Laser Capture Microdissection Coupled Capillary Immunoassay to Study the Expression of PCK-2 on Spatially-Resolved Islets of Rat Langerhans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
[Progres Q39]
Charles University Research Fund
SVV No. 260 539
Charles University Research Fund
[NPU I, Nr. LO1503]
National Sustainability Program I
PubMed
34203686
PubMed Central
PMC8232303
DOI
10.3390/pharmaceutics13060883
PII: pharmaceutics13060883
Knihovny.cz E-zdroje
- Klíčová slova
- Langerhans islets, PCK2, capillary Western blotting, laser capture microdissection, multiplexing,
- Publikační typ
- časopisecké články MeSH
The platform for precise proteomic profiling of targeted cell populations from heterogeneous tissue sections is developed. We demonstrate a seamless and systematic integration of LCM with an automated cap-IA for the handling of a very small-sized dissected tissues section from the kidney, liver and pancreatic Langerhans islet of rats. Our analysis reveals that the lowest LCM section area ≥ 0.125 mm2 with 10 µm thickness can be optimized for the detection of proteins through LCM-cap-IA integration. We detect signals ranging from a highly-abundant protein, β-actin, to a low-abundance protein, LC-3AB, using 0.125 mm2 LCM section from rat kidney, but, so far, a relatively large section is required for good quality of results. This integration is applicable for a highly-sensitive and accurate assessment of microdissected tissue sections to decipher hidden proteomic information of pure targeted cells. To validate this integration, PCK2 protein expression is studied within Langerhans islets of normal and diabetic rats. Our results show significant overexpression of PCK2 in Langerhans islets of rats with long-term diabetes.
Zobrazit více v PubMed
Van Meter A.J., Rodriguez A.S., Bowman E.D., Jen J., Harris C.C., Deng J., Calvert V.S., Silvestri A., Fredolini C., Chandhoke V., et al. Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: Differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol. Cell Proteom. 2008;7:1902–1924. doi: 10.1074/mcp.M800204-MCP200. PubMed DOI PMC
Garrido-Gil P., Fernandez-Rodríguez P., Rodríguez-Pallares J., Labandeira-Garcia J.L. Laser capture microdissection protocol for gene expression analysis in the brain. Histochem. Cell Biol. 2017;148:299–311. doi: 10.1007/s00418-017-1585-1. PubMed DOI
Dvorakova M.C., Mistrova E., Paddenberg R., Kummer W., Slavikova J. Substance P Receptor in the Rat Heart and Regulation of Its Expression in Long-Term Diabetes. Front. Physiol. 2018;9:918. doi: 10.3389/fphys.2018.00918. PubMed DOI PMC
Clair G., Piehowski P., Nicola T., Kitzmiller J.A., Huang E.L., Zink E.M., Sontag R.L., Orton D.J., Moore R.J., Carson P., et al. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples. Sci. Rep. 2016;6:39223. doi: 10.1038/srep39223. PubMed DOI PMC
Ezzoukhry Z., Henriet E., Cordelières F.P., Dupuy J.-W., Maître M., Gay N., Di-Tommaso S., Mercier L., Goetz J.G., Peter M., et al. Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-04461-9. PubMed DOI PMC
