Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds

. 2019 Feb 04 ; 9 (1) : 1347. [epub] 20190204

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30718911
Odkazy

PubMed 30718911
PubMed Central PMC6362228
DOI 10.1038/s41598-018-37669-2
PII: 10.1038/s41598-018-37669-2
Knihovny.cz E-zdroje

Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati ('visceral fluke') and T. regenti ('neurotropic fluke') in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.

Zobrazit více v PubMed

Warren KS. Schistosomiasis: host-pathogen biology. Rev. Infect. Dis. 1982;4:771–775. doi: 10.1093/4.4.771. PubMed DOI

Horák P, Kolářová L, Adema CM. Biology of the schistosome genus Trichobilharzia. Adv. Parasitol. 2002;52:155–233. doi: 10.1016/S0065-308X(02)52012-1. PubMed DOI

Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383:2253–2264. doi: 10.1016/S0140-6736(13)61949-2. PubMed DOI PMC

Rollinson D, et al. Genetic diversity of schistosomes and snails: implications for control. Parasitology. 2009;136:1801–1811. doi: 10.1017/S0031182009990412. PubMed DOI

Neuhaus W. Biology and development of Trichobilharzia szidati n. sp. (Trematoda, Schistosmatidae), a parasite causing dermatitis in man. Z. Parasitenkd. 1952;15:203–266. doi: 10.1007/BF00260453. PubMed DOI

Horemans AM, Tielens AG, van den Bergh SG. The reversible effect of glucose on the energy metabolism of Schistosoma mansoni cercariae and schistosomula. Mol. Biochem. Parasitol. 1992;51:73–79. doi: 10.1016/0166-6851(92)90202-U. PubMed DOI

Skelly PJ, Stein LD, Shoemaker CB. Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Mol. Biochem. Parasitol. 1993;60:93–104. doi: 10.1016/0166-6851(93)90032-S. PubMed DOI

Horák P, Kovár L, Kolářová L, Nebesárová J. Cercaria-schistosomulum surface transformation of Trichobilharzia szidati and its putative immunological impact. Parasitology. 1998;116:139–147. doi: 10.1017/S0031182097002059. PubMed DOI

Chanová M, Vuong S, Horák P. Trichobilharzia szidati: the lung phase of migration within avian and mammalian hosts. Parasitol. Res. 2007;100:1243–1247. doi: 10.1007/s00436-006-0398-2. PubMed DOI

Kašný M, et al. Cathepsins B1 and B2 of Trichobilharzia spp., bird schistosomes causing cercarial dermatitis. Adv. Exp. Med. Biol. 2011;712:136–154. doi: 10.1007/978-1-4419-8414-2_9. PubMed DOI

Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36:180–190. doi: 10.1002/glia.1107. PubMed DOI

Kolářová L, Horák P, Čada F. Histopathology of CNS and nasal infections caused by Trichobilharzia regenti in vertebrates. Parasitol. Res. 2001;87:644–650. doi: 10.1007/s004360100431. PubMed DOI

Rock RB, et al. Role of microglia in central nervous system infections. Clin. Microbiol. Rev. 2004;17:942–964. doi: 10.1128/CMR.17.4.942-964.2004. PubMed DOI PMC

Lichtenbergová L, Lassmann H, Jones MK, Kolářová L, Horák P. Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp. Parasitol. 2011;128:328–335. doi: 10.1016/j.exppara.2011.04.006. PubMed DOI

Gobert GN, You H, McManus DP. Gaining biological perspectives from schistosome genomes. Mol. Biochem. Parasitol. 2014;196:21–28. doi: 10.1016/j.molbiopara.2014.07.007. PubMed DOI

Rinaldi G, et al. New research tools for urogenital schistosomiasis. J. Infect. Dis. 2015;211:861–869. doi: 10.1093/infdis/jiu527. PubMed DOI PMC

Hahnel S, et al. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS Pathog. 2018;14:e1006718. doi: 10.1371/journal.ppat.1006718. PubMed DOI PMC

Leontovyč R, et al. Comparative transcriptomic exploration reveals unique molecular adaptations of neuropathogenic Trichobilharzia to invade and parasitize its avian definitive host. PLoS Negl. Trop. Dis. 2016;10:e0004406. doi: 10.1371/journal.pntd.0004406. PubMed DOI PMC

Wilson RA, et al. The schistosome esophagus is a ‘hotspot’ for microexon and lysosomal hydrolase gene expression: implications for blood processing. PLoS Negl. Trop. Dis. 2015;9:e0004272. doi: 10.1371/journal.pntd.0004272. PubMed DOI PMC

Li X-H, et al. Microexon gene transcriptional profiles and evolution provide insights into blood processing by the Schistosoma japonicum esophagus. PLoS Negl. Trop. Dis. 2018;12:e0006235. doi: 10.1371/journal.pntd.0006235. PubMed DOI PMC

