Hidden biodiversity in an ancient lake: phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 22737
Austrian Science Fund FWF - Austria
PubMed
26335652
PubMed Central
PMC4558575
DOI
10.1038/srep13669
PII: srep13669
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- cichlidy genetika parazitologie MeSH
- fylogeneze MeSH
- interakce hostitele a parazita genetika MeSH
- jezera MeSH
- ploštěnci genetika MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The stunning diversity of cichlid fishes has greatly enhanced our understanding of speciation and radiation. Little is known about the evolution of cichlid parasites. Parasites are abundant components of biodiversity, whose diversity typically exceeds that of their hosts. In the first comprehensive phylogenetic parasitological analysis of a vertebrate radiation, we study monogenean parasites infecting tropheine cichlids from Lake Tanganyika. Monogeneans are flatworms usually infecting the body surface and gills of fishes. In contrast to many other parasites, they depend only on a single host species to complete their lifecycle. Our spatially comprehensive combined nuclear-mitochondrial DNA dataset of the parasites covering almost all tropheine host species (N = 18), reveals species-rich parasite assemblages and shows consistent host-specificity. Statistical comparisons of host and parasite phylogenies based on distance and topology-based tests demonstrate significant congruence and suggest that host-switching is rare. Molecular rate evaluation indicates that species of Cichlidogyrus probably diverged synchronically with the initial radiation of the tropheines. They further diversified through within-host speciation into an overlooked species radiation. The unique life history and specialisation of certain parasite groups has profound evolutionary consequences. Hence, evolutionary parasitology adds a new dimension to the study of biodiversity hotspots like Lake Tanganyika.
Biology Department Royal Museum for Central Africa Leuvensesteenweg 13 B 3080 Tervuren Belgium
Institute of Zoology University of Graz Universitätsplatz 2 A 8010 Graz Austria
Zobrazit více v PubMed
Barraclough T. G. & Nee S. Phylogenetics and speciation. Trends Ecol. Evol. 16, 391–399 (2001). PubMed
Schluter D. The Ecology of Adaptive Radiation (Oxford University Press, Oxford, 2000).
Kocher T. D. Adaptive evolution and explosive speciation: the cichlid fish model. Nat. Rev. Genet. 5, 288–298 (2004). PubMed
Snoeks J. How well known is the ichthyodiversity of the large East African lakes? Adv. Ecol. Res. 31, 17–38 (2000).
Koblmüller S., Sefc K. M. & Sturmbauer C. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615, 5–20 (2008).
Salzburger W., Mack T., Verheyen E. & Meyer A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005). PubMed PMC
Van Steenberge M. et al. A recent inventory of the fishes of the north-western and central western coast of Lake Tanganyika (Democratic Republic Congo). Acta Ichthyol. Piscat. 41, 201–214 (2011).
Koblmüller S., Egger B., Sturmbauer C. & Sefc K. M. Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Mol. Phylogenet. Evol. 55, 318–334 (2010). PubMed
Takahashi T. & Koblmüller S. A new species of Petrochromis (Perciformes: Cichlidae) from Lake Tanganyika. Ichthyol. Res. 61, 252–264 (2014).
Price P. W. Evolutionary Biology of Parasites (Princeton University Press, Princeton, 1980).
Thompson J. N. The evolution of species interactions. Science 284, 2116–2118 (1999). PubMed
de Meeûs T., Michalakis Y. & Renaud F. Santa Rosalia revisited: or why are there so many kinds of parasites in ‘the garden of early delights’? Parasitol. Today 14, 10–13 (1998). PubMed
Windsor D. A. Most of the species on Earth are parasites. Int. J. Parasitol. 28, 1939–1941 (1998). PubMed
Lafferty K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008). PubMed PMC
Fonseca V. G. et al. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Comm. 1, 98 (2010). PubMed PMC
Huyse T., Poulin R. & Théron A. Speciation in parasites: a population genetics approach. Trends Parasitol. 21, 469–475 (2005). PubMed
Coulter G. W. Lake Tanganyika and Its Life (Natural History Museum Publications and Oxford University Press, London and New York, 1991).
