Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
729516
Grantová Agentura, Univerzita Karlova
18-11140S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund and Ministry of Education, Youth and Sports of the Czech Republic
PROGRES Q43
Univerzita Karlova v Praze
UNCE/SCI/012 - 204072/2018
Univerzita Karlova v Praze
SVV 260432
Univerzita Karlova v Praze
PubMed
32819437
PubMed Central
PMC7439556
DOI
10.1186/s13071-020-04279-9
PII: 10.1186/s13071-020-04279-9
Knihovny.cz E-zdroje
- Klíčová slova
- 3-Nitrotyrosine, Cathepsin B, Nitric oxide, Nitric oxide synthase, Peroxynitrite, Schistosomatidae, Trichobilharzia,
- MeSH
- centrální nervový systém parazitologie MeSH
- guanidiny farmakologie MeSH
- infekce červy třídy Trematoda farmakoterapie MeSH
- kůže parazitologie MeSH
- kyselina peroxydusitá farmakologie MeSH
- lidé MeSH
- mícha parazitologie MeSH
- myši MeSH
- oxid dusnatý farmakologie MeSH
- proteasy účinky léků metabolismus MeSH
- proteiny červů účinky léků metabolismus MeSH
- ptáci parazitologie MeSH
- Schistosoma účinky léků růst a vývoj patogenita MeSH
- Schistosomatidae účinky léků růst a vývoj patogenita MeSH
- schistosomóza farmakoterapie MeSH
- synthasa oxidu dusnatého účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanidiny MeSH
- kyselina peroxydusitá MeSH
- oxid dusnatý MeSH
- pimagedine MeSH Prohlížeč
- proteasy MeSH
- proteiny červů MeSH
- synthasa oxidu dusnatého MeSH
BACKGROUND: Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer's itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. METHODS: Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. RESULTS: iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. CONCLUSIONS: Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect.
Center for Advanced Preclinical Imaging 1st Faculty of Medicine Charles University Prague Czechia
Department of Parasitology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–916. PubMed
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36:161–178. PubMed
Gould N, Doulias P-T, Tenopoulou M, Raju K, Ischiropoulos H. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem. 2013;288:26473–26479. PubMed PMC
Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288:26464–26472. PubMed PMC
Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–625. PubMed PMC
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424. PubMed PMC
Brasil TR, Freire-de-Lima CG, Morrot A, Vetö Arnholdt AC. Host-Toxoplasma gondii coadaptation leads to fine tuning of the immune response. Front Immunol. 2017;8:1080. PubMed PMC
Gutierrez FRSS, Mineo TWPP, Pavanelli WR, Guedes PMMM, Silva JS. The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz. 2009;104(Suppl. 1):236–245. PubMed
Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences against Giardia lamblia. Parasite Immunol. 2015;37:394–406. PubMed
Olekhnovitch R, Bousso P. Induction, Propagation, and activity of host nitric oxide: lessons from Leishmania infection. Trends Parasitol. 2015;31:653–664. PubMed
Ahmed SF, Oswald IP, Caspar P, Hieny S, Keefer L, Sher A, et al. Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infect Immun. 1997;65:219–226. PubMed PMC
James SL, Glaven J. Macrophage cytotoxicity against schistosomula of Schistosoma mansoni involves arginine-dependent production of reactive nitrogen intermediates. J Immunol. 1989;143:4208–4212. PubMed
Sher A, James SL, Simpson AJ, Lazdins JK, Meltzer MS. Macrophages as effector cells of protective immunity in murine schistosomiasis. III. Loss of susceptibility to macrophage-mediated killing during maturation of S. mansoni schistosomula from the skin to the lung stage. J Immunol. 1982;128:1876–9. PubMed
Shen J, Lai D-H, Wilson RA, Chen Y-F, Wang L-F, Yu Z-L, et al. Nitric oxide blocks the development of the human parasite Schistosoma japonicum. Proc Natl Acad Sci USA. 2017;114:10214–10219. PubMed PMC
Pearce EJ, James SL. Post lung-stage schistosomula of Schistosoma mansoni exhibit transient susceptibility to macrophage-mediated cytotoxicity in vitro that may relate to late phase killing in vivo. Parasite Immunol. 1986;8:513–527. PubMed
Skelly PJ, Stein LD, Shoemaker CB. Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Mol Biochem Parasitol. 1993;60:93–104. PubMed
James SL, Cheever AW, Caspar P, Wynn TA. Inducible nitric oxide synthase-deficient mice develop enhanced type 1 cytokine-associated cellular and humoral immune responses after vaccination with attenuated Schistosoma mansoni cercariae but display partially reduced resistance. Infect Immun. 1998;66:3510–3518. PubMed PMC
Wynn TA, Oswald IP, Eltoum IA, Caspar P, Lowenstein CJ, Lewis FA, et al. Elevated expression of Th1 cytokines and nitric oxide synthase in the lungs of vaccinated mice after challenge infection with Schistosoma mansoni. J Immunol. 1994;153:5200–5209. PubMed
Zhang R, Yoshida A, Kumagai T, Kawaguchi H, Maruyama H, Suzuki T, et al. Vaccination with calpain induces a Th1-biased protective immune response against Schistosoma japonicum. Infect Immun. 2001;69:386–391. PubMed PMC
Guglielmo S, Cortese D, Vottero F, Rolando B, Kommer VP, Williams DL, et al. New praziquantel derivatives containing NO-donor furoxans and related furazans as active agents against Schistosoma mansoni. Eur J Med Chem. 2014;84:135–145. PubMed PMC
Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182:1577–1583. PubMed PMC
Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol. 2012;188:417–425. PubMed PMC
Kołodziej-Sobocińska M, Dziemian E, Machnicka-Rowińska B. Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” (C57BL/6) and “high responders” (BALB/c) mice. Parasitol Res. 2006;99:194–196. PubMed
Gupta R, Bajpai P, Tripathi LM, Srivastava VMLL, Jain SK, Misra-Bhattacharya S. Macrophages in the development of protective immunity against experimental Brugia malayi infection. Parasitology. 2004;129:311–323. PubMed
Rajan TV, Porte P, Yates JA, Keefer L, Shultz LD, Keeper L, et al. Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect Immun. 1996;64:3351–3353. PubMed PMC
Rodrigues RM, Gonçalves ALR, Silva NM, Cardoso CR de B, Araújo NR, Coutinho LB, et al. Inducible nitric oxide synthase controls experimental Strongyloides infection. Parasite Immunol. 2018;40:e12576. PubMed
Ruano AL, López-Abán J, Fernández-Soto P, Lane de Melo A, Muro A. Treatment with nitric oxide donors diminishes hyperinfection by Strongyloides venezuelensis in mice treated with dexamethasone. Acta Trop. 2015;152:90–5. PubMed
Alonso-Trujillo J, Rivera-Montoya I, Rodríguez-Sosa M, Terrazas LI. Nitric oxide contributes to host resistance against experimental Taenia crassiceps cysticercosis. Parasitol Res. 2007;100:1341–1350. PubMed
Horák P, Dvořák J, Kolářová L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119:577–581. PubMed
Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M. Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol. 2013;45:63–74. PubMed
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res. 2018;117:3881–3895. PubMed
Caron Y, Cabaraux A, Marechal F, Losson B. Swimmer’s itch in Belgium: first recorded outbreaks, molecular identification of the parasite species and intermediate hosts. Vector Borne Zoonotic Dis. 2017;17:190–194. PubMed
De Liberato C, Berrilli F, Bossù T, Magliano A, Montalbano Di Filippo M, Di Cave D, et al. Outbreak of swimmer’s itch in Central Italy: description, causative agent and preventive measures. Zoonoses Public Health. 2019;66:377–81. PubMed
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28:165–190. PubMed PMC
Tracz ES, Al-Jubury A, Buchmann K, Bygum A. Outbreak of swimmer’s itch in Denmark. Acta Derm Venereol. 2019;99:1116–1120. PubMed
Dolečková K, Kašný M, Mikeš L, Cartwright J, Jedelský P, Schneider EL, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol. 2009;39:201–211. PubMed PMC
Kouřilová P, Syrůček M, Kolářová L. The severity of mouse pathologies caused by the bird schistosome Trichobilharzia regenti in relation to host immune status. Parasitol Res. 2004;93:8–16. PubMed
Kouřilová P, Hogg KG, Kolářová L, Mountford AP. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. J Immunol. 2004;172:3766–3774. PubMed
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol. 2020;42:e12710. PubMed
Hrádková K, Horák P. Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. J Helminthol. 2002;76:137–141. PubMed
Lichtenbergová L, Lassmann H, Jones MMK, Kolářová L, Horák P. Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011;128:328–335. PubMed
Bulantová J, Macháček T, Panská L, Krejčí F, Karch J, Jährling N, et al. Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates. Micron. 2016;83:62–71. PubMed
Dvořák J, Delcroix M, Rossi A, Vopálenský V, Pospíšek M, Šedinová M, et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol. 2005;35:895–910. PubMed
Dvořáková H, Leontovyč R, Macháček T, O’Donoghue AJ, Šedo O, Zdráhal Z, et al. Isoforms of cathepsin B1 in neurotropic schistosomula of Trichobilharzia regenti differ in substrate preferences and a highly expressed catalytically inactive paralog binds cystatin. Front Cell Infect Microbiol. 2020;10:66. PubMed PMC
Leontovyč R, Young ND, Korhonen PK, Hall RS, Bulantová J, Jeřábková V, et al. Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Sci Rep. 2019;9:1374. PubMed PMC
Macháček T, Panská L, Dvořáková H, Horák P. Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti. Parasit Vectors. 2016;9:579. PubMed PMC
Shi SR, Cote RJ, Taylor CR. Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem. 1997;45:327–343. PubMed
Tracey WR, Tse J, Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther. 1995;272:1011–1015. PubMed
Chanová M, Bulantová J, Máslo P, Horák P. In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae). Parasitol Res. 2009;104:1445–52. PubMed
Basch PF. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol. 1981;67:179–85. PubMed
Lomonosova EE, Kirsch M, Rauen U, de Groot H. The critical role of Hepes in SIN-1 cytotoxicity, peroxynitrite versus hydrogen peroxide. Free Radic Biol Med. 1998;24:522–528. PubMed
Gold D. Assessment of the viability of Schistosoma mansoni schistosomula by comparative uptake of various vital dyes. Parasitol Res. 1997;83:163–169. PubMed
Howe S, Zöphel D, Subbaraman H, Unger C, Held J, Engleitner T, et al. Lactate as a novel quantitative measure of viability in Schistosoma mansoni drug sensitivity assays. Antimicrob Agents Chemother. 2015;59:1193–1199. PubMed PMC
Nussbaum-Krammer CI, Neto MF, Brielmann RM, Pedersen JS, Morimoto RI. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. J Vis Exp. 2015;95:52321. PubMed PMC
Ressurreição M, Elbeyioglu F, Kirk RS, Rollinson D, Emery AM, Page NM, et al. Molecular characterization of host-parasite cell signalling in Schistosoma mansoni during early development. Sci Rep. 2016;6:35614. PubMed PMC
Blažová K, Horák P. Trichobilharzia regenti: the developmental differences in natural and abnormal hosts. Parasitol Int. 2005;54:167–172. PubMed
Haas W, Pietsch U. Migration of Trichobilharzia ocellata schistosomula in the duck and in the abnormal murine host. Parasitol Res. 1991;77:642–644. PubMed
Olivier L. Observations on the migration of avian schistosomes in mammals previously unexposed to cercariae. J Parasitol. 1953;39:237–246. PubMed
Ramaswamy K, He Y-XX, Salafsky B. ICAM-1 and iNOS expression increased in the skin of mice after vaccination with γ-irradiated cercariae of Schistosoma mansoni. Exp Parasitol. 1997;86:118–32. PubMed
Frank S, Madlener M, Pfeilschifter J, Werner S. Induction of inducible nitric oxide synthase and its corresponding tetrahydrobiopterin-cofactor-synthesizing enzyme GTP-cyclohydrolase I during cutaneous wound repair. J Invest Dermatol. 1998;111:1058–1064. PubMed
Frank S, Kämpfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int. 2002;61:882–888. PubMed
Bourke CD, Prendergast CT, Sanin DE, Oulton TE, Hall RJ, Mountford AP. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection. Int J Parasitol. 2015;45:215–224. PubMed PMC
Leontovyč R, Young ND, Korhonen PK, Hall RS, Tan P, Mikeš L, et al. Comparative transcriptomic exploration reveals unique molecular adaptations of neuropathogenic Trichobilharzia to invade and parasitize its avian definitive host. PLoS Negl Trop Dis. 2016;10:e0004406. PubMed PMC
van Oordt BEP, Tielens AGM, van den Bergh SG. The energy metabolism of Schistosoma mansoni during its development in the hamster. Parasitol Res. 1988;75:31–35. PubMed
Thompson DP, Morrison DD, Pax RA, Bennett JL. Changes in glucose metabolism and cyanide sensitivity in Schistosoma mansoni during development. Mol Biochem Parasitol. 1984;13:39–51. PubMed
Horemans AMC, Tielens AGM, van den Bergh SG. The reversible effect of glucose on the energy metabolism of Schistosoma mansoni cercariae and schistosomula. Mol Biochem Parasitol. 1992;51:73–79. PubMed
Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. 2008;319:1672–1676. PubMed
Brown GC, McBride AG, Fox EJ, McNaught KSP, Borutaite V. Nitric oxide and oxygen metabolism. Biochem Soc Trans. 1997;25:901–904. PubMed
Brunori M, Giuffrè A, Sarti P, Stubauer G, Wilson MT. Nitric oxide and cellular respiration. Cell Mol Life Sci. 1999;56:549–557. PubMed PMC
Von Kruger MA, Gazzinelli G, Figueiredo EA, Pellegrino J. Oxygen uptake and lactate production by Schistosoma mansoni cercaria, cercarial body and tail, and schistosomule. Comp Biochem Physiol B. 1978;60:41–46. PubMed
Wright N. A review of the actions of nitric oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci. 2019;6:146–174. PubMed PMC
Reuter M, Kreshchenko N. Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool. 2004;82:334–356.