Ichikawa H., Kanda T., Kosugi S.-I., Kawachi Y., Sasaki H., Wakai T., Kondo T. Laser Microdissection and Two-Dimensional Difference Gel Electrophoresis Reveal the Role of a Novel Macrophage-Capping Protein in Lymph Node Metastasis in Gastric Cancer. J. Proteome Res. 2013;12:3780–3791. doi: 10.1021/pr400439m. PubMed DOI
Lawrie L.C., Curran S., McLeod H.L., Fothergill J., Murray G. Application of laser capture microdissection and proteomics in colon cancer. Mol. Pathol. 2001;54:253–258. doi: 10.1136/mp.54.4.253. PubMed DOI PMC
Ni X.-G., Zhao P., Liu Y., Zhao X.-H. Application of proteomic approach for solid tumor marker discovery. Ai Zheng. 2003;22:664–667. PubMed
Roudnický P., Potěšil D., Zdráhal Z., Gelnar M., Kašný M. Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea) PLoS ONE. 2020;15:e0231681. doi: 10.1371/journal.pone.0231681. PubMed DOI PMC
Li S., Plouffe B.D., Belov A.M., Ray S., Wang X., Murthy S.K., Karger B.L., Ivanov A.R. An Integrated Platform for Isolation, Processing, and Mass Spectrometry-based Proteomic Profiling of Rare Cells in Whole Blood. Mol. Cell. Proteom. 2015;14:1672–1683. doi: 10.1074/mcp.M114.045724. PubMed DOI PMC
Hughes A., Spelke D.P., Xu Z., Kang C.-C., Schaffer D.V., Herr A.E. Single-cell western blotting. Nat. Methods. 2014;11:749–755. doi: 10.1038/nmeth.2992. PubMed DOI PMC
Zhu Y., Piehowski P.D., Zhao R., Chen J., Shen Y., Moore R.J., Shukla A.K., Petyuk V.A., Campbell-Thompson M., Mathews C.E., et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-03367-w. PubMed DOI PMC
Budnik B., Levy E., Harmange G., Slavov N. SCoPE-MS: Mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19:161. doi: 10.1186/s13059-018-1547-5. PubMed DOI PMC
Yang J., Kalhan S., Hanson R.W. What Is the Metabolic Role of Phosphoenolpyruvate Carboxykinase? J. Biol. Chem. 2009;284:27025–27029. doi: 10.1074/jbc.R109.040543. PubMed DOI PMC
Stark R., Pasquel F., Turcu A., Pongratz R.L., Roden M., Cline G.W., Shulman G.I., Kibbey R.G. Phosphoenolpyruvate Cycling via Mitochondrial Phosphoenolpyruvate Carboxykinase Links Anaplerosis and Mitochondrial GTP with Insulin Secretion. J. Biol. Chem. 2009;284:26578–26590. doi: 10.1074/jbc.M109.011775. PubMed DOI PMC
Lewandowski S.L., Cardone R.L., Foster H.R., Ho T., Potapenko E., Poudel C., VanDeusen H.R., Sdao S.M., Alves T.C., Zhao X., et al. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metab. 2020;32:736–750.e5. doi: 10.1016/j.cmet.2020.10.007. PubMed DOI PMC
Kirana C., Ward T., Jordan T.W., Rawson P., Royds J., Shi H.J., Stubbs R., Hood K. Compatibility of toluidine blue with laser microdissection and saturation labeling DIGE. Proteomics. 2009;9:485–490. doi: 10.1002/pmic.200800197. PubMed DOI
Pandey S., Tuma Z., Peroni E., Monasson O., Papini A., Dvorakova M.C. Identification of NPB, NPW and Their Receptor in the Rat Heart. Int. J. Mol. Sci. 2020;21:7827. doi: 10.3390/ijms21217827. PubMed DOI PMC
Westermeier F., Holyoak T., Gatica R., Martínez F., Negrón M., Yáñez A.J., Nahmias D., Nualart F., Burbulis I., Bertinat R. Cytosolic phosphoenolpyruvate carboxykinase is expressed in α-cells from human and murine pancreas. J. Cell Physiol. 2020;235:166–175. doi: 10.1002/jcp.28955. PubMed DOI
Dempsey L. CyTOF analysis of anti-tumor responses. Nat. Immunol. 2017;18:254. doi: 10.1038/ni.3702. PubMed DOI
Tosevski V., Ulashchik E., Trovato A., Cappella P. CyTOF Mass Cytometry for Click Proliferation Assays. Curr. Protoc. Cytom. 2017;81:7.50.1–7.50.14. doi: 10.1002/cpcy.25. PubMed DOI
Behbehani G.K. Applications of Mass Cytometry in Clinical Medicine: The Promise and Perils of Clinical CyTOF. Clin. Lab. Med. 2017;37:945–964. doi: 10.1016/j.cll.2017.07.010. PubMed DOI
Kang C.-C., Yamauchi K., Vlassakis J., Sinkala E., Duncombe T., Herr C.-C.K. Single cell–resolution western blotting. Nat. Protoc. 2016;11:1508–1530. doi: 10.1038/nprot.2016.089. PubMed DOI PMC
Darmanis S., Gallant C.J., Marinescu V.D., Niklasson M., Segerman A., Flamourakis G., Fredriksson S., Assarsson E., Lundberg M., Nelander S., et al. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells. Cell Rep. 2016;14:380–389. doi: 10.1016/j.celrep.2015.12.021. PubMed DOI PMC
Chang L., Li J., Wang L. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal. Chim. Acta. 2016;910:12–24. doi: 10.1016/j.aca.2015.12.039. PubMed DOI
Khan A.H., Sadroddiny E. Application of immuno-PCR for the detection of early stage cancer. Mol. Cell. Probes. 2016;30:106–112. doi: 10.1016/j.mcp.2016.01.010. PubMed DOI
Ryazantsev D.Y., Voronina D.V., Zavriev S.K. Immuno-PCR: Achievements and perspectives. Biochemistry. 2016;81:1754–1770. doi: 10.1134/S0006297916130113. PubMed DOI
Anzai H., Terai T., Jayathilake C., Suzuki T., Nemoto N. A novel immuno-PCR method using cDNA display. Anal. Biochem. 2019;578:1–6. doi: 10.1016/j.ab.2019.04.017. PubMed DOI
Levy E., Slavov N. Single cell protein analysis for systems biology. Essays Biochem. 2018;62:595–605. doi: 10.1042/EBC20180014. PubMed DOI PMC
Landgraf D., Okumus B., Chien P., Baker T.A., Paulsson J. Segregation of molecules at cell division reveals native protein localization. Nat. Methods. 2012;9:480–482. doi: 10.1038/nmeth.1955. PubMed DOI PMC
Bandura D.R., Baranov V.I., Ornatsky O.I., Antonov A., Kinach R., Lou X., Pavlov S., Vorobiev S., Dick J., Tanner S.D. Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Anal. Chem. 2009;81:6813–6822. doi: 10.1021/ac901049w. PubMed DOI
Bendall S.C., Simonds E.F., Qiu P., Amir E.-A.D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum. Science. 2011;332:687–696. doi: 10.1126/science.1198704. PubMed DOI PMC
Marcon E., Jain H., Bhattacharya A., Guo H., Phanse S., Pu S., Byram G., Collins B.C., Dowdell E., Fenner M., et al. Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat. Methods. 2015;12:725–731. doi: 10.1038/nmeth.3472. PubMed DOI
Chen J.-Q., Wakefield L.M., Goldstein D.J. Capillary nano-immunoassays: Advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics. J. Transl. Med. 2015;13:1–14. doi: 10.1186/s12967-015-0537-6. PubMed DOI PMC
Planque M., Arnould T., Delahaut P., Renard P., Dieu M., Gillard N. Development of a strategy for the quantification of food allergens in several food products by mass spectrometry in a routine laboratory. Food Chem. 2019;274:35–45. doi: 10.1016/j.foodchem.2018.08.095. PubMed DOI
Wiśniewski J.R. Proteomic sample preparation from formalin fixed and paraffin embedded tissue. J. Vis. Exp. 2013:e50589. doi: 10.3791/50589. PubMed DOI PMC
Nguyen U., Squaglia N., Boge A., Fung P.A. The Simple Western™: A gel-free, blot-free, hands-free Western blotting reinvention. Nat. Methods. 2011;8:982. doi: 10.1126/science.1211037. DOI
Chen J.-Q., Heldman M.R., Herrmann M.A., Kedei N., Woo W., Blumberg P.M., Goldsmith P.K. Absolute quantitation of endogenous proteins with precision and accuracy using a capillary Western system. Anal. Biochem. 2013;442:97–103. doi: 10.1016/j.ab.2013.07.022. PubMed DOI PMC
Goldman A., Ursitti J.A., Mozdzanowski J., Speicher D.W. Electroblotting from Polyacrylamide Gels. Curr. Protoc. Protein Sci. 2015;82:10.7.1–10.7.16. doi: 10.1002/0471140864.ps1007s82. PubMed DOI PMC
Beekman C., Janson A.A., Baghat A., Van Deutekom J.C., Datson N.A. Use of capillary Western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne muscular dystrophy. PLoS ONE. 2018;13:e0195850. PubMed PMC
Pera T., Deshpande D.A., Ippolito M., Wang B., Gavrila A., Michael J.V., Nayak A.P., Tompkins E., Farrell E., Kroeze W.K., et al. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines. FASEB J. 2018;32:862–874. doi: 10.1096/fj.201700555R. PubMed DOI PMC
Hanson R.W., Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 1997;66:581–611. doi: 10.1146/annurev.biochem.66.1.581. PubMed DOI
Sun Y., Liu S., Ferguson S., Wang L., Klepcyk P., Yun J.S., Friedman J.E. Phosphoenolpyruvate Carboxykinase Overexpression Selectively Attenuates Insulin Signaling and Hepatic Insulin Sensitivity in Transgenic Mice. J. Biol. Chem. 2002;277:23301–23307. doi: 10.1074/jbc.M200964200. PubMed DOI
Valera A., Pujol A., Pelegrin M., Bosch F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA. 1994;91:9151–9154. doi: 10.1073/pnas.91.19.9151. PubMed DOI PMC
Gómez-Valadés A.G., Méndez-Lucas A., Vidal-Alabró A., Blasco F.X., Chillon M., Bartrons R., Bermúdez J., Perales J.C. Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice. Diabetes. 2008;57:2199–2210. doi: 10.2337/db07-1087. PubMed DOI PMC
Macdonald M.J., Chang C.-M. Do Pancreatic Islets Contain Significant Amounts of Phosphoenolpyruvate Carboxykinase or Ferroactivator Activity? Diabetes. 1985;34:246–250. doi: 10.2337/diab.34.3.246. PubMed DOI
Escós M., Latorre P., Hidalgo J., Hurtado-Guerrero R., Carrodeguas J.A., López-Buesa P. Kinetic and functional properties of human mitochondrial phosphoenolpyruvate carboxykinase. Biochem. Biophys. Rep. 2016;7:124–129. doi: 10.1016/j.bbrep.2016.06.007. PubMed DOI PMC
Jamison R.A., Stark R., Dong J., Yonemitsu S., Zhang D., Shulman G.I., Kibbey R.G. Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. Am. J. Physiol. Metab. 2011;301:E1174–E1183. doi: 10.1152/ajpendo.00175.2011. PubMed DOI PMC
Steiner D.J., Kim A., Miller K., Hara M. Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition. Islets. 2010;2:135–145. doi: 10.4161/isl.2.3.11815. PubMed DOI PMC
Smith S.A., Lister C.A., Toseland C.D.N., Buckingham R.E. Rosiglitazone prevents the onset of hyperglycaemia and proteinuria in the Zucker diabetic fatty rat. Diabetes Obes. Metab. 2000;2:363–372. doi: 10.1046/j.1463-1326.2000.00099.x. PubMed DOI
Méndez-Lucas A., Hyroššová P., Novellasdemunt L., Viñals F., Perales J.C. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J. Biol. Chem. 2014;289:22090–22102. doi: 10.1074/jbc.M114.566927. PubMed DOI PMC