Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice

. 2022 Feb ; 18 (2) : e1010302. [epub] 20220204

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35120185
Odkazy

PubMed 35120185
PubMed Central PMC8849443
DOI 10.1371/journal.ppat.1010302
PII: PPATHOGENS-D-21-01746
Knihovny.cz E-zdroje

Helminth neuroinfections represent serious medical conditions, but the diversity of the host-parasite interplay within the nervous tissue often remains poorly understood, partially due to the lack of laboratory models. Here, we investigated the neuroinvasion of the mouse spinal cord by Trichobilharzia regenti (Schistosomatidae). Active migration of T. regenti schistosomula through the mouse spinal cord induced motor deficits in hindlimbs but did not affect the general locomotion or working memory. Histological examination of the infected spinal cord revealed eosinophilic meningomyelitis with eosinophil-rich infiltrates entrapping the schistosomula. Flow cytometry and transcriptomic analysis of the spinal cord confirmed massive activation of the host immune response. Of note, we recorded striking upregulation of the major histocompatibility complex II pathway and M2-associated markers, such as arginase or chitinase-like 3. Arginase also dominated the proteins found in the microdissected tissue from the close vicinity of the migrating schistosomula, which unselectively fed on the host nervous tissue. Next, we evaluated the pathological sequelae of T. regenti neuroinvasion. While no demyelination or blood-brain barrier alterations were noticed, our transcriptomic data revealed a remarkable disruption of neurophysiological functions not yet recorded in helminth neuroinfections. We also detected DNA fragmentation at the host-schistosomulum interface, but schistosomula antigens did not affect the viability of neurons and glial cells in vitro. Collectively, altered locomotion, significant disruption of neurophysiological functions, and strong M2 polarization were the most prominent features of T. regenti neuroinvasion, making it a promising candidate for further neuroinfection research. Indeed, understanding the diversity of pathogen-related neuroinflammatory processes is a prerequisite for developing better protective measures, treatment strategies, and diagnostic tools.

Zobrazit více v PubMed

Finsterer J, Auer H. Parasitoses of the human central nervous system. J Helminthol. 2013;87: 257–270. doi: 10.1017/S0022149X12000600 PubMed DOI

Carpio A, Romo ML, Parkhouse RME, Short B, Dua T. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers. Expert Rev Neurother. 2016;16: 401–414. doi: 10.1586/14737175.2016.1155454 PubMed DOI PMC

Vezzani A, Fujinami RS, White HS, Preux P-M, Blümcke I, Sander JW, et al.. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131: 211–234. doi: 10.1007/s00401-015-1481-5 PubMed DOI PMC

Garcia HH, Nath A, Del Brutto OH. Parasitic infections of the nervous system. Semin Neurol. 2019;39: 358–368. doi: 10.1055/s-0039-1693036 PubMed DOI

Cox DM, Holland CV. Relationship between three intensity levels of Toxocara canis larvae in the brain and effects on exploration, anxiety, learning and memory in the murine host. J Helminthol. 2001;75: 33–41. doi: 10.1079/joh200028 PubMed DOI

Adalid-Peralta L, Sáenz B, Fragoso G, Cárdenas G. Understanding host–parasite relationship: the immune central nervous system microenvironment and its effect on brain infections. Parasitology. 2018;145: 988–999. doi: 10.1017/S0031182017002189 PubMed DOI

Boillat M, Hammoudi P-M, Dogga SK, Pagès S, Goubran M, Rodriguez I, et al.. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep. 2020;30: 320–334.e6. doi: 10.1016/j.celrep.2019.12.019 PubMed DOI PMC

Alvarez JI, Mishra BB, Gundra UM, Mishra PK, Teale JM. Mesocestoides corti intracranial infection as a murine model for neurocysticercosis. Parasitology. 2010;137: 359–372. doi: 10.1017/S0031182009991971 PubMed DOI

Yang LO, Wei J, Wu Z, Zeng X, Li Y, Jia Y, et al.. Differences of larval development and pathological changes in permissive and nonpermissive rodent hosts for Angiostrongylus cantonensis infection. Parasitol Res. 2012;111: 1547–1557. doi: 10.1007/s00436-012-2995-6 PubMed DOI

Holland C V, Hamilton CM. The significance of cerebral toxocariasis: a model system for exploring the link between brain involvement, behaviour and the immune response. J Exp Biol. 2013;216: 78–83. doi: 10.1242/jeb.074120 PubMed DOI

Martins YC, Tanowitz HB, Kazacos KR. Central nervous system manifestations of Angiostrongylus cantonensis infection. Acta Trop. 2015;141: 46–53. doi: 10.1016/j.actatropica.2014.10.002 PubMed DOI PMC

de Lange A, Mahanty S, Raimondo J V. Model systems for investigating disease processes in neurocysticercosis. Parasitology. 2019;146: 553–562. doi: 10.1017/S0031182018001932 PubMed DOI

Strube C, Waindok P, Raulf M-K, Springer A. Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. 1st ed. In: Bowman DD, editor. Toxocara and Toxocariasis. 1st ed. 2020. pp. 189–218. doi: 10.1016/bs.apar.2020.01.006 PubMed DOI

Silva LM, Oliveira CN de , Andrade ZA. Experimental neuroschistosomiasis: Inadequacy of the murine model. Mem Inst Oswaldo Cruz. 2002;97: 599–600. doi: 10.1590/s0074-02762002000400028 PubMed DOI

Lambertucci JR, Fidelis TA, Pereira TA, Coelho PMZ, Araujo N, Souza MM de, et al.. Brain schistosomiasis in mice experimentally infected with Schistosoma mansoni. Rev Soc Bras Med Trop. 2014;47: 251–253. doi: 10.1590/0037-8682-0083-2013 PubMed DOI

Tan Z, Lei Z, Zhang Z, Zhang H, Shu K, Hu F, et al.. Identification and characterization of microglia/macrophages in the granuloma microenvironment of encephalic schistosomiasis japonicum. BMC Infect Dis. 2019;19: 1088. doi: 10.1186/s12879-019-4725-5 PubMed DOI PMC

McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev. 2012;25: 585–608. doi: 10.1128/CMR.05040-11 PubMed DOI PMC

Morris CP, Evans H, Larsen SE, Mitre E. A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev. 2013;26: 381–421. doi: 10.1128/CMR.00002-13 PubMed DOI PMC

Horák P, Dvořák J, Kolářová L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119: 577–581. doi: 10.1017/s0031182099005132 PubMed DOI

Hrádková K, Horák P. Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. J Helminthol. 2002;76: 137–141. doi: 10.1079/JOH2002113 PubMed DOI

Kouřilová P, Syrůček M, Kolářová L. The severity of mouse pathologies caused by the bird schistosome Trichobilharzia regenti in relation to host immune status. Parasitol Res. 2004;93: 8–16. doi: 10.1007/s00436-004-1079-7 PubMed DOI

Lichtenbergová L, Lassmann H, Jones MMK, Kolářová L, Horák P. Trichobilharzia regenti: Host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011;128: 328–335. doi: 10.1016/j.exppara.2011.04.006 PubMed DOI

Leontovyč R, Young ND, Korhonen PK, Hall RS, Bulantová J, Jeřábková V, et al.. Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Sci Rep. 2019;9: 1374. doi: 10.1038/s41598-018-37834-7 PubMed DOI PMC

Kolářová L, Horák P, Čada F. Histopathology of CNS and nasal infections caused by Trichobilharzia regenti in vertebrates. Parasitol Res. 2001;87: 644–650. doi: 10.1007/s004360100431 PubMed DOI

Macháček T, Panská L, Dvořáková H, Horák P. Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti. Parasit Vectors. 2016;9: 579. doi: 10.1186/s13071-016-1869-7 PubMed DOI PMC

Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J, Horák P. Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasit Vectors. 2020;13: 426. doi: 10.1186/s13071-020-04279-9 PubMed DOI PMC

Kouřilová P, Hogg KG, Kolářová L, Mountford AP. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. J Immunol. 2004;172: 3766–3774. doi: 10.4049/jimmunol.172.6.3766 PubMed DOI