Kohn AB, Moroz LL, Lea JM, Greenberg RM. Distribution of nitric oxide synthase immunoreactivity in the nervous system and peripheral tissues of Schistosoma mansoni. Parasitology. 2001;122:87–92. PubMed
Kohn AB, Lea JM, Moroz LL, Greenberg RM. Schistosoma mansoni: use of a fluorescent indicator to detect nitric oxide and related species in living parasites. Exp Parasitol. 2006;113:130–133. PubMed
Long X-C, Bahgat M, Chlichlia K, Ruppel A, Li Y-L. Detection of inducible nitric oxide synthase in Schistosoma japonicum and S. mansoni. J Helminthol. 2004;78:47–50. PubMed
Colasanti M, Salvati L, Venturini G, Ascenzi P, Gradoni L. Cysteine protease as a target for nitric oxide in parasitic organisms. Trends Parasitol. 2001;17:575. PubMed
Grote A, Caffrey CR, Rebello KM, Smith D, Dalton JP, Lustigman S. Cysteine proteases during larval migration and development of helminths in their final host. PLoS Negl Trop Dis. 2018;12:e0005919. PubMed PMC
Bocedi A, Gradoni L, Menegatti E, Ascenzi P. Kinetics of parasite cysteine proteinase inactivation by NO-donors. Biochem Biophys Res Commun. 2004;315:710–718. PubMed
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl Trop Dis. 2018;12:e0005840. PubMed PMC
Dunne DW, Cooke A. A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol. 2005;5:420–426. PubMed
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol. 2013;4:39. PubMed PMC
Rai G, Sayed AA, Lea WA, Luecke HF, Chakrapani H, Prast-Nielsen S, et al. Structure mechanism insights and the role of nitric oxide donation guide the development of oxadiazole-2-oxides as therapeutic agents against schistosomiasis. J Med Chem. 2009;52:6474–6483. PubMed PMC
Sadeghi-Hashjin G, Naem S. Parasiticidal effects of peroxynitrite on ovine liver flukes in vitro. J Helminthol. 2001;75:73–76. PubMed
Thomas GR, McCrossan M, Selkirk ME. Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi. Infect Immun. 1997;65:2732–2739. PubMed PMC
Hockley DJ, McLaren DJ. Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. Int J Parasitol. 1973;3:13–20. PubMed
Stirewalt MA. Schistosoma mansoni: cercaria to schistosomule. Adv Parasitol. 1974;12:115–182. PubMed
Macháček T, Krčmářová V, Majer M, Dvořáková H, Panská L, Bulantová J, et al. Neuropathogenic bird schistosome Trichobilharzia regenti activates astrocytes and microglia of infected ducks and mice. In: XIII European Meeting on Glial Cells in Health and Disease, Edinburgh, UK; 2017. Abstract T14-092A.
Macháček T, Pankrác J, Majer M, Šteiger V, Immig K, Horák P. Dynamics of immune cells in the CNS of mice infected by Trichobilharzia regenti (Schistosomatidae): implications for parasite clearance. In: Molecular and Cellular Biology of Helminths XII, Hydra, Greece; 2018. Abstract 14.
Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R. Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain. 2008;131:1123–1133. PubMed PMC
Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393–397. PubMed
Gaut JP, Byun J, Tran HD, Lauber WM, Carroll JA, Hotchkiss RS, et al. Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest. 2002;109:1311–1319. PubMed PMC
The neurotropic schistosome vs experimental autoimmune encephalomyelitis: are there any winners?
Bsep/Abcb11 knockout ameliorates Schistosoma mansoni liver pathology by reducing parasite fecundity