, C., & P. Borsa, 2001. Mitochondrial DNA analysis of the geographic structure of Indian scad mackerel, Decapterus russellii (Carangidae) in the Indo-Malay archipelago. Journal of Fish Biology 59: 1421–1426
Petit, P., & T. Shipton, 2012. IUU fishing on Lake Tanganyika. Report SF/2012/15. Food and Agriculture Organization of the United Nations & Indian Ocean Commission.
Pfeiler E, Markow TA. Population connectivity and genetic diversity in long-distance migrating insects: divergent patterns in representative butterflies and dragonflies. Biological Journal of the Linnean Society. 2017;122:479–486. doi: 10.1093/biolinnean/blx074. DOI
Posada D. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Rambaut, A. & A. J. Drummond, 2009. Tracer v1.5 [available on internet at http://beast.bio.ed.ac.uk/Tracer].
Richlen ML, Barber PH. A technique fort the rapid extraction of microalgal DNA from single live and preserved cells. Molecular Ecology Notes. 2005;5:688–691. doi: 10.1111/j.1471-8286.2005.01032.x. DOI
Rico C, Turner GF. Extreme microallopatric divergence in a cichlid species from Lake Malawi. Molecular Ecology. 2002;11:1585–1590. doi: 10.1046/j.1365-294X.2002.01537.x. PubMed DOI
Rossiter A. The cichlid fish assemblages of Lake Tanganyika: ecology, behavior and evolution of its species flock. Advances in Ecological Research. 1995;26:187–252. doi: 10.1016/S0065-2504(08)60066-5. DOI
Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C. Phylogeny of the Lake Tanganyika cichlid species flock and its relationships to Central- and East African haplochromine cichlid fish faunas. Systematic Biology. 2002;51:113–135. doi: 10.1080/106351502753475907. PubMed DOI
Salzburger W, Van Bocxlaer B, Cohen AS. Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics. 2014;45:519–545. doi: 10.1146/annurev-ecolsys-120213-091804. DOI
Schedel FD, Schliewen UK. Hemibates koningsi spec. nov: a new deep-water cichlid (Teleostei: cichlidae) from Lake Tanganyika. Zootaxa. 2017;4312:92–112. doi: 10.11646/zootaxa.4312.1.4. DOI
Sebastian W, Sukumaran S, Zacharia PU, Gopalakrishnan A. Genetic population structure of Indian oil sardine, Sardinella longiceps assessed using microsatellite markers. Conservation Genetics. 2017;18:951–964. doi: 10.1007/s10592-017-0946-6. DOI
Sefc KM, Baric S, Salzburger W, Sturmbauer C. Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika, East Africa. Journal of Molecular Evolution. 2007;64:33–49. doi: 10.1007/s00239-006-0011-4. PubMed DOI
Sefc KM, Mattersdorfer K, Hermann CM, Koblmüller S. Past lake shore dynamics explain present pattern of unidirectional introgression across a habitat barrier. Hydrobiologia. 2017;791:69–82. doi: 10.1007/s10750-016-2791-x. PubMed DOI PMC
Sefc KM, Mattersdorfer K, Ziegelbecker A, Neuhüttler N, Steiner O, Goessler W, Koblmüller S. Shifting barriers and phenotypic diversification by hybridization. Ecology Letters. 2017;20:651–662. doi: 10.1111/ele.12766. PubMed DOI PMC
Shaw PW, Turner GF, Idid MR, Robinson RL, Carvalho GR. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proceedings of the Royal Society London Series B, Biological Sciences. 2000;267:2273–2280. doi: 10.1098/rspb.2000.1279. PubMed DOI PMC
Statham MJ, Murdoch J, Janecka J, Aubry KB, Edwards CJ, Soulsbury CD, Berry O, Wang Z, Harrison D, Pearch M, Tomsett L, Chupasko J, Sacks BJ. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Molecular Ecology. 2014;23:4813–4830. doi: 10.1111/mec.12898. PubMed DOI
Sturmbauer C, Baric S, Salzburger W, Rüber L, Verheyen E. Lake level fluctuations synchronize synchronize genetic divergence of cichlid fishes in African lakes. Molecular Biology and Evolution. 2001;18:144–154. doi: 10.1093/oxfordjournals.molbev.a003788. PubMed DOI
Sturmbauer C, Börger C, Van Steenberge M, Koblmüller S. A separate lowstand lake at the northern edge of Lake Tanganyika? Evidence from phylogeographic patterns in the cichlid genus Tropheus. Hydrobiologia. 2017;791:51–68. doi: 10.1007/s10750-016-2939-8. DOI
Takahashi T, Sota T. A robust phylogeny among major lineages of the East African cichlids. Molecular Phylogenetics and Evolution. 2016;100:234–242. doi: 10.1016/j.ympev.2016.04.012. PubMed DOI
Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phentotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimation. Genetics. 1992;132:619–633. PubMed PMC
Theisen TC, Bowen BW, Lanier W, Baldwin JD. High connectivity on a global scale in the pelagic wahoo, Acathacybrium solandri (tuna family Scombridae) Molecular Ecology. 2008;17:4233–4247. doi: 10.1111/j.1365-294X.2008.03913.x. PubMed DOI
Turner GF, Seehausen O, Knight ME, Allender CJ, Robinson RL. How many species of cichlid fishes are there in African lakes? Molecular Ecology. 2001;10:293–806. PubMed
Turner GF, Robinson RL, Shaw PW, Carvalho GR, Snoeks J. Identification and biology of Diplotaxodon, Rhamphochromis and Pallidochromis. In: Snoeks J, editor. The Cichlid Diversity of Lake Malawi/Nyasa/Niassa: Identification, Distribution and Taxonomy. El Paso: Cichlid Press; 2004. pp. 198–251.
Van Steenberge M, Vanhove MPM, Risasi DM, Nsibula TM, Muterezi Bukings F, Pariselle A, Gillardin C, Vreven E, Raeymaekers JAM, Huyse T, Volckaert FAM, Nshombo Muderhwa V, Snoeks J. A recent inventory of the fishes of the north-western and central western coast of Lake Tanganyika (Democratic Republic Congo) Acta Ichthyologica et Piscatoria. 2011;41:201–214. doi: 10.3750/AIP2011.41.3.08. DOI
Winkelmann K, Rüber L, Genner MJ. Lake level fluctuations and divergence of cichlid fish ecomorphs in Lake Tanganyika. Hydrobiologia. 2017;791:21–34. doi: 10.1007/s10750-016-2839-y. DOI