Lichtenbergová L, Kolbeková P, Kouřilová P, Kašný M, Mikeš L, Haas H, et al.. Antibody responses induced by Trichobilharzia regenti antigens in murine and human hosts exhibiting cercarial dermatitis. Parasite Immunol. 2008;30: 585–595. doi: 10.1111/j.1365-3024.2008.01059.x PubMed DOI PMC

Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol. 2020;42: e12710. doi: 10.1111/pim.12710 PubMed DOI

Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, et al.. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994;79: 1209–1220. doi: 10.1016/0092-8674(94)90012-4 PubMed DOI

Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N. The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 1995;81: 769–780. doi: 10.1016/0092-8674(95)90538-3 PubMed DOI

Muñoz-Castañeda R, Díaz D, Peris L, Andrieux A, Bosc C, Muñoz-Castañeda JM, et al.. Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors. Sci Rep. 2018;8: 3072. doi: 10.1038/s41598-018-21470-2 PubMed DOI PMC

Frisén J, Johansson CB, Török C, Risling M, Lendahl U. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol. 1995;131: 453–464. doi: 10.1083/jcb.131.2.453 PubMed DOI PMC

Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019;10: 3879. doi: 10.1038/s41467-019-11707-7 PubMed DOI PMC

Tatar CL, Appikatla S, Bessert DA, Paintlia AS, Singh I, Skoff RP. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain. ASN Neuro. 2010;2: 219–231. doi: 10.1042/AN20100016 PubMed DOI PMC

Tretina K, Park E-S, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med. 2019;216: 482–500. doi: 10.1084/jem.20182031 PubMed DOI PMC

Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res. 1998;57: 1–9. doi: 10.1016/s0169-328x(98)00040-0 PubMed DOI

Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 2004;88: 844–856. doi: 10.1046/j.1471-4159.2003.02213.x PubMed DOI

MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, et al.. Regulation of alternative macrophage activation by galectin-3. J Immunol. 2008;180: 2650–2658. doi: 10.4049/jimmunol.180.4.2650 PubMed DOI

Rossi C, Cusimano M, Zambito M, Finardi A, Capotondo A, Garcia-Manteiga JM, et al.. Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death Dis. 2018;9: 250. doi: 10.1038/s41419-018-0288-4 PubMed DOI PMC

Bulantová J, Macháček T, Panská L, Krejčí F, Karch J, Jährling N, et al.. Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates. Micron. 2016;83: 62–71. doi: 10.1016/j.micron.2016.01.009 PubMed DOI

Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38: 323–37. doi: 10.1016/s1537-1891(02)00200-8 PubMed DOI

Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al.. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24: 312–325. doi: 10.1038/s41593-020-00783-4 PubMed DOI PMC

Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, et al.. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res. 2004;76: 265–76. doi: 10.1002/jnr.20044 PubMed DOI

Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15: 388–400. doi: 10.1038/nri3839 PubMed DOI

Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28: 165–190. doi: 10.1128/CMR.00043-14 PubMed DOI PMC

Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res. 2018;117: 3881–3895. doi: 10.1007/s00436-018-6095-0 PubMed DOI

Katchanov J, Nawa Y. Helminthic invasion of the central nervous system: Many roads lead to Rome. Parasitol Int. 2010;59: 491–496. doi: 10.1016/j.parint.2010.08.002 PubMed DOI

Jarolim KL, McCosh JK, Howard MJ, John DT. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol. 2000;86: 50–55. doi: 10.1645/0022-3395(2000)086[0050:ALMSOT]2.0.CO;2 PubMed DOI

Jones M. A comparative review of rodent prefrontal cortex and working memory. Curr Mol Med. 2002;2: 639–647. doi: 10.2174/1566524023361989 PubMed DOI

Touzani K, Puthanveettil S V., Kandel ER. Consolidation of learning strategies during spatial working memory task requires protein synthesis in the prefrontal cortex. Proc Natl Acad Sci. 2007;104: 5632–5637. doi: 10.1073/pnas.0611554104 PubMed DOI PMC

Hiraoka K, Motomura K, Yanagida S, Ohashi A, Ishisaka-Furuno N, Kanba S. Pattern of c-Fos expression induced by tail suspension test in the mouse brain. Heliyon. 2017;3: e00316. doi: 10.1016/j.heliyon.2017.e00316 PubMed DOI PMC

Cox DM, Holland CV. Influence of mouse strain, infective dose and larval burden in the brain on activity in Toxocara-infected mice. J Helminthol. 2001;75: 23–32. doi: 10.1079/joh200027 PubMed DOI

Janecek E, Beineke A, Schnieder T, Strube C. Neurotoxocarosis: marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasit Vectors. 2014;7: 194. doi: 10.1186/1756-3305-7-194 PubMed DOI PMC

Jhan K-Y, Lai G-J, Chang P-K, Tang R-Y, Cheng C-J, Chen K-Y, et al.. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasit Vectors. 2020;13: 405. doi: 10.1186/s13071-020-04230-y PubMed DOI PMC

Bustos J, Gonzales I, Saavedra H, Handali S, Garcia HH. Neurocysticercosis. A frequent cause of seizures, epilepsy, and other neurological morbidity in most of the world. J Neurol Sci. 2021;427: 117527. doi: 10.1016/j.jns.2021.117527 PubMed DOI PMC

Ferrari T, Gazzinelli G, Corrêa-Oliveira R. Immune response and pathogenesis of neuroschistosomiasis mansoni. Acta Trop. 2008;108: 83–88. doi: 10.1016/j.actatropica.2008.02.010 PubMed DOI

Ferrari T, Moreira P, da Cunha A. Clinical characterization of neuroschistosomiasis due to Schistosoma mansoni and its treatment. Acta Trop. 2008;108: 89–97. doi: 10.1016/j.actatropica.2008.04.007 PubMed DOI

Rauw WM. Immune response from a resource allocation perspective. Front Genet. 2012;3: 267. doi: 10.3389/fgene.2012.00267 PubMed DOI PMC

Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol. 2014;32: 609–634. doi: 10.1146/annurev-immunol-032713-120236 PubMed DOI PMC

Ganeshan K, Nikkanen J, Man K, Leong YA, Sogawa Y, Maschek JA, et al.. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell. 2019;177: 399–413.e12. doi: 10.1016/j.cell.2019.01.050 PubMed DOI PMC

Janecek E, Waindok P, Bankstahl M, Strube C. Abnormal neurobehaviour and impaired memory function as a consequence of Toxocara canis- as well as Toxocara cati-induced neurotoxocarosis. PLoS Negl Trop Dis. 2017;11: e0005594. doi: 10.1371/journal.pntd.0005594 PubMed DOI PMC

Xiong H, Zhou Z, Wu Z, Feng Y, Xie F. BALB/c mice infected with Angiostrongylus cantonensis: A new model for demyelination in the brain. Anat Rec. 2021;304: 1084–1093. doi: 10.1002/ar.24538 PubMed DOI

Epe C, Sabel T, Schnieder T, Stoye M. The behavior and pathogenicity of Toxacara canis larvae in mice of different strains. Parasitol Res. 1994;80: 691–695. doi: 10.1007/BF00932955 PubMed DOI

Luo S, OuYang L, Wei J, Wu F, Wu Z, Lei W, et al.. Neuronal apoptosis: Pathological basis of behavioral dysfunctions induced by Angiostrongylus cantonensis in rodents model. Korean J Parasitol. 2017;55: 267–278. doi: 10.3347/kjp.2017.55.3.267 PubMed DOI PMC

Janecek E, Wilk E, Schughart K, Geffers R, Strube C. Microarray gene expression analysis reveals major differences between Toxocara canis and Toxocara cati neurotoxocarosis and involvement of T. canis in lipid biosynthetic processes. Int J Parasitol. 2015;45: 495–503. doi: 10.1016/j.ijpara.2015.02.009 PubMed DOI

Heuer L, Beyerbach M, Lühder F, Beineke A, Strube C. Neurotoxocarosis alters myelin protein gene transcription and expression. Parasitol Res. 2015;114: 2175–2186. doi: 10.1007/s00436-015-4407-1 PubMed DOI

Springer A, Heuer L, Janecek-Erfurth E, Beineke A, Strube C. Histopathological characterization of Toxocara canis- and T. cati-induced neurotoxocarosis in the mouse model. Parasitol Res. 2019;118: 2591–2600. doi: 10.1007/s00436-019-06395-7 PubMed DOI

Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, et al.. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein–deficient mice. J Cell Biol. 1998;141: 431–441. doi: 10.1083/jcb.141.2.431 PubMed DOI PMC

Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, et al.. Charcot-Marie-Tooth Disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell. 2001;105: 587–597. doi: 10.1016/s0092-8674(01)00363-4 PubMed DOI

Blažová K, Horák P. Trichobilharzia regenti: The developmental differences in natural and abnormal hosts. Parasitol Int. 2005;54: 167–172. doi: 10.1016/j.parint.2005.03.003 PubMed DOI

Wei J, Wu F, He A, Zeng X, Ouyang L, Liu M, et al.. Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model. Parasitol Res. 2015;114: 3247–54. doi: 10.1007/s00436-015-4541-9 PubMed DOI

Wan S, Sun X, Wu F, Yu Z, Wang L, Lin D, et al.. Chi3l3: a potential key orchestrator of eosinophil recruitment in meningitis induced by Angiostrongylus cantonensis. J Neuroinflammation. 2018;15: 31. doi: 10.1186/s12974-018-1071-2 PubMed DOI PMC

Strube C, Heuer L, Janecek E. Toxocara spp. infections in paratenic hosts. Vet Parasitol. 2013;193: 375–389. doi: 10.1016/j.vetpar.2012.12.033 PubMed DOI

Pope SM, Fulkerson PC, Blanchard C, Akei HS, Nikolaidis NM, Zimmermann N, et al.. Identification of a cooperative mechanism involving interleukin-13 and eotaxin-2 in experimental allergic lung inflammation. J Biol Chem. 2005;280: 13952–13961. doi: 10.1074/jbc.M406037200 PubMed DOI

Owhashi M, Arita H, Hayai N. Identification of a novel eosinophil chemotactic cytokine (ECF-L) as a chitinase family protein. J Biol Chem. 2000;275: 1279–1286. doi: 10.1074/jbc.275.2.1279 PubMed DOI

Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol. 2004;113: 30–37. doi: 10.1016/j.jaci.2003.10.050 PubMed DOI

Mishra PK, Li Q, Munoz LE, Mares CA, Morris EG, Teale JM, et al.. Reduced leukocyte infiltration in absence of eosinophils correlates with decreased tissue damage and disease susceptibility in ΔdblGATA mice during murine neurocysticercosis. PLoS Negl Trop Dis. 2016;10: e0004787. doi: 10.1371/journal.pntd.0004787 PubMed DOI PMC

Anwar AR, Smithers SR, Kay AB. Killing of schistosomula of Schistosoma mansoni coated with antibody and/or complement by human leukocytes in vitro: requirement for complement in preferential killing by eosinophils. J Immunol. 1979;122: 628–637. Available: http://www.ncbi.nlm.nih.gov/pubmed/762435 PubMed

Ehrens A, Lenz B, Neumann AL, Giarrizzo S, Reichwald JJ, Frohberger SJ, et al.. Microfilariae trigger eosinophil extracellular DNA traps in a dectin-1-dependent manner. Cell Rep. 2021;34: 108621. doi: 10.1016/j.celrep.2020.108621 PubMed DOI

Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6: 33–43. doi: 10.1038/nri1745 PubMed DOI

Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al.. Role of microglia in central nervous system infections. Clin Microbiol Rev. 2004;17: 942–964. doi: 10.1128/CMR.17.4.942-964.2004 PubMed DOI PMC

Wei J, Wu F, Sun X, Zeng X, Liang J-Y, Zheng H-Q, et al.. Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitol Res. 2013;112: 207–14. doi: 10.1007/s00436-012-3127-z PubMed DOI

Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004;173: 3916–3924. doi: 10.4049/jimmunol.173.6.3916 PubMed DOI

Gundra UM, Mishra BB, Wong K, Teale JM. Increased disease severity of parasite-infected TLR2−/− mice is correlated with decreased central nervous system inflammation and reduced numbers of cells with alternatively activated macrophage phenotypes in a murine model of neurocysticercosis. Infect Immun. 2011;79: 2586–2596. doi: 10.1128/IAI.00920-10 PubMed DOI PMC

Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, et al.. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002;3: 499–499. doi: 10.1038/ni0602-499 PubMed DOI