Pariselle A., Muterezi Bukinga F., Van Steenberge M. & Vanhove M. P. M. Ancyrocephalidae (Monogenea) of Lake Tanganyika: IV: Cichlidogyrus parasitizing species of Bathybatini (Teleostei, Cichlidae): reduced host-specificity in the deepwater realm? Advances in Cichlid Research: Behavior, Ecology and Evolutionary Biology. Koblmüller S., Albertson R. C., Genner M. J., Sefc K. M. & Takahashi T. (eds.) Hydrobiologia 748, 99–119 (2015).
Pugachev O. N., Gerasev P. I., Gussev A. V., Ergens R. & Khotenowsky I. Guide to Monogenoidea of Freshwater Fish of Palaearctic and Amur Regions (Ledizione-LediPublishing, Milan, 2009).
Pariselle A., Morand S., Deveney M. & Pouyaud L. Parasite species richness of closely related hosts: historical scenario and “genetic” hypothesis. Hommage à Louis Euzet—taxonomie, écologie et évolution des métazoaires parasites. Taxonomy, ecology and evolution of metazoan parasites. Combes C. & Jourdan J. (eds.) 147–166 (Presses Universitaires de Perpignan, Perpignan, 2003).
Pouyaud L., Desmarais E., Deveney M. & Pariselle A. Phylogenetic relationships among monogenean gill parasites (Dactylogyridea, Ancyrocephalidae) infesting tilapiine hosts (Cichlidae): systematic and evolutionary implications. Mol. Phylogenet. Evol. 38, 241–249 (2006). PubMed
Jousson O., Bartoli P. & Pawlowski J. Cryptic speciation among intestinal parasites (Trematoda: Digenea) infecting sympatric host fishes (Sparidae). J. Evol. Biol. 13, 778–785 (2000).
Vanhove M. P. M. Species Flocks and Parasite Evolution. Towards a Co-phylogenetic Analysis of Monogenean Flatworms of Cichlids and Gobies (KU Leuven, Leuven, 2012).
Pariselle A. et al. Ancyrocephalidae (Monogenea) of Lake Tanganyika: does the Cichlidogyrus parasite fauna of Interochromis loocki (Teleostei, Cichlidae) reflect its host’s phylogenetic affinities? Contrib. Zool. 84, 25–38 (2015).
Van Steenberge, M. et al. Morphology, molecules, and monogenean parasites: an example of an integrative approach to cichlid biodiversity. PLoS ONE 10, e0124474 (2015). PubMed PMC
Raeymaekers J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 41 (2013). PubMed PMC
Hablützel P. I. et al. Intermediate number of major histocompatibility complex class IIB length variants relates to enlarged perivisceral fat deposits in the blunt‐head cichlid Tropheus moorii. J. Evol. Biol. 27, 2177–2190 (2014). PubMed
Grégoir A. F. et al. A link between host dispersal and parasite diversity in two sympatric cichlid fishes of Lake Tanganyika. Freshwater Biol. 60, 323–335 (2015).
Paperna I. Parasites, infections and diseases of fishes in Africa. An update. CIFA Technical Paper 31 (Food and Agriculture Organization of the United Nations, Rome, 1996).
Clark M. A., Moran N. A., Baumann P. & Wernegreen J. J. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54, 517–525 (2000). PubMed
Page R. D. M., Clayton D. H. & Paterson A. M. Lice and cospeciation: a response to Barker. Int. J. Parasitol. 26, 213–218 (1996). PubMed
Mendlová M., Desdevises Y., Civáňová K., Pariselle A. & Šimková A. Monogeneans of West African cichlid fish: evolution and cophylogenetic interactions. PLoS ONE 7, e37268 (2012). PubMed PMC
Desdevises Y., Morand S., Jousson O. & Legendre P. Coevolution between Lamellodiscus (Monogenea; Diplectanidae) and Sparidae (Teleostei): the study of a complex host-parasite system. Evolution 56, 2459–2471 (2002). PubMed
Mendlová M. & Šimková A. Evolution of host specificity in monogeneans parasitizing African cichlid fish. Parasite. Vector 7, 69 (2014). PubMed PMC
Bakke T. A., Cable J. & Harris P. D. The biology of gyrodactylid monogeneans: The “Russian-doll Killers.” Adv. Parasit. 64, 161–376, 459-460 (2007). PubMed
Whittington I. D., Cribb B. W., Hamwood T. E. & Halliday J. A. Host-specificity of monogenean (platyhelminth) parasites: a role for anterior adhesive areas? Int. J. Parasitol. 30, 305–320 (2000). PubMed
Plenderleith M., van Oosterhout C., Robinson R. L. & Turner G. F. Female preference for conspecific males based on olfactory cues in a Lake Malawi cichlid fish. Biol. Lett. 1, 411–414 (2005). PubMed PMC
Patricelli D. et al. Evidence of high larval host ant (Hymenoptera: Formicidae) specificity in the first post-adoption phase for the myrmecophilous butterfly Phengaris (Maculinea) nausithous (Lepidoptera: Lycaenidae). Sociobiology 55, 861–870 (2010).