Vaccaro AM, Salvioli R, Tatti M, Ciaffoni F. Saposins and their interaction with lipids. Neurochem. Res. 1999;24:307–314. doi: 10.1023/A:1022530508763. PubMed DOI

Jeon S-B, Yoon HJ, Park S-H, Kim I-H, Park EJ. Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. J. Immunol. 2008;181:8077–8087. doi: 10.4049/jimmunol.181.11.8077. PubMed DOI

Lee J-Y, et al. Hemolytic activity and developmental expression of pore-forming peptide, clonorin. Biochem. Biophys. Res. Commun. 2002;296:1238–1244. doi: 10.1016/S0006-291X(02)02062-4. PubMed DOI

Espino AM, Hillyer GV. Molecular cloning of a member of the Fasciola hepatica saposin-like protein family. J. Parasitol. 2003;89:545–552. doi: 10.1645/GE-3113. PubMed DOI

Don TA, Bethony JM, Loukas A. Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int. J. Infect. Dis. 2008;12:e39–47. doi: 10.1016/j.ijid.2007.10.007. PubMed DOI

Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20:241–248. doi: 10.1016/j.pt.2004.03.004. PubMed DOI

Delcroix M, et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 2006;281:39316–39329. doi: 10.1074/jbc.M607128200. PubMed DOI

Kašný M, et al. Chapter 4. Peptidases of Trematodes. Adv. Parasitol. 2009;69:205–297. doi: 10.1016/S0065-308X(09)69004-7. PubMed DOI

Dolečková K, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int. J. Parasitol. 2009;39:201–11. doi: 10.1016/j.ijpara.2008.06.010. PubMed DOI PMC

Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84:345–357. doi: 10.1016/S0092-8674(00)81279-9. PubMed DOI

Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ. Res. 2009;104:428–441. doi: 10.1161/CIRCRESAHA.108.188144. PubMed DOI

Ou G, Stuurman N, D’Ambrosio M, Vale RD. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science. 2010;330:677–680. doi: 10.1126/science.1196112. PubMed DOI PMC

Modha J, Redman CA, Thornhill JA, Kusel JR. Schistosomes: unanswered questions on the basic biology of the host-parasite relationship. Parasitol. Today. 1998;14:396–401. doi: 10.1016/S0169-4758(98)01321-0. PubMed DOI

Horák P, Dvořák J, Kolářová L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119:577–581. doi: 10.1017/S0031182099005132. PubMed DOI

Horak P, Kolarova L. Survival of bird schistosomes in mammalian lungs. Int. J. Parasitol. 2000;30:65–68. doi: 10.1016/S0020-7519(99)00174-5. PubMed DOI

Blazova K, Horak P. Trichobilharzia regenti: the developmental differences in natural and abnormal hosts. Parasitol. Int. 2005;54:167–172. doi: 10.1016/j.parint.2005.03.003. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Nurk S, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013;20:714–737. doi: 10.1089/cmb.2013.0084. PubMed DOI PMC

Brown, C. T. et al. A Reference-Free Algorithm for Computational Normalization arXiv:1203.4802v2 [q-bio.GN], 1–18 (2012).

Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78. doi: 10.1038/nprot.2012.016. PubMed DOI PMC

Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086–1092. doi: 10.1093/bioinformatics/bts094. PubMed DOI PMC

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC

Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Schwarz EM, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14:R89. doi: 10.1186/gb-2013-14-8-r89. PubMed DOI PMC

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

Magrane M. UniProt Consortium. UniProt knowledgebase: a hub of integrated protein data. Database. 2011;2011:bar009. doi: 10.1093/database/bar009. PubMed DOI PMC

Berriman M, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–358. doi: 10.1038/nature08160. PubMed DOI PMC

Li L, Stoeckert CJJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Cortazar AR, Oguiza JA, Aransay AM, Lavin JL. PECAS: prokaryotic and eukaryotic classical analysis of secretome. Amino Acids. 2015;47:2659–2663. doi: 10.1007/s00726-015-2058-2. PubMed DOI

Bao W, Kojima KK, Kohany O. RepbaseUpdate, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI

Chevenet F, Brun C, Banuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. 2006;7:439. doi: 10.1186/1471-2105-7-439. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

R Development Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria (2008).

Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-seq data. BMC Bioinformatics. 2011;12:480. doi: 10.1186/1471-2105-12-480. PubMed DOI PMC

Dillies M-A, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 2013;14:671–683. doi: 10.1093/bib/bbs046. PubMed DOI

Karnovsky MJ. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 1965;27:137–8A.

Ligasová A, et al. Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti - ultrastructural characterization, 3-D modelling, volume and pH estimations. Parasit. Vectors. 2011;4:162. doi: 10.1186/1756-3305-4-162. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace