Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26863542
PubMed Central
PMC4749378
DOI
10.1371/journal.pntd.0004406
PII: PNTD-D-15-01602
Knihovny.cz E-zdroje
- MeSH
- biologická adaptace * MeSH
- interakce hostitele a patogenu * MeSH
- kachny parazitologie MeSH
- metabolické sítě a dráhy genetika MeSH
- molekulární sekvence - údaje MeSH
- Schistosomatidae genetika růst a vývoj MeSH
- sekvenční analýza DNA MeSH
- stadia vývoje MeSH
- stanovení celkové genové exprese * MeSH
- výpočetní biologie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.
Cancer and Stem Cell Biology Duke NUS Graduate Medical School Singapore Republic of Singapore
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Parasitology Faculty of Science Charles University Prague Prague Czech Republic
Genome Institute of Singapore Singapore Republic of Singapore
Zobrazit více v PubMed
Horak P, Kolarova L, Dvorak J. Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite. 1998;5: 349–357. PubMed
Horak P, Kolarova L, Adema CM. Biology of the schistosome genus Trichobilharzia. Adv Parasitol. 2002;52: 155–233. PubMed
Jouet D, Skirnisson K, Kolarova L, Ferte H. Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect Genet Evol. 2010;10: 1218–1227. 10.1016/j.meegid.2010.08.001 PubMed DOI
Korsunenko A V, Chrisanfova GG, Ryskov AP, Movsessian SO, Vasilyev VA, Semyenova SK. Detection of European Trichobilharzia schistosomes (T. franki, T. szidati, and T. regenti) based on novel genome sequences. J Parasitol. 2010;96: 802–806. 10.1645/GE-2297.1 PubMed DOI
Davis NE. Identification of an avian schistosome recovered from Aythya novaeseelandia and infectivity of its miracidia to Lymnaea tomentosa snails. J Helminthol. 2006;80: 225–233. PubMed
Gohardehi S, Fakhar M, Madjidaei M. Avian schistosomes and human cercarial dermatitis in a wildlife refuge in Mazandaran Province, northern Iran. Zoonoses Public Health. 2013;60: 442–447. 10.1111/zph.12020 PubMed DOI
Horak P, Dvorak J, Kolarova L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119 (Pt 6): 577–581. PubMed
Hradkova K, Horak P. Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. J Helminthol. 2002;76: 137–141. 10.1079/JOH2002113 PubMed DOI
Chanová M, Bulantová J, Máslo P, Horák P. In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae). Parasitol Res. 2009;104: 1445–52. 10.1007/s00436-009-1343-y PubMed DOI
Horák P, Kolářová L. Snails, waterfowl and cercarial dermatitis. Freshw Biol. Blackwell Publishing Ltd; 2011;56: 779–790. 10.1111/j.1365-2427.2010.02545.x DOI
Soldanova M, Selbach C, Kalbe M, Kostadinova A, Sures B. Swimmer’s itch: etiology, impact, and risk factors in Europe. Trends Parasitol. 2013;29: 65–74. 10.1016/j.pt.2012.12.002 PubMed DOI
Horak P, Mikes L, Lichtenbergova L, Skala V, Soldanova M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28: 165–190. 10.1128/CMR.00043-14 PubMed DOI PMC
Jelinek, Nothdurft, Loscher. Schistosomiasis in Travelers and Expatriates. J Travel Med. 1996;3: 160–164. PubMed
Kourilová P, Kolárová L. Variations in immunofluorescent antibody response against Trichobilharzia and Schistosoma antigens in compatible and incompatible hosts. Parasitol Res. 2002;88: 513–21. 10.1007/s00436-002-0607-6 PubMed DOI
Neuhaus W. [Biology and development of Trichobilharzia Szidati N. Sp. (Trematoda, Schistosmatidae), a parasite causing dermatitis in man]. Z Parasitenkd. Not Available; 1952;15: 203–266. PubMed