Adamson M. L., & Caira J. N. Evolutionary factors influencing the nature of parasite specificity. Parasitology 109, S85–S95 (1994). PubMed
Vanhove M. P. M. et al. Biogeographical implications of Zambezian Cichlidogyrus species (Platyhelminthes: Monogenea: Ancyrocephalidae) parasitizing Congolian cichlids. Zootaxa 3608, 398–400 (2013). PubMed
Sasal P. & Morand S. Comparative analysis: a tool for studying monogenean ecology and evolution. Int. J. Parasitol. 28, 1637–1644 (1998). PubMed
Desdevises Y., Morand S. & Legendre P. Evolution and determinants of host specificity in the genus Lamellodiscus (Monogenea). Biol. J. Linn. Soc. 77, 431–443 (2002).
Norton D. A. & Carpenter M. A. Mistletoes as parasites: host specificity and speciation. Trends Ecol. Evol. 13, 101–105 (1998). PubMed
Gillardin C., Vanhove M. P. M., Pariselle A., Huyse T. & Volckaert F. A. M. Ancyrocephalidae (Monogenea) of Lake Tanganyika: II: description of the first Cichlidogyrus spp. parasites from Tropheini fish hosts (Teleostei, Cichlidae). Parasitol. Res. 110, 305–313 (2012). PubMed
Poulin R. Speciation and diversification of parasite lineages: an analysis of congeneric parasite species in vertebrates. Evol. Ecol. 13, 455–467 (1999).
McCoy K. D., Boulinier T., Tirard C. & Michalakis Y. Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57, 288–296 (2003). PubMed
Pariselle A. et al. The monogenean parasite fauna of cichlids: a potential tool for host biogeography. Int. J. Evol. Biol. 2011, 471480 (2011). PubMed PMC
Sturmbauer C., Bariç S., Salzburger W., Rüber L. & Verheyen E. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African Lakes. Mol. Biol. Evol. 182, 144–154 (2001). PubMed
Kearn G. C. Evolutionary expansion of the Monogenea. Int. J. Parasitol. 24, 1227–1271 (1994). PubMed
Brooks D. R. & McLennan D. A. The nature of diversity: an evolutionary voyage of discovery (University of Chicago Press, Chicago and London, 2002).
Hafner M. S. et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090 (1994). PubMed
Du Toit N., van Vuuren B. J., Matthee S. & Matthee C. A. Biogeography and host‐related factors trump parasite life history: limited congruence among the genetic structures of specific ectoparasitic lice and their rodent hosts. Mol. Ecol. 22, 5185–5204 (2013). PubMed
Althoff D. M., Segraves K. A., Smith C. I., Leebens-Mack J. & Pellmyr O. Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol. Phylogenet. Evol. 62, 898–906 (2012). PubMed
Huyse T. & Volckaert F. A. M. Comparing host and parasite phylogenies: Gyrodactylus flatworms jumping from goby to goby. Syst. Biol. 54, 710–718 (2005). PubMed
Appleby C. Population dynamics of Gyrodactylus sp. (Monogenea) infecting the sand goby in the Oslo Fjord, Norway. J. Fish Biol. 49, 402–410 (1996).
de Vienne D. M. et al. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 198, 347–385 (2013). PubMed
Ziętara M. S. & Lumme J. Speciation by hostswitching and adaptive radiation in a fish parasite genus Gyrodactylus (Monogenea, Gyrodactylidae). Evolution 56, 2445–2458 (2002). PubMed
Li M., Shi S.-F., Brown C. L. & Yang T.-B. Phylogeographical pattern of Mazocraeoides gonialosae (Monogenea, Mazocraeidae) on the dotted gizzard shad, Konosirus punctatus, along the coast of China. Int. J. Parasitol. 41, 1263–1272 (2011). PubMed
Gunter N. L. & Adlard R. D. Bivalvulidan (Myxozoa: Myxosporea) parasites of damselfishes with description of twelve novel species from Australia’s Great Barrier Reef. Parasitology 135, 1165–1178 (2008). PubMed
Littlewood D. T. J., Rohde K. & Clough K. A. Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. Int. J. Parasitol. 27, 1289–1297 (1997). PubMed
Paterson A. M., Wallis G. P., Wallis L. J. & Gray R. D. Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst. Biol. 49, 383–399 (2000). PubMed
Šimková A., Morand S., Jobet E., Gelnar M. & Verneau O. Molecular phylogeny of congeneric monogenean parasites (Dactylogyrus): a case of intrahost speciation. Evolution 58, 1001–1018 (2004). PubMed
Šimková A., Serbielle C., Pariselle A., Vanhove M. P. M. & Morand S. Speciation in Thaparocleidus (Monogenea: Dactylogyridae) parasitizing Asian pangasiid catfishes. BioMed Res. Int. 2013, 353956 (2013). PubMed PMC
Poulin R. The evolution of monogenean diversity. Int. J. Parasitol. 32, 245–254 (2002). PubMed
Konings A. Tropheus in their natural habitat (Cichlid Press, El Paso, 2013).
Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Tamura K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011). PubMed PMC
Posada D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008). PubMed
Hansen H., Bakke T. A. & Bachmann L. DNA taxonomy and barcoding of monogenean parasites: lessons from Gyrodactylus. Trends Parasitol. 23, 363–367 (2007). PubMed
Strimmer K. & von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. P. Natl. Acad. Sci. USA 94, 6815–6819 (1997). PubMed PMC
Schmidt H. A., Strimmer K., Vingron M. & von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002). PubMed
Ronquist F. & Huelsenbeck J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003). PubMed
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). PubMed
Huang Y., Niu B., Gao Y., Fu L. & Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010). PubMed PMC
Drummond A. J. & Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007). PubMed PMC
Paradis E. Analysis of Phylogenetics and Evolution with R (Second Edition) (Springer, New York, 2012).
Rabosky D. L. LASER: A maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol. Bioinform. Online 2, 247–250 (2006). PubMed PMC
Merkle D., Middendorf M. & Wieseke N. A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinformatics 11(Suppl. 1), S60 (2010). PubMed PMC
Rosenblueth M., Sayavedra L., Sámano-Sánchez H., Roth A. & Martínez-Romero E. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J. Evol. Biol. 25, 2357–2368 (2012). PubMed
Lauron E. J. et al. Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitology 142, 635–647 (2015). PubMed
Laubach T., von Haeseler A. & Lercher M. J. TreeSnatcher plus: capturing phylogenetic trees from images. BMC Bioinformatics 13, 110 (2012). PubMed PMC
Page R. D. M. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10, 155–173 (1994).
Meier-Kolthoff J. P., Auch A. F., Huson D. H. & Göker M. Copycat: Cophylogenetic Analysis Tool. Bioinformatics 23, 898–900 (2007). PubMed
Stamatakis A., Auch A. F., Meier-Kolthoff J. & Göker M. AxPcoords and parallel AxParafit: statistical cophylogenetic analyses on thousands of taxa. BMC Bioinformatics 8, 405 (2007). PubMed PMC
Boc A., Diallo Alpha B. & Makarenkov V. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012). PubMed PMC
Muterezi Bukinga F., Vanhove M. P. M., Van Steenberge M. & Pariselle A. Ancyrocephalidae (Monogenea) of Lake Tanganyika: III: Cichlidogyrus infecting the world’s biggest cichlid and the non-endemic tribes Haplochromini, Oreochromini and Tylochromini (Teleostei, Cichlidae). Parasitol. Res. 111, 2049–2061 (2012). PubMed