Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32555742
PubMed Central
PMC7299319
DOI
10.1371/journal.pone.0231681
PII: PONE-D-20-08758
Knihovny.cz E-zdroje
- MeSH
- kapři parazitologie MeSH
- kathepsiny analýza metabolismus MeSH
- laserová záchytná mikrodisekce MeSH
- parenchymatická tkáň metabolismus MeSH
- ploštěnci metabolismus MeSH
- proteasy analýza metabolismus MeSH
- proteom analýza MeSH
- proteomika metody MeSH
- střevní sliznice metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kathepsiny MeSH
- proteasy MeSH
- proteom MeSH
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: Big data from small samples. Histol Histopathol. 2015;30: 1255–1269. 10.14670/HH-11-622 PubMed DOI PMC
Schütze K, Niyaz Y, Stich M, Buchstaller A. Noncontact Laser Microdissection and Catapulting for Pure Sample Capture. Methods in Cell Biology. 2007. pp. 647–673. 10.1016/S0091-679X(06)82023-6 PubMed DOI
Espina V, Wulfkuhle JD, Calvert VS, Vanmeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. 2006. 10.1038/nprot.2006.85 PubMed DOI
Cremer C, Zorn C, Cremer T. An ultraviolet laser microbeam for 257 nm. Microsc Acta. 1974;75: 331–7. PubMed
Berns M, Aist J, Edwards J, Strahs K, Girton J, McNeill P, et al. Laser microsurgery in cell and developmental biology. Science (80-). 1981;213: 505–513. 10.1126/science.7017933 PubMed DOI
Monajembashi S, Cremer C, Cremer T, Wolfrum J, Greulich KO. Microdissection of human chromosomes by a laser microbeam. Exp Cell Res. 1986;167: 262–265. 10.1016/0014-4827(86)90223-5 PubMed DOI
Böhm M, Wieland I, Schütze K, Rübben H. Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol. 1997;151: 63–7. PubMed PMC
Zhang S, Thakare D, Yadegari R. Laser-Capture Microdissection of Maize Kernel Compartments for RNA-Seq-Based Expression Analysis. In: Lagrimini LM, editor. New York, NY: Springer New York; 2018. pp. 153–163. 10.1007/978-1-4939-7315-6_9 PubMed DOI
Clement-Sengewald A, Buchholz T, Schütze K. Laser Microdissection as a New Approach to Prefertilization Genetic Diagnosis. Pathobiology. 2000;68: 232–236. 10.1159/000055929 PubMed DOI
Roy S, Patel D, Khanna S, Gordillo GM, Biswas S, Friedman A, et al. Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proc Natl Acad Sci. 2007;104: 14472–14477. 10.1073/pnas.0706793104 PubMed DOI PMC
Salmon CR, Giorgetti APO, Paes Leme AF, Domingues RR, Kolli TN, Foster BL, et al. Microproteome of dentoalveolar tissues. Bone. 2017;101: 219–229. 10.1016/j.bone.2017.05.014 PubMed DOI
Dilillo M, Pellegrini D, Ait-Belkacem R, De Graaf EL, Caleo M, McDonnell LA. Mass Spectrometry Imaging, Laser Capture Microdissection, and LC-MS/MS of the Same Tissue Section. J Proteome Res. 2017;16: 2993–3001. 10.1021/acs.jproteome.7b00284 PubMed DOI
Shapiro JP, Biswas S, Merchant AS, Satoskar A, Taslim C, Lin S, et al. A quantitative proteomic workflow for characterization of frozen clinical biopsies: Laser capture microdissection coupled with label-free mass spectrometry. J Proteomics. 2012;77: 433–440. 10.1016/j.jprot.2012.09.019 PubMed DOI PMC
Nakamura N, Ruebel K, Jin L, Qian X, Zhang H, Lloyd R V. Laser Capture Microdissection for Analysis of Single Cells. 2007. pp. 11–18. 10.1007/978-1-59745-298-4_2 PubMed DOI
Johann DJ, Rodriguez-Canales J, Mukherjee S, Prieto DA, Hanson JC, Emmert-Buck M, et al. Approaching Solid Tumor Heterogeneity on a Cellular Basis by Tissue Proteomics Using Laser Capture Microdissection and Biological Mass Spectrometry †. J Proteome Res. 2009;8: 2310–2318. 10.1021/pr8009403 PubMed DOI PMC
Lutz HL, Marra NJ, Grewe F, Carlson JS, Palinauskas V, Valkiūnas G, et al. Laser capture microdissection microscopy and genome sequencing of the avian malaria parasite, Plasmodium relictum. Parasitol Res. 2016;115: 4503–4510. 10.1007/s00436-016-5237-5 PubMed DOI
Cubi R, Vembar SS, Biton A, Franetich J-F, Bordessoulles M, Sossau D, et al. Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species. Cell Microbiol. 2017;19: e12735 10.1111/cmi.12735 PubMed DOI PMC
Stilwell JM, Camus AC, Leary JH, Mohammed HH, Griffin MJ. Molecular confirmation of Henneguya adiposa (Cnidaria: Myxozoa) and associated histologic changes in adipose fins of channel catfish, Ictalurus punctatus (Teleost). Parasitol Res. 2019;118: 1639–1645. 10.1007/s00436-019-06295-w PubMed DOI
Jones MK, McManus DP, Sivadorai P, Glanfield A, Moertel L, Belli SI, et al. Tracking the fate of iron in early development of human blood flukes. Int J Biochem Cell Biol. 2007;39: 1646–1658. 10.1016/j.biocel.2007.04.017 PubMed DOI PMC
Gobert GN, McManus DP, Nawaratna S, Moertel L, Mulvenna J, Jones MK. Tissue specific profiling of females of Schistosoma japonicum by integrated laser microdissection microscopy and microarray analysis. PLoS Negl Trop Dis. 2009;3 10.1371/journal.pntd.0000469 PubMed DOI PMC
Nawaratna SSK, McManus DP, Moertel L, Gobert GN, Jones MK. Gene atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl Trop Dis. 2011;5 10.1371/journal.pntd.0001043 PubMed DOI PMC
Nawaratna SSK, Gobert GN, Willis C, Chuah C, McManus DP, Jones MK. Transcriptional profiling of the oesophageal gland region of male worms of Schistosoma mansoni. Mol Biochem Parasitol. 2014;196: 82–89. 10.1016/j.molbiopara.2014.08.002 PubMed DOI
Dinguirard N, Cavalcanti MGSS, Wu XJ, Bickham-Wright U, Sabat G, Yoshino TP. Proteomic Analysis of Biomphalaria glabrata Hemocytes During in vitro Encapsulation of Schistosoma mansoni Sporocysts. Front Immunol. 2018;9: 1–17. PubMed PMC
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst. 2015;140: 5806–5820. 10.1039/c5an00990a PubMed DOI
Ferreira MS, de Oliveira DN, de Oliveira RN, Allegretti SM, Vercesi AE, Catharino RR. Mass spectrometry imaging: a new vision in differentiating Schistosoma mansoni strains. J Mass Spectrom. 2014;49: 86–92. 10.1002/jms.3308 PubMed DOI
Kadesch P, Quack T, Gerbig S, Grevelding CG, Spengler B. Lipid Topography in Schistosoma mansoni Cryosections, Revealed by Microembedding and High-Resolution Atmospheric-Pressure Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging. Anal Chem. 2019;91: 4520–4528. 10.1021/acs.analchem.8b05440 PubMed DOI
Hsu C-C, Chou P-T, Zare RN. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem. 2015;87: 11171–11175. 10.1021/acs.analchem.5b03389 PubMed DOI
Taverna D, Boraldi F, De Santis G, Caprioli RM, Quaglino D. Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification. Bone. 2015;74: 83–94. 10.1016/j.bone.2015.01.004 PubMed DOI PMC
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, et al. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasit Vectors. 2018;11: 142 10.1186/s13071-018-2666-2 PubMed DOI PMC
Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, et al. Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). Parasite. 2018;25: 61 10.1051/parasite/2018062 PubMed DOI PMC
Hahn C, Fromm B, Bachmann L. Comparative Genomics of Flatworms (Platyhelminthes) Reveals Shared Genomic Features of Ecto- and Endoparastic Neodermata. Genome Biol Evol. 2014;6: 1105–1117. 10.1093/gbe/evu078 PubMed DOI PMC
Zhang J, Wu X, Li Y, Zhao M, Xie M, Li A. The complete mitochondrial genome of Neobenedenia melleni (Platyhelminthes: Monogenea): mitochondrial gene content, arrangement and composition compared with two Benedenia species. Mol Biol Rep. 2014;41: 6583–6589. 10.1007/s11033-014-3542-6 PubMed DOI
Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA. The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes : Monogenea), a pathogen of Atlantic salmon (Salmo salar). 2007; 739–747. 10.1017/S0031182006002010 PubMed DOI
Plaisance L, Huyse T, Littlewood DTJ, Bakke TA, Bachmann L. The complete mitochondrial DNA sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes: Monogenea), a parasite of grayling (Thymallus thymallus). Mol Biochem Parasitol. 2007;154: 190–194. 10.1016/j.molbiopara.2007.04.012 PubMed DOI
Zhang J, Wu X, Xie M, Li A. The complete mitochondrial genome of Pseudochauhanea macrorchis (Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in Polyopisthocotylea. Mol Biol Rep. 2012;39: 8115–8125. 10.1007/s11033-012-1659-z PubMed DOI
Kang S, Kim J, Lee J, Kim S, Min G-S, Park J. The complete mitochondrial genome of an ectoparasitic monopisthocotylean fluke Benedenia hoshinai (Monogenea: Platyhelminthes). Mitochondrial DNA. 2012;23: 176–178. 10.3109/19401736.2012.668900 PubMed DOI
Baeza JA, Sepúlveda FA, González MT. The complete mitochondrial genome and description of a new cryptic species of Benedenia Diesing, 1858 (Monogenea: Capsalidae), a major pathogen infecting the yellowtail kingfish Seriola lalandi Valenciennes in the South-East Pacific. Parasit Vectors. 2019;12: 490 10.1186/s13071-019-3711-5 PubMed DOI PMC
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, et al. Sequencing of the complete mitochondrial genome of a fish-parasitic flatworm Paratetraonchoides inermis (Platyhelminthes: Monogenea): tRNA gene arrangement reshuffling and implications for phylogeny. Parasit Vectors. 2017;10: 462 10.1186/s13071-017-2404-1 PubMed DOI PMC
Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, et al. Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements. Parasites and Vectors. 2018;11: 1–13. PubMed PMC
Zhang D, Zou H, Jakovlić I, Wu SG, Li M, Zhang J, et al. Mitochondrial genomes of two thaparocleidus species (Platyhelminthes: Monogenea) reveal the first rRNA gene rearrangement among the neodermata. Int J Mol Sci. 2019;20 10.3390/ijms20174214 PubMed DOI PMC
Jedličková L, Dvořáková H, Kašný M, Ilgová J, Potěšil D, Zdráhal Z, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae). Parasitology. 2016;143: 494–506. 10.1017/S0031182015001808 PubMed DOI
Jedličková L, Dvořák J, Hrachovinová I, Ulrychová L, Kašný M, Mikeš L. A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro. Int J Parasitol. 2019;49: 337–346. 10.1016/j.ijpara.2018.11.010 PubMed DOI
Ilgová J, Jedličková L, Dvořáková H, Benovics M, Mikeš L, Janda L, et al. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci Rep. 2017;7: 17526 10.1038/s41598-017-17598-2 PubMed DOI PMC
Ilgová J, Kavanová L, Matiašková K, Salát J, Kašný M. Effect of cysteine peptidase inhibitor of Eudiplozoon nipponicum (Monogenea) on cytokine expression of macrophages in vitro. Mol Biochem Parasitol. 2020;235: 111248 10.1016/j.molbiopara.2019.111248 PubMed DOI
Fajtová P, Štefanić S, Hradilek M, Dvořák J, Vondrášek J, Jílková A, et al. Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. Correa-Oliveira R, editor. PLoS Negl Trop Dis. 2015;9: e0003827 10.1371/journal.pntd.0003827 PubMed DOI PMC
