Changes in surface glycosylation and glycocalyx shedding in Trichobilharzia regenti (Schistosomatidae) during the transformation of cercaria to schistosomulum
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28296924
PubMed Central
PMC5351870
DOI
10.1371/journal.pone.0173217
PII: PONE-D-15-56273
Knihovny.cz E-zdroje
- MeSH
- glykokalyx metabolismus MeSH
- glykosylace MeSH
- Schistosomatidae metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
Zobrazit více v PubMed
Horák P, Kolářová L. Bird schistosomes: do they die in mammalian skin? Trends Parasitol 2001; 17: 66–69. PubMed
Horák P, Kolářová L. Snails, waterfowl and cercarial dermatitis. Freshw Biol 2011; 56: 779–79.
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev 2015; 28: 165–190. 10.1128/CMR.00043-14 PubMed DOI PMC
Horák P, Mikeš L, Rudolfová J, Kolářová L. Penetration of Trichobilharzia cercariae into mammals: Dangerous or negligible event? Parasite 2008; 15: 299–303. 10.1051/parasite/2008153299 PubMed DOI
Hockley DJ, McLaren DJ. Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. Int J Parasitol 1973; 3: 13–25. PubMed
Horák P, Kovář L, Kolářová L, Nebesářová J. Cercaria-schistosomulum surface transformation of Trichobilharzia szidati and its putative immunological impact. Parasitology 1998; 116: 139–147. PubMed
Samuelson JC, Caulfield JP. The cercarial glycocalyx of Schistosoma mansoni. J Cell Biol 1985; 100: 1423–1434. PubMed PMC
Caulfield JP, Cianci CML, McDiarmid SS, Suyemitsu T, Schmid K. Ultrastructure, carbohydrate, and amino acid analysis of two preparations of the cercarial glycocalyx of Schistosoma mansoni. J Parasitol 1987; 73: 514–522. PubMed
Nanduri J, Dennis JE, Rosenberrys TL, Mahmoud AAF, Tartakoff AM. Glycocalyx of bodies versus tails of Schistosoma mansoni cercariae lectin-binding, size, charge, and electron microscopic characterization. J Biol Chem 1991; 266: 1341–1347. PubMed
Xu XF, Stack RJ, Rao N, Caulfield JP. Schistosoma mansoni: fractionation and characterization of the glycocalyx and glycogen-like material from cercariae. Exp Parasitol 1994; 79: 399–409. PubMed
Khoo KH, Sarda S, Xu X, Caulfield JP, McNeil MR, Homans SW et al. A unique multifucosylated-3GalNAcβ1→4GlcNAcβ1→3Galα1-motif constitutes the repeating unit of the complex O-Glycans derived from the cercarial glycocalyx of Schistosoma mansoni. J Biol Chem 1995; 270: 17114–17123. PubMed
Wuhrer M, Dennis RD, Doenhoff MJ, Lochnit G, Geyer R. Schistosoma mansoni: cercarial glycolipids are dominated by Lewis X and pseudo-Lewis Y structures. Glycobiology 2000; 10: 89–101. PubMed
Huang H, Tsai P, Khoo K. Selective expression of different fucosylated epitopes on two distinct sets of Schistosoma mansoni cercarial O-glycans: identification of a novel core type and Lewis X antigen. Glycobiology 2001; 11: 395–406. PubMed
Khoo KH, Huang HH, Lee KM. Characteristic structural features of schistosome cercarial N-glycans: expression of Lewis X and core xylosylation. Glycobiology 2001; 11: 149–163. PubMed
Smit CH, van Diepen A, Nguyen DL, Wuhrer M, Hoffmann KF, Deekler AM et al. Glycomic analysis of life stages of the human parasite Schistosoma mansoni reveals developmental expression profiles of functional and antigenic glycan motifs. Mol Cell Proteomics 2015; 14: 1750–1769. 10.1074/mcp.M115.048280 PubMed DOI PMC
Smit CH, Homann A, van Hensbergen VP, Schramm G, Haas H, van Diepen A et al. Surface expression patterns of defined glycan antigens change during Schistosoma mansoni cercarial transformation and development of schistosomula. Glycobiology 2015; 25: 1465–1479. 10.1093/glycob/cwv066 PubMed DOI
Beisler GK, Nakao M, Matsuda H, Tahala H. Characterization of the carbohydrates of Schistosoma japonicum adult worm, egg and cercaria by analysis of lectin binding and antibody reaction. Jpn J Exp Med 1984; 54: 263–273. PubMed
Linder E. Schistosoma mansoni: visualization with fluorescent lectins of secretions and surface carbohydrates of living cercariae. Exp Parasitol 1985; 59: 307–312. PubMed
Hayunga EG, Sumner MP. Expression of lectin-binding surface glycoproteins during the development of Schistosoma mansoni schistosomula. J Parasitol 1986; 72: 913–920. PubMed
Horák P. Developmentally regulated expression of surface carbohydrate residues on larval stages of the avian schistosome Trichobilharzia szidati. Folia Parasitol 1995; 42: 255–265. PubMed
Blažová K, Horák P. Trichobilharzia regenti: the developmental differences in natural and abnormal hosts. Parasitol Int 2005; 54: 167–172. 10.1016/j.parint.2005.03.003 PubMed DOI
Podhorský M, Hůzová Z, Mikeš L, Horák P. Cercarial dimensions and surface structures as a tool for species determination of Trichobilharzia spp. Acta Parasitol 2009; 54: 28–36.
Klabunde J, Berger J, Jensenius JC, Klinkert M, Zelck UE, Kremsner G et al. Schistosoma mansoni: adhesion of mannan-binding lectin to surface glycoproteins of cercariae and adult worms. Exp Parasitol 2000; 95: 231–239. 10.1006/expr.2000.4539 PubMed DOI
Marikovsky M, Fishelson Z, Arnon R. Purification and characterization of proteases secreted by transforming schistosomula of Schistosoma mansoni. Mol Biochem Parasitol 1988; 30: 45–54. PubMed
Marikovsky M, Arnon R, Fishelson Z. Schistosoma mansoni: localization of the 28 kDa secreted protease in cercaria. Parasite Immunol 1990; 12: 389–401. PubMed
Fishelson Z, Amiri P, Friend DS, Marikovsky M, Petitt M, Newport G et al. Schistosoma mansoni: cell-specific expression and secretion of a serine protease during development of cercariae. Exp Parasitol 1992; 75: 87–98. PubMed
Haas W. Parasitic worms: strategies of host finding, recognition and invasion. Zoology 2003; 106: 349–364. 10.1078/0944-2006-00125 PubMed DOI
Mikeš L, Zídková L, Kašný M, Dvořák J, Horák P. In vitro stimulation of penetration gland emptying by Trichobilharzia szidati and T. regenti (Schistosomatidae) cercariae. Quantitative collection and partial characterization of the products. Parasitol Res 2005; 96: 230–241. 10.1007/s00436-005-1347-1 PubMed DOI
Coles GC, Jansson HB, Zuckerman BM. Lectin studies of surface carbohydrates and induction of gland secretion in the free-living stages of Schistosoma mansoni. J Chem Ecol 1988; 14: 691–700. 10.1007/BF01013916 PubMed DOI
Matsumura K, Shimada M, Sato K, Aoki Y. Praziquantel-induced secretion of proteolytic enzyme from Schistosoma mansoni cercariae. J Parasitol 1990; 76: 436–438. PubMed
Stirewalt MA, Kruidenier FJ. Activity of the acetabular secretory apparatus of cercariae of Schistosoma mansoni under experimental conditions. Exp Parasitol 1961; 11: 191–211. PubMed
Ligasová A, Bulantová J, Šebesta O, Kašný M, Koberna K, Mikeš L. Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti–ultrastructural characterization, 3-D modelling, volume and pH estimations. Parasites and Vectors 2011; 4: 162 10.1186/1756-3305-4-162 PubMed DOI PMC
Curwen RS, Ashton PD, Johnston DA, Wilson RA. The Schistosoma mansoni soluble proteome a comparasion across four life-cycle stages. Mol Biochem Parasitol 2004; 138: 57–66. 10.1016/j.molbiopara.2004.06.016 PubMed DOI
Knudsen GM, Medzihradszky KF, Lim KC, Hansell E, McKerrow JH. Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol Cell Proteomics 2005; 4: 1862–1875. 10.1074/mcp.M500097-MCP200 PubMed DOI
Curwen RS, Ashton PD, Sundaralingam S, Wilson RA. Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Proteomics 2006; 5: 835–844. 10.1074/mcp.M500313-MCP200 PubMed DOI
Jang-Lee J, Curwen RS, Ashton PD, Tissot B, Mathieson W, Panico M et al. Glycomics analysis of Schistosoma mansoni egg and cercarial secretions. Mol Cell Proteomics 2007; 6: 1485–1499. 10.1074/mcp.M700004-MCP200 PubMed DOI
Dvořák J., Mashiyama S. T., Braschi S., Sajid M., Knudsen G. M., Hansell E. et al. Differential use of protease families for invasion by schistosome cercariae. Biochimie 2008; 90: 345–358. 10.1016/j.biochi.2007.08.013 PubMed DOI
Liu M, Ju C, Du XF, Shen HM, Wang JP, Li J. et al. Proteomic Analysis on cercariae and schistosomula in reference to potential proteases involved in host invasion of Schistosoma japonicum larvae. J Proteome Res 2015; 14: 4623–4634. 10.1021/acs.jproteome.5b00465 PubMed DOI
Dolečková K, Kašný M, Mikeš L, Cartwright J, Jedelský P, Schneider EL. et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol 2009; 39: 201–211. 10.1016/j.ijpara.2008.06.010 PubMed DOI PMC
Dresden MH, Edlin EM. Schistosoma mansoni: calcium content of cercariae and its effects on protease activity in vitro. J Parasitol 1975; 61: 398–402.
Modha J, Redman CA, Thornhill JA, Kusel JR. Schistosomes: unanswered questions on the basic biology of the host-parasite relationship. Parasitol Today 1998; 14:396–401. PubMed
Chanová M, Bulantová J, Máslo P, Horák P. In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae). Parasitol Res 2009; 104: 1445–1452. 10.1007/s00436-009-1343-y PubMed DOI
Nyame AK, Lewis FA, Doughty BL, Correa-Oliveira R, Cummings RD. Immunity to schistosomiasis: glycans are potential antigenic targets for immune intervention. Exp Parasitol 2003; 104: 1–13. PubMed
Daniel B., Preston TM, Southgate VR. The in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei–changes in the parasite surface and implications for interactions with snail plasma factors. Parasitology 1992; 104: 41–49. PubMed
Horák P, Mikeš L. Cercarial surface saccharides of 6 trematode species from the pond snail, Lymnaea stagnalis. Parasite 1995; 2: 419–421.