Vázquez-Mendoza A, Carrero JC, Rodriguez-Sosa M. Parasitic infections: A role for C-type lectins receptors. Biomed Res Int. 2013;2013: 1–11. doi: 10.1155/2013/456352 PubMed DOI PMC

Gensel JC, Wang Y, Guan Z, Beckwith KA, Braun KJ, Wei P, et al.. Toll-like receptors and dectin-1, a C-type lectin receptor, trigger divergent functions in CNS macrophages. J Neurosci. 2015;35: 9966–9976. doi: 10.1523/JNEUROSCI.0337-15.2015 PubMed DOI PMC

Řimnáčová J, Mikeš L, Turjanicová L, Bulantová J, Horák P. Changes in surface glycosylation and glycocalyx shedding in Trichobilharzia regenti (Schistosomatidae) during the transformation of cercaria to schistosomulum. PLoS One. 2017;12: e0173217. doi: 10.1371/journal.pone.0173217 PubMed DOI PMC

Raulf M-K, Lepenies B, Strube C. Toxocara canis and Toxocara cati somatic and excretory-secretory antigens are recognised by C-type lectin receptors. Pathogens. 2021;10: 321. doi: 10.3390/pathogens10030321 PubMed DOI PMC

Alvarez JJI, Rivera J, Teale JM. Differential release and phagocytosis of tegument glycoconjugates in neurocysticercosis: Implications for immune evasion strategies. PLoS Negl Trop Dis. 2008;2: e218. doi: 10.1371/journal.pntd.0000218 PubMed DOI PMC

Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol. 2005;174: 6561–6562. doi: 10.4049/jimmunol.174.11.6561 PubMed DOI

Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 2007;27: 10714–10721. doi: 10.1523/JNEUROSCI.1922-07.2007 PubMed DOI PMC

Cherry JD, Olschowka JA, O’Banion M. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11: 98. doi: 10.1186/1742-2094-11-98 PubMed DOI PMC

Mishra BB, Gundra UM, Teale JM. STAT6−/− mice exhibit decreased cells with alternatively activated macrophage phenotypes and enhanced disease severity in murine neurocysticercosis. J Neuroimmunol. 2011;232: 26–34. doi: 10.1016/j.jneuroim.2010.09.029 PubMed DOI PMC

Peng H, Sun R, Zhang Q, Zhao J, Wei J, Zeng X, et al.. Interleukin 33 mediates type 2 immunity and inflammation in the central nervous system of mice infected with Angiostrongylus cantonensis. J Infect Dis. 2013;207: 860–869. doi: 10.1093/infdis/jis682 PubMed DOI

Waindok P, Strube C. Neuroinvasion of Toxocara canis- and T. cati-larvae mediates dynamic changes in brain cytokine and chemokine profile. J Neuroinflammation. 2019;16: 147. doi: 10.1186/s12974-019-1537-x PubMed DOI PMC

Alvarez JI, Teale JM. Breakdown of the blood brain barrier and blood–cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol. 2006;173: 45–55. doi: 10.1016/j.jneuroim.2005.11.020 PubMed DOI

Chen KY, Cheng CJ, Cheng CC, Jhan KY, Chen YJ, Wang LC. The excretory/secretory products of fifth stage larval Angiostrongylus cantonensis induces autophagy via the sonic hedgehog pathway in mouse brain astrocytes. PLoS Negl Trop Dis. 2020;14: 1–20. doi: 10.1371/journal.pntd.0008290 PubMed DOI PMC

Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29: 13435–13444. doi: 10.1523/JNEUROSCI.3257-09.2009 PubMed DOI PMC

Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL, et al.. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16: 1211–1218. doi: 10.1038/nn.3469 PubMed DOI PMC

Starossom SC, Campo Garcia J, Woelfle T, Romero-Suarez S, Olah M, Watanabe F, et al.. Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation. Nat Commun. 2019;10: 217. doi: 10.1038/s41467-018-08140-7 PubMed DOI PMC

Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron. 2002;35: 711–719. doi: 10.1016/s0896-6273(02)00826-7 PubMed DOI

Deng K, He H, Qiu J, Lorber B, Bryson JB, Filbin MT. Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. J Neurosci. 2009;29: 9545–9552. doi: 10.1523/JNEUROSCI.1175-09.2009 PubMed DOI PMC

Frey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods. 1998;221: 35–41. doi: 10.1016/s0022-1759(98)00170-7 PubMed DOI

Hertel J, Hamburger J, Haberl B, Haas W. Detection of bird schistosomes in lakes by PCR and filter-hybridization. Exp Parasitol. 2002;101: 57–63. doi: 10.1016/s0014-4894(02)00036-x PubMed DOI

Komada M, Takao K, Miyakawa T. Elevated plus maze for mice. J Vis Exp. 2008; 1088. doi: 10.3791/1088 PubMed DOI PMC

Riebe CJ, Wotjak CT. A practical guide to evaluating anxiety-related behavior in rodents. In: Szallasi A, Bíró T, editors. TRP Channels in Drug Discovery. 2012. pp. 167–185. doi: 10.1007/978-1-62703-095-3_10 DOI

Curzon P, Zhang M, Radek RJ, Fox GB. The behavioral assessment of sensorimotor processes in the mouse: Acoustic startle, sensory gating, locomotor activity, rotarod, and beam walking. In: Buccafusco J, editor. Methods of Behavior Analysis in Neuroscience. 2009. pp. 171–176. Available: http://www.ncbi.nlm.nih.gov/pubmed/21204341 PubMed

Hölter SM, Glasl L. High-throughput mouse phenotyping. In: Lane E, Dunnett S, editors. Animal Models of Movement Disorders. 2011. pp. 109–133. doi: 10.1007/978-1-61779-298-4_7 DOI

Justice JN, Carter CS, Beck HJ, Gioscia-Ryan RA, McQueen M, Enoka RM, et al.. Battery of behavioral tests in mice that models age-associated changes in human motor function. Age (Omaha). 2014;36: 583–595. doi: 10.1007/s11357-013-9589-9 PubMed DOI PMC

Mann A, Chesselet MF. Techniques for motor assessment in rodents. In: LeDoux M, editor. Movement Disorders. 2014. pp. 139–157. doi: 10.1016/C2012-0-00370-5 DOI

Deacon RM. Digging and marble burying in mice: Simple methods for in vivo identification of biological impacts. Nat Protoc. 2006;1: 122–124. doi: 10.1038/nprot.2006.20 PubMed DOI

Kraeuter A-K, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Pre-Clinical Models. 2019. pp. 105–111. doi: 10.1007/978-1-4939-8994-2_10 PubMed DOI

Deacon RM. Measuring the strength of mice. J Vis Exp. 2013; 2610. doi: 10.3791/2610 PubMed DOI PMC

Sugimoto H, Kawakami K. Low-cost protocol of footprint analysis and hanging box test for mice applied the chronic restraint stress. J Vis Exp. 2019; 59027. doi: 10.3791/59027 PubMed DOI

Porsolt RD, Brossard G, Hautbois C, Roux S. Rodent models of depression: Forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci. 2001;14: Unit 8.10A. doi: 10.1002/0471142301.ns0810as14 PubMed DOI

Pino PA, Cardona AE. Isolation of brain and spinal cord mononuclear culls using Percoll gradients. J Vis Exp. 2011; 2348. doi: 10.3791/2348 PubMed DOI PMC

Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. [cited 10 Aug 2021]. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12: 323. doi: 10.1186/1471-2105-12-323 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494–1512. doi: 10.1038/nprot.2013.084 PubMed DOI PMC

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44: D457–D462. doi: 10.1093/nar/gkv1070 PubMed DOI PMC

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28: 27–30. doi: 10.1093/nar/28.1.27 PubMed DOI PMC

Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol. 2022. doi: 10.1101/2021.08.24.457505 PubMed DOI

Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014;11: 319–324. doi: 10.1038/nmeth.2834 PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13: 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13: 731–740. doi: 10.1038/nmeth.3901 PubMed DOI

Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10: 1709–1727. doi: 10.1038/nprot.2015.085 PubMed DOI

Goldim MP de S, Della Giustina A, Petronilho F. Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr Protoc Immunol. 2019;126: e83. doi: 10.1002/cpim.83 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...