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6: 359–362. 10.1038/nmeth.1322 PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26: 1367–1372. 10.1038/nbt.1511 PubMed DOI
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen J V., Mann M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J Proteome Res. 2011;10: 1794–1805. 10.1021/pr101065j PubMed DOI
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47: D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45: D353–D361. 10.1093/nar/gkw1092 PubMed DOI PMC
Protasio A V, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni. Hoffmann KF, editor. PLoS Negl Trop Dis. 2012;6: e1455 10.1371/journal.pntd.0001455 PubMed DOI PMC
Konstanzová V, Koubková B, Kašný M, Ilgová J, Dzika E, Gelnar M. Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea). Parasitol Res. 2015;114: 1485–1494. 10.1007/s00436-015-4331-4 PubMed DOI
Brennan GP, Ramasamy P. Ultrastructure of the surface structures and electron immunogold labeling of peptide immunoreactivity in the nervous system of Pseudothoracocotyla indica (Polyopisthocotylea: Monogenea). Parasitol Res. 1996;82: 638–646. 10.1007/s004360050178 PubMed DOI
Cohen SC, Kohn A, Baptista-farias MFD. Scanning and Transmission Electron Microscopy of the Tegument of Paranaella luquei Kohn, Baptista-Farias & Cohen, 2000 (Microcotylidae, Monogenea), Parasite of a Brazilian Catfish, Hypostomus regani. 2001;96: 555–560. 10.1590/s0074-02762001000400019 PubMed DOI
Lyons KM. The epidermis and sense organs of the monogenea and some related groups. Adv Parasitol. 1973;11: 193–232. 10.1016/s0065-308x(08)60187-6 PubMed DOI
Konstanzová V, Ka M, Ilgová J, Dzika E, Gelnar M. An ultrastructural study of the surface and attachment structures of Paradiplozoon (Monogenea : Diplozoidae). 2017; 1–10. 10.1186/s13071-017-2203-8 PubMed DOI PMC
Conn DB. The biology of flatworms (Platyhelminthes): Parenchyma cells and extracellular matrices. TransAmMicroscSoc. 1993;112: 241–261. 10.2307/3226561 DOI
Pshezhetsky A V. Lysosomal Carboxypeptidase A Handbook of Proteolytic Enzymes. Elsevier; 2013. pp. 3413–3418. 10.1016/B978-0-12-382219-2.00754-7 DOI
Liu F, Lu J, Hu W, Wang S-YY, Cui S-JJ, Chi M, et al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog. 2006;2: 268–281. 10.1371/journal.ppat.0020029 PubMed DOI PMC
Horn M, Nussbaumerová M, Šanda M, Kovářová Z, Srba J, Franta Z, et al. Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. Chem Biol. 2009;16: 1053–1063. 10.1016/j.chembiol.2009.09.009 PubMed DOI PMC
Roche L, Tort J, Dalton J. The propeptide of Fasciola hepatica cathepsin L is a potent and selective inhibitor of the mature enzyme. Mol Biochem Parasitol. 1999;98: 271–277. 10.1016/s0166-6851(98)00164-9 PubMed DOI
Dvorak J, Horn M. Serine proteases in schistosomes and other trematodes. Int J Parasitol. 2018;48: 333–344. 10.1016/j.ijpara.2018.01.001 PubMed DOI
Glerup S, Boldt HB, Overgaard MT, Sottrup-Jensen L, Giudice LC, Oxvig C. Proteinase Inhibition by Proform of Eosinophil Major Basic Protein (pro-MBP) Is a Multistep Process of Intra- and Intermolecular Disulfide Rearrangements. J Biol Chem. 2005;280: 9823–9832. 10.1074/jbc.M413228200 PubMed DOI
Jones MK, Higgins T, Stenzel DJ, Gobert GN. Towards tissue specific transcriptomics and expression pattern analysis in schistosomes using laser microdissection microscopy. Exp Parasitol. 2007;117: 259–266. 10.1016/j.exppara.2007.06.004 PubMed DOI