Lawson JR, Wilson R a. The survival of the cercariae of Schistosoma mansoni in relation to water temperature and glycogen utilization Parasitology. 1980. pp. 337–348. 10.1017/S0031182000056079 PubMed DOI
Ligasova A, Bulantova J, Sebesta O, Kasny M, Koberna K, Mikes L. Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti—ultrastructural characterization, 3-D modelling, volume and pH estimations. Parasit Vectors. 2011;4: 162 10.1186/1756-3305-4-162 PubMed DOI PMC
Mikes L, Zìdková L, Kasný M, Dvorák J, Horák P. In vitro stimulation of penetration gland emptying by Trichobilharzia szidati and T. regenti (Schistosomatidae) cercariae. Quantitative collection and partial characterization of the products. Parasitol Res. 2005;96: 230–41. 10.1007/s00436-005-1347-1 PubMed DOI
Kasny M, Mikes L, Hampl V, Dvorak J, Caffrey CR, Dalton JP, et al. Chapter 4. Peptidases of trematodes Advances in parasitology. 2009. pp. 205–297. 10.1016/S0065-308X(09)69004-7 PubMed DOI
Doleckova K, Kasny M, Mikes L, Cartwright J, Jedelsky P, Schneider EL, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol. 2009;39: 201–211. 10.1016/j.ijpara.2008.06.010 PubMed DOI PMC
Horak P, Kovar L, Kolarova L, Nebesarova J. Cercaria-schistosomulum surface transformation of Trichobilharzia szidati and its putative immunological impact. Parasitology. 1998;116 (Pt 2): 139–147. PubMed
Mclaren DJ, Hockley DJ. Blood flukes have a double outer membrane. Nature.; 1977;269: 147–149. PubMed
Horemans AM, Tielens AG, van den Bergh SG. The reversible effect of glucose on the energy metabolism of Schistosoma mansoni cercariae and schistosomula. Mol Biochem Parasitol. 1992;51: 73–79. PubMed
Skelly PJ, Stein LD, Shoemaker CB. Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Mol Biochem Parasitol. 1993;60: 93–104. 10.1016/0166-6851(93)90032-S PubMed DOI
Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Negl Trop Dis. 2011;5: e1274 10.1371/journal.pntd.0001274 PubMed DOI PMC
Lichtenbergova L, Lassmann H, Jones MK, Kolarova L, Horak P. Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011;128: 328–335. 10.1016/j.exppara.2011.04.006 PubMed DOI
Chanova M, Horak P. Terminal phase of bird schistosomiasis caused by Trichobilharzia regenti (Schistosomatidae) in ducks (Anas platyrhynchos f. domestica). Folia Parasitol (Praha). 2007;54: 105–107. PubMed
Kolarova L, Horak P, Cada F. Histopathology of CNS and nasal infections caused by Trichobilharzia regenti in vertebrates. Parasitol Res. 2001;87: 644–650. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
FastQC. A quality control tool for high throughput sequence data. Babraham Bioinforma Web site http//www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20: 714–737. 10.1089/cmb.2013.0084 PubMed DOI PMC
Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH, Lansing E, et al. A Reference-Free Algorithm for Computational Normalization arXiv : 1203. 4802v2 [q-bio. GN] 21 May 2012: 1–18.
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28: 1086–1092. 10.1093/bioinformatics/bts094 PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data Bioinformatics. 2012. pp. 3150–3152. 10.1093/bioinformatics/bts565 PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494–512. 10.1038/nprot.2013.084 PubMed DOI PMC
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23: 1061–1067. 10.1093/bioinformatics/btm071 PubMed DOI
Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2014;42: D7–17. 10.1093/nar/gkt1146 PubMed DOI PMC
Smit AFA, Hubley R GP. RepeatMasker Open-3.0. [http://www.repeatmasker.org] webcite.
Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14: R89 10.1186/gb-2013-14-8-r89 PubMed DOI PMC
Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011;2011: bar009 10.1093/database/bar009 PubMed DOI PMC
Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2010;38: D227–33. 10.1093/nar/gkp971 PubMed DOI PMC
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28: 27–30. PubMed PMC
Zdobnov EM, Apweiler R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17: 847–848. PubMed
Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6: e21800 10.1371/journal.pone.0021800 PubMed DOI PMC
Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10: 274 10.1186/1471-2105-10-274 PubMed DOI PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12: 323 10.1186/1471-2105-12-323 PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
R Development Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2008. Available: http://www.r-project.org
Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. BMC Bioinformatics. 2011;12: 480 10.1186/1471-2105-12-480 PubMed DOI PMC
Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14: 671–683. 10.1093/bib/bbs046 PubMed DOI
Alexa A and Rahnenfuhrer J. topGO: Enrichment analysis for Gene Ontology. R package version 2.20.0. [Internet]. 2010. Available: http://www.bioconductor.org/packages/release/bioc/html/topGO.html
Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. Whole-genome sequence of Schistosoma haematobium. Nat Genet. 2012;44: 221–225. 10.1038/ng.1065 PubMed DOI
Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460: 352–358. 10.1038/nature08160 PubMed DOI PMC
The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature. Macmillan Publishers Limited. All rights reserved; 2009;460: 345–351. Available: 10.1038/nature08140 PubMed DOI PMC
Kasny M, Mikes L, Dalton JP, Mountford AP, Horak P. Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae. Parasitology. 2007;134: 1599–1609. 10.1017/S0031182007002910 PubMed DOI
Doleckova K, Kasny M, Mikes L, Mutapi F, Stack C, Mountford AP, et al. Peptidases of Trichobilharzia regenti (Schistosomatidae) and its molluscan host Radix peregra S. Lat. (Lymnaeidae): construction and screening of cDNA library from intramolluscan stages of the parasite. Folia Parasitol (Praha). 2007;54: 94–98. PubMed
Dvorák J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, et al. Differential use of protease families for invasion by schistosome cercariae. Biochimie. 2008;90: 345–58. 10.1016/j.biochi.2007.08.013 PubMed DOI
Curwen RS, Wilson RA. Invasion of skin by schistosome cercariae: some neglected facts. Trends Parasitol. 2003;19: 63–68. PubMed
Salter JP, Choe Y, Albrecht H, Franklin C, Lim K-C, Craik CS, et al. Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J Biol Chem. 2002;277: 24618–24624. 10.1074/jbc.M202364200 PubMed DOI
Gray DJ, Williams GM, Li Y, Chen H, Forsyth S, Li R, et al. The role of bovines in human Schistosoma japonicum infection in the Peoples’ Republic of China. Am J Trop Med Hyg. 2009;81: 301–301.
Jolly ER, Chin C-S, Miller S, Bahgat MM, Lim KC, DeRisi J, et al. Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biol. 2007;8: R65 10.1186/gb-2007-8-4-r65 PubMed DOI PMC
Gobert GN, Moertel L, Brindley PJ, McManus DP. Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics. 2009;10: 128 10.1186/1471-2164-10-128 PubMed DOI PMC
Verjovski-Almeida S, DeMarco R, Martins E a L, Guimarães PEM, Ojopi EPB, Paquola ACM, et al. Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet. 2003;35: 148–157. 10.1038/ng1237 PubMed DOI
Tielens AG, van den Heuvel JM, van den Bergh SG. The energy metabolism of Fasciola hepatica during its development in the final host. Mol Biochem Parasitol. 1984;13: 301–307. PubMed
Boyunaga H, Schmitz MG, Brouwers JF, Van Hellemond JJ, Tielens AG. Fasciola hepatica miracidia are dependent on respiration and endogenous glycogen degradation for their energy generation. Parasitology. 2001;122: 169–173. PubMed
Prosdocimi F, Faria-Campos AC, Peixoto FC, Pena SDJSDJ, Ortega JMJM, Franco GRGR. Clustering of Schistosoma mansoni mRNA sequences and analysis of the most transcribed genes: Implications in metabolism and biology of different developmental stages. Mem Inst Oswaldo Cruz. 2002;97: 61–69. 10.1590/S0074-02762002000900014 PubMed DOI
Tielens AG, Van der Meer P, van den Heuvel JM, van den Bergh SG. The enigmatic presence of all gluconeogenic enzymes in Schistosoma mansoni adults. Parasitology. 1991;102 Pt 2: 267–276. PubMed
Burenina EA. [Properties of gluconeogenesis enzymes from flatworms]. Zh Evol Biokhim Fiziol. 2001;37: 85–91. PubMed
Van Oordt BE, Tielens AG, Van den Bergh SG. Aerobic to anaerobic transition in the carbohydrate metabolism of Schistosoma mansoni cercariae during transformation in vitro. Parasitology. 1989;98 Pt 3: 409–415. PubMed
Tielens A. G. M., Hellemond van JJ. Unusual aspects of metabolism in flatworm parasites Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CAB International; 2006. 10.1079/9780851990279.0387 DOI
Barrett J. Amino acid metabolism in helminths. Adv Parasitol. ENGLAND; 1991;30: 39–105. PubMed
Santos TM, Johnston D a, Azevedo V, Ridgers IL, Martinez MF, Marotta GB, et al. Analysis of the gene expression profile of Schistosoma mansoni cercariae using the expressed sequence tag approach. Mol Biochem Parasitol. 1999;103: 79–97. PubMed
Ram D, Grossman Z, Markovics A, Avivi A, Ziv E, Lantner F, et al. Rapid changes in the expression of a gene encoding a calcium-binding protein in Schistosoma mansoni. Mol Biochem Parasitol. 1989;34: 167–175. PubMed
Dorsey CH, Stirewalt MA. Schistosoma mansoni: localization of calcium-detecting reagents in electron-lucent areas of specific preacetabular gland granules. Z Parasitenkd. 1977;54: 165–173. PubMed
Modha J, Redman CA, Thornhill JA, Kusel JR. Schistosomes: unanswered questions on the basic biology of the host-parasite relationship. Parasitol Today. 1998;14: 396–401. PubMed
Dresden MH, Edlin EM. Schistosoma mansoni: effect of some cations on the proteolytic enzymes of cercariae. Exp Parasitol. 1974;35: 299–303. PubMed
McKerrow JH, Jones P, Sage H, Pino-Heiss S. Proteinases from invasive larvae of the trematode parasite Schistosoma mansoni degrade connective-tissue and basement-membrane macromolecules. Biochem J. 1985;231: 47–51. PubMed PMC
Siddiqui AA, Zhou Y, Podesta RB, Karcz SR, Tognon CE, Strejan GH, et al. Characterization of Ca(2+)-dependent neutral protease (calpain) from human blood flukes, Schistosoma mansoni. Biochim Biophys Acta. 1993;1181: 37–44. PubMed
Rowe JA, Claessens A, Corrigan RA, Arman M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med. 2009;11: e16 10.1017/S1462399409001082 PubMed DOI PMC
Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84: 345–357. PubMed
Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009;104: 428–441. 10.1161/CIRCRESAHA.108.188144 PubMed DOI
Ou C-Y, Shen K. Setting up presynaptic structures at specific positions. Curr Opin Neurobiol. 2010;20: 489–493. 10.1016/j.conb.2010.04.011 PubMed DOI PMC
Skelly PJ, Shoemaker CB. Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. Int J Parasitol. 2000;30: 625–631. PubMed
Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood “n” guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20: 241–8. 10.1016/j.pt.2004.03.004 PubMed DOI
Dvorak J, Delcroix M, Rossi A, Vopalensky V, Pospisek M, Sedinova M, et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol. 2005;35: 895–910. 10.1016/j.ijpara.2005.02.018 PubMed DOI
Pils B, Schultz J. Inactive enzyme-homologues find new function in regulatory processes. J Mol Biol. 2004;340: 399–404. 10.1016/j.jmb.2004.04.063 PubMed DOI
Dolecková K, Albrecht T, Mikes L, Horák P. Cathepsins B1 and B2 in the neuropathogenic schistosome Trichobilharzia regenti: distinct gene expression profiles and presumptive roles throughout the life cycle. Parasitol Res. 2010;107: 751–5. 10.1007/s00436-010-1943-6 PubMed DOI
Berasaín P, Goñi F, McGonigle S, Dowd a, Dalton JP, Frangione B, et al. Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components. J Parasitol. 1997;83: 1–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/9057688 PubMed
Collins PR, Stack CM, O’Neill SM, Doyle S, Ryan T, Brennan GP, et al. Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propetide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. J Biol Chem. 2004;279: 17038–17046. 10.1074/jbc.M308831200 PubMed DOI
Yamakami K, Hamajima F, Akao S, Tadakuma T. Purification and characterization of acid cysteine protease from metacercariae of the mammalian trematode parasite Paragonimus westermani. Eur J Biochem. 1995;233: 490–497. PubMed
Verity CK, Loukas A, McManus DP, Brindley PJ. Schistosoma japonicum cathepsin D aspartic protease cleaves human IgG and other serum components. Parasitology. 2001;122: 415–421. PubMed
Delcroix M, Sajid M, Caffrey CR, Lim K-C, Dvorák J, Hsieh I, et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem. 2006;281: 39316–29. 10.1074/jbc.M607128200 PubMed DOI
Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol. 2011;12: R107 10.1186/gb-2011-12-10-r107 PubMed DOI PMC
Vesa J, Hellsten E, Makela TP, Jarvela I, Airaksinen T, Santavuori P, et al. A single PCR marker in strong allelic association with the infantile form of neuronal ceroid lipofuscinosis facilitates reliable prenatal diagnostics and disease carrier identification. Eur J Hum Genet. 1993;1: 125–132. PubMed
Chikh K, Vey S, Simonot C, Vanier MT, Millat G. Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Mol Genet Metab. 2004;83: 220–230. PubMed
Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, et al. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun. 2014;5: 4378 10.1038/ncomms5378 PubMed DOI PMC
Bruhn H. A short guided tour through functional and structural features of saposin-like proteins. Biochem J. 2005;389: 249–257. 10.1042/BJ20050051 PubMed DOI PMC
Furst W, Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta. 1992;1126: 1–16. PubMed
Leippe M, Tannich E, Nickel R, van der Goot G, Pattus F, Horstmann RD, et al. Primary and secondary structure of the pore-forming peptide of pathogenic Entamoeba histolytica. EMBO J. 1992;11: 3501–3506. PubMed PMC
Don TA, Bethony JM, Loukas A. Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int J Infect Dis. 2008;12: e39–47. 10.1016/j.ijid.2007.10.007 PubMed DOI
Espino AM, Hillyer G V. Molecular cloning of a member of the Fasciola hepatica saposin-like protein family. J Parasitol. 2003;89: 545–552. 10.1645/GE-3113 PubMed DOI
Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, James MNG. Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol. 2003;327: 1093–1109. PubMed PMC
Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci. 2013;33: 10195–10208. 10.1523/JNEUROSCI.0822-13.2013 PubMed DOI PMC
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta. 1999;1455: 105–138. PubMed
Rhoads ML. Purification, characterization, and immunochemical studies of beta-N-acetyl-D-hexosaminidase from the parasitic nematode Trichinella spiralis. Mol Biochem Parasitol. 1988;31: 57–69. PubMed
The neurotropic schistosome vs experimental autoimmune encephalomyelitis: are there any winners?
Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics
BioProject
GDKR01000000