Wiest P.M, Kossmann RJ, Tartakoff AM. Determinants of surface membrane maturation during the cercarial-schistosomula transformation of Schistosoma mansoni. Am J Trop Med Hyg 1989; 41: 70–77. PubMed
Nyame AK, Debose-Boyd R, Long TD, Tsang VCW, Cummings RD. Expression of Le(x) antigen in Schistosoma japonicum and S-haematobium and immune responses to Le(x) in infected animals: lack of Le(x) expression in other trematodes and nematodes. Glycobiology 1998; 8: 615–624. PubMed
Köster B, Strand M. Schistosoma mansoni: immunolocalization of two different fucose-containing carbohydrate epitopes. Parasitology 1994; 108: 433–446. PubMed
van Remoortere A, Hokke CH, van Dam GJ, van Die I, Deelder AM, van der Eijnden DH. Various stages of Schistosoma express Lewisx, LacdiNAc, GalNAcβ1-4(Fucα1–3)GlcNAc and GalNAcβ1–4 (Fucα1-2Fucα1–3)GlcNAc carbohydrate epitopes: detection with monoclonal antibodies that are characterized by enzymatically synthesized neoglycoproteins. Glycobiology 2000; 10: 601–609. PubMed
Kerr MA, Stocks SC. The role of CD15-(LeX)-related carbohydrates in neutrophil adhesion. Histochem J 1992; 24: 811–826. PubMed
Lee KP, Carlson LM, Woodcock JB, Ramachandra N, Schultz TL, Davis TA et al. Molecular cloning and characterization of CFT1, a developmentally regulated avian α(1,3)-fucosyltransferase gene. J Biol Chem 1996; 271: 32960–32967. PubMed
D'Costa S, Petitte JN. Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo. Int J Dev Biol 1999; 43: 349–356. PubMed
van Die I, Cummings RD. Glycan gimmickry by parasitic helminths: A strategy for modulating the host immune response? Glycobiology 2010; 20: 2–12. 10.1093/glycob/cwp140 PubMed DOI
Meevissen MH, Yazdanbakhsh M, Hokke CH. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: Molecular partners that shape immune responses. Exp Parasitol 2011; 132: 14–21. 10.1016/j.exppara.2011.05.005 PubMed DOI
Paveley RA, Aynsley SA, Turner JD, Bourke CD, Jenkins SJ, Cook PC et al. The mannose receptor (CD206) is an important pattern recognition receptor (PRR) in the detection of the infective stage of the helminth Schistosoma mansoni and modulates IFNgamma production. Int J Parasitol 2011; 41: 1335–1345. 10.1016/j.ijpara.2011.08.005 PubMed DOI
Cousin CE, Stirewalt MA, Dorsey CH. Schistosoma mansoni: ultrastructure of early transformation of skin- and shear-pressure-derived schistosomules. Exp Parasitol 1981; 51: 341–365. PubMed
Haas W, Diekhoff D, Koch K, Schmalfuss G, Loy C. Schistosoma mansoni cercariae: stimulation of acetabular gland secretion is adapted to the chemical composition of mammalian skin. J Parasitol 1997; 83: 1079–1085. PubMed
Rhodes JM, Milton JD. Lectin Methods and Protocols (Methods in Molecular Medicine). University of Liverpool, UK, Humana Press, Totowa, New Jersey; 1998.
Georgieva K, Georgieva S, Mizinska Y, Stoitsova SR. Fasciola hepatica miracidia: Lectin binding and stimulation of in vitro miracidium-to-sporocyst transformation. Acta Parasitol 2012; 57: 46–52. 10.2478/s11686-012-0007-8 PubMed DOI
Baxt LA, Barker RP, Singh U, Urban S. An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion. Genes Dev 2008; 22: 1636–1646. 10.1101/gad.1667708 PubMed DOI PMC
Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Neglect Trop Dis 2011; 5: e1274. PubMed PMC
Harris PK, Yeoh S, Dluzewski AR, O’Donnel RA, Withers-Martinez C, Hackett F et al. Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 2005; 1: e29. PubMed PMC
Page AP, Stepek G, Winter AD, Pertab D. Enzymology of the nematode cuticle: A potential drug target? Int J Parasitol–Drugs Drug Resist 2014; 4: 133–141. 10.1016/j.ijpddr.2014.05.003 PubMed DOI PMC
Samuelson JC, Caulfield JP. Loss of covalently labeled glycoproteins and glycolipids from the surface of newly transformed schistosomula of Schistosoma mansoni. J Cell Biol 1982; 94: 363–369. PubMed PMC
Other Schistosomatoidea and Diplostomoidea
Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics