Isoforms of Cathepsin B1 in Neurotropic Schistosomula of Trichobilharzia regenti Differ in Substrate Preferences and a Highly Expressed Catalytically Inactive Paralog Binds Cystatin

. 2020 ; 10 () : 66. [epub] 20200226

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32175287

Grantová podpora
P50 AI150476 NIAID NIH HHS - United States
P50 GM082250 NIGMS NIH HHS - United States
R01 GM104659 NIGMS NIH HHS - United States

Schistosomula (the post-infective stages) of the neurotropic schistosome Trichobilharzia regenti possess multiple isoforms of cathepsin B1 peptidase (TrCB1.1-TrCB1.6) with involvement in nutrient digestion. The comparison of substrate preferences of TrCB1.1 and TrCB1.4 showed that TrCB1.4 had a very narrow substrate specificity and after processing it was less effective toward protein substrates when compared to TrCB1.1. Self-processing of both isoforms could be facilitated by sulfated polysaccharides due to a specific binding motif in the pro-sequence. Trans-activation by heterologous enzymes was also successfully employed. Expression profiling revealed a high level of transcription of genes encoding the enzymatically inactive paralogs TrCB1.5 and TrCB1.6. The transcription level of TrCB1.6 was comparable with that of TrCB1.1 and TrCB1.2, the most abundant active isoforms. Recombinant TrCB1.6wt, a wild type paralog with a Cys29-to-Gly substitution in the active site that renders the enzyme inactive, was processed by the active TrCB1 forms and by an asparaginyl endopeptidase. Although TrCB1.6wt lacked hydrolytic activity, endopeptidase, but not dipeptidase, activity could be restored by mutating Gly29 to Cys29. The lack of exopeptidase activity may be due to other mutations, such as His110-to-Asn in the occluding loop and Asp224-to-Gly in the main body of the mature TrCB1.6, which do not occur in the active isoforms TrCB1.1 and TrCB1.4 with exopeptidase activity. The catalytically active enzymes and the inactive TrCB1.6 paralog formed complexes with chicken cystatin, thus supporting experimentally the hypothesis that inactive paralogs could potentially regulate the activity of the active forms or protect them from being inhibited by host inhibitors. The effect on cell viability and nitric oxide production by selected immune cells observed for TrCB1.1 was not confirmed for TrCB1.6. We show here that the active isoforms of TrCB1 have different affinities for peptide substrates thereby facilitating diversity in protein-derived nutrition for the parasite. The inactive paralogs are unexpectedly highly expressed and one of them retains the ability to bind cystatins, likely due to specific mutations in the occluding loop and the enzyme body. This suggests a role in sequestration of inhibitors and protection of active cysteine peptidases.

Zobrazit více v PubMed

Artimo P., Jonnalagedda M., Arnold K., Baratin D., Csardi G., de Castro E., et al. . (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, W597–W603. 10.1093/nar/gks400 PubMed DOI PMC

Barrett A. J., Kirschke H. (1981). Cathepsin-B, cathepsin-H, and cathepsin-L. Meth. Enzymol. 80, 535–561. 10.1016/S0076-6879(81)80043-2 PubMed DOI

Bergström F. C., Reynolds S., Johnstone M., Pike R. N., Buckle A. M., Kemp D. J., et al. . (2009). Scabies mite inactivated serine protease paralogs inhibit the human complement system. J. Immunol. 182, 7809–7817. 10.4049/jimmunol.0804205 PubMed DOI

Blažová K., Horák P. (2005). Trichobilharzia regenti: the developmental differences in natural and abnormal hosts. Parasitol. Int. 54, 167–172. 10.1016/j.parint.2005.03.003 PubMed DOI

Caffrey C. R., Goupil L., Rebello K. M., Dalton J. P., Smith D. (2018). Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Neglect. Trop. Dis. 12:e0005840. 10.1371/journal.pntd.0005840 PubMed DOI PMC

Caffrey C. R., Mathieu M. A., Gaffney A. M., Salter J. P., Sajid M., Lucas K. D., et al. . (2000). Identification of a cDNA encoding an active asparaginyl endopeptidase of Schistosoma mansoni and its expression in Pichia pastoris. FEBS Lett. 466, 244–248. 10.1016/S0014-5793(99)01798-6 PubMed DOI

Caffrey C. R., McKerrow J. H., Salter J. P., Sajid M. (2004). Blood ‘n' guts: an update on schistosome digestive peptidases. Trends Parasitol. 20, 241–248. 10.1016/j.pt.2004.03.004 PubMed DOI

Chanová M., Horák P. (2007). Terminal phase of bird schistosomiasis caused by Trichobilharzia regenti (Schistosomatidae) in ducks (Anas platyrhynchos f. domestica). Folia Parasit. 54, 105–107. 10.14411/fp.2007.014 PubMed DOI

Choe Y., Leonetti F., Greenbaum D. C., Lecaille F., Bogyo M., Brömme D., et al. . (2006). Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832. 10.1074/jbc.M513331200 PubMed DOI

Delcroix M., Sajid M., Caffrey C. R., Lim K. C., Dvořák J., Hsieh I., et al. . (2006). A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 281, 39316–39329. 10.1074/jbc.M607128200 PubMed DOI

Dolečková K., Albrecht T., Mikeš L., Horák P. (2010). Cathepsins B1 and B2 in the neuropathogenic schistosome Trichobilharzia regenti: distinct gene expression profiles and presumptive roles throughout the life cycle. Parasitol. Res. 107, 751–755. 10.1007/s00436-010-1943-6 PubMed DOI

Donnelly S., O‘Neil S. M., Stack C. M., Robinson M. W., Turnbull L., Whitchurch C., et al. . (2009). Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J. Biol. Chem. 285, 3383–3392. 10.1074/jbc.M109.060368 PubMed DOI PMC

Dvořák J., Delcroix M., Rossi A., Vopálenský V., Pospíšek M., Šedinová M., et al. . (2005). Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int. J. Parasitol. 35, 895–910. 10.1016/j.ijpara.2005.02.018 PubMed DOI

Greenbaum D. C., Baruch A., Hayrapetian L., Darula Z., Burlingame A., Medzihradszky K., et al. . (2002). Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68. 10.1074/mcp.T100003-MCP200 PubMed DOI

Hamuro Y., Coales S. J., Molnar K. S., Tuske S. J., Morrow J. A. (2008). Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun. Mass Sp. 22, 1041–1046. 10.1002/rcm.3467 PubMed DOI

He W., Ohashi K., Sugimoto C., Onuma M. (2005). Theileria orientalis: Cloning a cDNA encoding a protein similar to thiol protease with haemoglobin-binding activity. Exp. Parasitol. 111, 143–153. 10.1016/j.exppara.2005.06.003 PubMed DOI

Holt D. C., Fischer K., Allen G. E., Wilson D., Wilson P., Slade R., et al. . (2003). Mechanisms for a novel immune evasion strategy in the scabies mite Sarcoptes Scabiei: a multigene family of inactivated serine proteases. J. Invest. Dermatol. 121, 1419–1424. 10.1046/j.1523-1747.2003.12621.x PubMed DOI

Holt D. C., Fischer K., Pizzutto S. J., Currie B. J., Walton S. F., Kemp D. J. (2004). A multigene family of inactivated cysteine proteases in Sarcoptes scabiei. J. Invest. Dermatol. 123, 240–241. 10.1111/j.0022-202X.2004.22716.x PubMed DOI

Horák P., Dvořák J., Kolářová L., Trefil L. (1999). Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology 119, 577–581. 10.1017/S0031182099005132 PubMed DOI

Horák P., Kolářová L., Dvořák J. (1998). Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite 5, 349–357. 10.1051/parasite/1998054349 PubMed DOI

Horák P., Mikeš L., Lichtenbergová L., Skála V., Soldánová M., Brant S. V. (2015): Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 28, 165–190. 10.1128/CMR.00043-14 PubMed DOI PMC

Horák P., Mikeš L., Rudolfová J., Kolářová L. (2008). Penetration of Trichobilharzia cercariae into mammals: dangerous or negligible event? Parasite 15, 299–303. 10.1051/parasite/2008153299 PubMed DOI

Horn M., Jílková A., Vondrášek J., Marešová L., Caffrey C. R., Mareš M. (2011). Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem. Biol. 6, 609–617. 10.1021/cb100411v PubMed DOI

Illy C., Quraishi O., Wang J., Purisima E., Vernet T., Mort J. S. (1997). Role of the occluding loop in cathepsin B activity. J. Biol. Chem. 272, 1197–1202. 10.1074/jbc.272.2.1197 PubMed DOI

Jedličková L., Dvořáková H., Dvořák J., Kašný M., Ulrychová L., Vorel J., et al. . (2018). Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasite. Vector. 11, 1–17. 10.1186/s13071-018-2666-2 PubMed DOI PMC

Jílková A., Horn M., Řezáčová P., Marešová L., Fajtová P., Brynda J., et al. . (2014). Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure 22, 1786–1798. 10.1016/j.str.2014.09.015 PubMed DOI

Kašný M., Haas W., Jamieson B. G. M., Horák P. (2016). Cercaria of Schistosoma, in Schistosoma: Biology, pathology and control, ed Jamieson B. G. M. (Boca Raton, FL: CRC Press; Taylor and Francis Group; ), 149–183. 10.1201/9781315368900-9 DOI

Krupa J. C., Hasnain S., Nägler D. K., Ménard R., Mort J. S. (2002). S2' substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B. Biochem. J. 361, 613–619. 10.1042/bj3610613 PubMed DOI PMC

Law R. H. P., Smooker P. M., Irving J. A., Piedrafita D., Ponting R., Kennedy N. J., et al. . (2003). Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infect. Immun. 71, 6921–6932. 10.1128/IAI.71.12.6921-6932.2003 PubMed DOI PMC

Leontovyč R., Young N. D., Korhonen P. K., Hall R. S., Bulantová J., Jeřábková V., et al. . (2019). Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Sci. Rep. 9:1347. 10.1038/s41598-018-37669-2 PubMed DOI PMC

Leontovyč R., Young N. D., Korhonen P. K., Hall R. S., Tan P., Mikeš L., et al. . (2016). Comparative transcriptomic exploration reveals unique molecular adaptations of neuropathogenic Trichobilharzia to invade and parasitize its avian definitive host. PLoS Neglect. Trop. Dis. 10, 1–24. 10.1371/journal.pntd.0004406 PubMed DOI PMC

Li B., Dewey C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 10.1186/1471-2105-12-323 PubMed DOI PMC

Lichtenbergová L., Lassmann H., Jones M. K., Kolářová L., Horák P. (2011). Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp. Parasitol. 128, 328–335. 10.1016/j.exppara.2011.04.006 PubMed DOI

Lipps G., Fü R., Beck E. (1996). Cathepsin B of Schistosoma mansoni- Purification and activation of the recombinant proenzyme secreted by Saccharomyces cerevisiae. J. Biol. Chem. 271, 1717–1725. 10.1074/jbc.271.3.1717 PubMed DOI

Macháček T., Panská L., Dvořáková H., Horák P. (2016). Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti. Parasite. Vector. 9:579. 10.1186/s13071-016-1869-7 PubMed DOI PMC

Macháček T., Turjanicová L., Bulantová J., Hrdý J., Horák P., Mikeš L. (2018). Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol. Res. 117, 3881–3895. 10.1007/s00436-018-6095-0 PubMed DOI

McCoubrie J. E., Miller S. K., Sargeant T., Good R. T., Hodder A. N., Speed T. P., et al. . (2007). Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect. Immun. 75, 5565–5574. 10.1128/IAI.00405-07 PubMed DOI PMC

Mendoza-Palomares C., Biteau N., Giroud C., Coustou V., Coetzer T., Authié E., et al. . (2008). Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense. Eukaryot. Cell 7, 684–697. 10.1128/EC.00405-07 PubMed DOI PMC

Merckelbach A., Hasse S., Dell R., Eschlbeck A., Ruppel A. (1994). cDNA sequences of Schistosoma japonicum coding for 2 cathepsin B-like proteins and Sj32. Trop. Med. Parasitol. 45, 193–198. PubMed

Mort J. S., Buttle D. J. (1997). Cathepsin B. Int. J. Biochem. Cell Biol. 29, 715–720. 10.1016/S1357-2725(96)00152-5 PubMed DOI

Musil D., Zucic D., Turk D., Engh R. A., Mayr I., Huber R., et al. . (1991). The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10, 2321–2330. 10.1002/j.1460-2075.1991.tb07771.x PubMed DOI PMC

Pavlova A., Krupa J. C., Mort J. S., Abrahamson M., Björk I. (2000). Cystatin inhibition of cathepsin B requires dislocation of the proteinase occluding loop. Demonstration by release of loop anchoring through mutation of His110. FEBS Lett. 487, 156–160. 10.1016/S0014-5793(00)02337-1 PubMed DOI

Pillay D., Boulangé A. F., Coetzer T. H. T. (2010). Expression, purification and characterisation of two variant cysteine peptidases from Trypanosoma congolense with active site substitutions. Protein Expres. Purif. 74, 264–271. 10.1016/j.pep.2010.06.021 PubMed DOI

R Development Core Team (2015). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.R-project.org/

Reynolds S. L., Pike R. N., Mika A., Blom A. M., Hofmann A., Wijeyewickrema L. C., et al. . (2014). Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS Neglect. Trop. Dis. 8:e2872. 10.1371/journal.pntd.0002872 PubMed DOI PMC

Řimnáčová J., Mikeš L., Turjanicová L., Bulantová J, Horák P. (2017): Changes in surface glycosylation glycocalyx shedding in Trichobilharzia regenti (Schistosomatidae) during the transformation of cercaria to schistosomulum. PLoS ONE 12:e0173217. 10.1371/journal.pone.0173217 PubMed DOI PMC

Robinson M. D., McCarthy D. J., Smyth G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC

Sajid M., McKerrow J. H., Hansell E., Mathieu M. A., Lucas K. D., Hsieh I., et al. . (2003). Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol. 131, 65–75. 10.1016/S0166-6851(03)00194-4 PubMed DOI

Salter J. P., Choe Y., Albrecht H., Franklin C., Lim K. C., Craik C. S., et al. . (2002). Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J. Biol. Chem. 277, 24618–24624. 10.1074/jbc.M202364200 PubMed DOI

Schechter I., Berger A. (1967). On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–62. 10.1016/S0006-291X(67)80055-X PubMed DOI

Sojka D., Hajdušek O., Dvořák J., Sajid M., Franta Z., Schneider E. L., et al. . (2007). IrAE - An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 37, 713–724. 10.1016/j.ijpara.2006.12.020 PubMed DOI PMC

Soloviova K., Fox E. C., Dalton J. P., Caffrey C. R., Davies S. J. (2019). A secreted schistosome cathepsin B1 cysteine protease and acute schistosome infection induce a transient T helper 17 response. PLoS Neglect. Trop. Dis. 13:e0007070. 10.1371/journal.pntd.0007070 PubMed DOI PMC

Williamson A. L., Brindley P. J., Knox D. P., Hotez P. J., Loukas A. (2003). Digestive proteases of blood-feeding nematodes. Trends Parasitol. 19, 417–423. 10.1016/S1471-4922(03)00189-2 PubMed DOI

Williamson A. L., Lecchi P., Turk B. E., Choe Y., Hotez P. J., McKerrow J. H., et al. . (2004). A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J. Biol. Chem. 279, 35950–35957. 10.1074/jbc.M405842200 PubMed DOI

Yamamoto A., Hara T., Tomoo K., Ishida T., Fujii T., Hata Y., et al. . (1997). Binding mode of CA074, a specific irreversible inhibitor, to bovine cathepsin B as determined by X-Ray crystal analysis of the complex. J. Biochem. 121, 974–977. 10.1093/oxfordjournals.jbchem.a021682 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...