Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host

. 2016 Feb ; 10 (2) : e0004406. [epub] 20160210

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26863542

To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.

Zobrazit více v PubMed

Horak P, Kolarova L, Dvorak J. Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite. 1998;5: 349–357. PubMed

Horak P, Kolarova L, Adema CM. Biology of the schistosome genus Trichobilharzia. Adv Parasitol. 2002;52: 155–233. PubMed

Jouet D, Skirnisson K, Kolarova L, Ferte H. Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect Genet Evol. 2010;10: 1218–1227. 10.1016/j.meegid.2010.08.001 PubMed DOI

Korsunenko A V, Chrisanfova GG, Ryskov AP, Movsessian SO, Vasilyev VA, Semyenova SK. Detection of European Trichobilharzia schistosomes (T. franki, T. szidati, and T. regenti) based on novel genome sequences. J Parasitol. 2010;96: 802–806. 10.1645/GE-2297.1 PubMed DOI

Davis NE. Identification of an avian schistosome recovered from Aythya novaeseelandia and infectivity of its miracidia to Lymnaea tomentosa snails. J Helminthol. 2006;80: 225–233. PubMed

Gohardehi S, Fakhar M, Madjidaei M. Avian schistosomes and human cercarial dermatitis in a wildlife refuge in Mazandaran Province, northern Iran. Zoonoses Public Health. 2013;60: 442–447. 10.1111/zph.12020 PubMed DOI

Horak P, Dvorak J, Kolarova L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119 (Pt 6): 577–581. PubMed

Hradkova K, Horak P. Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. J Helminthol. 2002;76: 137–141. 10.1079/JOH2002113 PubMed DOI

Chanová M, Bulantová J, Máslo P, Horák P. In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae). Parasitol Res. 2009;104: 1445–52. 10.1007/s00436-009-1343-y PubMed DOI

Horák P, Kolářová L. Snails, waterfowl and cercarial dermatitis. Freshw Biol. Blackwell Publishing Ltd; 2011;56: 779–790. 10.1111/j.1365-2427.2010.02545.x DOI

Soldanova M, Selbach C, Kalbe M, Kostadinova A, Sures B. Swimmer’s itch: etiology, impact, and risk factors in Europe. Trends Parasitol. 2013;29: 65–74. 10.1016/j.pt.2012.12.002 PubMed DOI

Horak P, Mikes L, Lichtenbergova L, Skala V, Soldanova M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28: 165–190. 10.1128/CMR.00043-14 PubMed DOI PMC

Jelinek, Nothdurft, Loscher. Schistosomiasis in Travelers and Expatriates. J Travel Med. 1996;3: 160–164. PubMed

Kourilová P, Kolárová L. Variations in immunofluorescent antibody response against Trichobilharzia and Schistosoma antigens in compatible and incompatible hosts. Parasitol Res. 2002;88: 513–21. 10.1007/s00436-002-0607-6 PubMed DOI

Neuhaus W. [Biology and development of Trichobilharzia Szidati N. Sp. (Trematoda, Schistosmatidae), a parasite causing dermatitis in man]. Z Parasitenkd. Not Available; 1952;15: 203–266. PubMed

Lawson JR, Wilson R a. The survival of the cercariae of Schistosoma mansoni in relation to water temperature and glycogen utilization Parasitology. 1980. pp. 337–348. 10.1017/S0031182000056079 PubMed DOI

Ligasova A, Bulantova J, Sebesta O, Kasny M, Koberna K, Mikes L. Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti—ultrastructural characterization, 3-D modelling, volume and pH estimations. Parasit Vectors. 2011;4: 162 10.1186/1756-3305-4-162 PubMed DOI PMC

Mikes L, Zìdková L, Kasný M, Dvorák J, Horák P. In vitro stimulation of penetration gland emptying by Trichobilharzia szidati and T. regenti (Schistosomatidae) cercariae. Quantitative collection and partial characterization of the products. Parasitol Res. 2005;96: 230–41. 10.1007/s00436-005-1347-1 PubMed DOI

Kasny M, Mikes L, Hampl V, Dvorak J, Caffrey CR, Dalton JP, et al. Chapter 4. Peptidases of trematodes Advances in parasitology. 2009. pp. 205–297. 10.1016/S0065-308X(09)69004-7 PubMed DOI

Doleckova K, Kasny M, Mikes L, Cartwright J, Jedelsky P, Schneider EL, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol. 2009;39: 201–211. 10.1016/j.ijpara.2008.06.010 PubMed DOI PMC

Horak P, Kovar L, Kolarova L, Nebesarova J. Cercaria-schistosomulum surface transformation of Trichobilharzia szidati and its putative immunological impact. Parasitology. 1998;116 (Pt 2): 139–147. PubMed

Mclaren DJ, Hockley DJ. Blood flukes have a double outer membrane. Nature.; 1977;269: 147–149. PubMed

Horemans AM, Tielens AG, van den Bergh SG. The reversible effect of glucose on the energy metabolism of Schistosoma mansoni cercariae and schistosomula. Mol Biochem Parasitol. 1992;51: 73–79. PubMed

Skelly PJ, Stein LD, Shoemaker CB. Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Mol Biochem Parasitol. 1993;60: 93–104. 10.1016/0166-6851(93)90032-S PubMed DOI

Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Negl Trop Dis. 2011;5: e1274 10.1371/journal.pntd.0001274 PubMed DOI PMC

Lichtenbergova L, Lassmann H, Jones MK, Kolarova L, Horak P. Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011;128: 328–335. 10.1016/j.exppara.2011.04.006 PubMed DOI

Chanova M, Horak P. Terminal phase of bird schistosomiasis caused by Trichobilharzia regenti (Schistosomatidae) in ducks (Anas platyrhynchos f. domestica). Folia Parasitol (Praha). 2007;54: 105–107. PubMed

Kolarova L, Horak P, Cada F. Histopathology of CNS and nasal infections caused by Trichobilharzia regenti in vertebrates. Parasitol Res. 2001;87: 644–650. PubMed

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

FastQC. A quality control tool for high throughput sequence data. Babraham Bioinforma Web site http//www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20: 714–737. 10.1089/cmb.2013.0084 PubMed DOI PMC

Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH, Lansing E, et al. A Reference-Free Algorithm for Computational Normalization arXiv : 1203. 4802v2 [q-bio. GN] 21 May 2012: 1–18.

Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28: 1086–1092. 10.1093/bioinformatics/bts094 PubMed DOI PMC

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data Bioinformatics. 2012. pp. 3150–3152. 10.1093/bioinformatics/bts565 PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494–512. 10.1038/nprot.2013.084 PubMed DOI PMC

Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23: 1061–1067. 10.1093/bioinformatics/btm071 PubMed DOI

Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2014;42: D7–17. 10.1093/nar/gkt1146 PubMed DOI PMC

Smit AFA, Hubley R GP. RepeatMasker Open-3.0. [http://www.repeatmasker.org] webcite.

Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14: R89 10.1186/gb-2013-14-8-r89 PubMed DOI PMC

Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011;2011: bar009 10.1093/database/bar009 PubMed DOI PMC

Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2010;38: D227–33. 10.1093/nar/gkp971 PubMed DOI PMC

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28: 27–30. PubMed PMC

Zdobnov EM, Apweiler R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17: 847–848. PubMed

Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6: e21800 10.1371/journal.pone.0021800 PubMed DOI PMC

Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10: 274 10.1186/1471-2105-10-274 PubMed DOI PMC

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12: 323 10.1186/1471-2105-12-323 PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC

R Development Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2008. Available: http://www.r-project.org

Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. BMC Bioinformatics. 2011;12: 480 10.1186/1471-2105-12-480 PubMed DOI PMC

Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14: 671–683. 10.1093/bib/bbs046 PubMed DOI

Alexa A and Rahnenfuhrer J. topGO: Enrichment analysis for Gene Ontology. R package version 2.20.0. [Internet]. 2010. Available: http://www.bioconductor.org/packages/release/bioc/html/topGO.html

Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. Whole-genome sequence of Schistosoma haematobium. Nat Genet. 2012;44: 221–225. 10.1038/ng.1065 PubMed DOI

Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460: 352–358. 10.1038/nature08160 PubMed DOI PMC

The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature. Macmillan Publishers Limited. All rights reserved; 2009;460: 345–351. Available: 10.1038/nature08140 PubMed DOI PMC

Kasny M, Mikes L, Dalton JP, Mountford AP, Horak P. Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae. Parasitology. 2007;134: 1599–1609. 10.1017/S0031182007002910 PubMed DOI

Doleckova K, Kasny M, Mikes L, Mutapi F, Stack C, Mountford AP, et al. Peptidases of Trichobilharzia regenti (Schistosomatidae) and its molluscan host Radix peregra S. Lat. (Lymnaeidae): construction and screening of cDNA library from intramolluscan stages of the parasite. Folia Parasitol (Praha). 2007;54: 94–98. PubMed

Dvorák J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, et al. Differential use of protease families for invasion by schistosome cercariae. Biochimie. 2008;90: 345–58. 10.1016/j.biochi.2007.08.013 PubMed DOI

Curwen RS, Wilson RA. Invasion of skin by schistosome cercariae: some neglected facts. Trends Parasitol. 2003;19: 63–68. PubMed

Salter JP, Choe Y, Albrecht H, Franklin C, Lim K-C, Craik CS, et al. Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J Biol Chem. 2002;277: 24618–24624. 10.1074/jbc.M202364200 PubMed DOI

Gray DJ, Williams GM, Li Y, Chen H, Forsyth S, Li R, et al. The role of bovines in human Schistosoma japonicum infection in the Peoples’ Republic of China. Am J Trop Med Hyg. 2009;81: 301–301.

Jolly ER, Chin C-S, Miller S, Bahgat MM, Lim KC, DeRisi J, et al. Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biol. 2007;8: R65 10.1186/gb-2007-8-4-r65 PubMed DOI PMC

Gobert GN, Moertel L, Brindley PJ, McManus DP. Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics. 2009;10: 128 10.1186/1471-2164-10-128 PubMed DOI PMC

Verjovski-Almeida S, DeMarco R, Martins E a L, Guimarães PEM, Ojopi EPB, Paquola ACM, et al. Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet. 2003;35: 148–157. 10.1038/ng1237 PubMed DOI

Tielens AG, van den Heuvel JM, van den Bergh SG. The energy metabolism of Fasciola hepatica during its development in the final host. Mol Biochem Parasitol. 1984;13: 301–307. PubMed

Boyunaga H, Schmitz MG, Brouwers JF, Van Hellemond JJ, Tielens AG. Fasciola hepatica miracidia are dependent on respiration and endogenous glycogen degradation for their energy generation. Parasitology. 2001;122: 169–173. PubMed

Prosdocimi F, Faria-Campos AC, Peixoto FC, Pena SDJSDJ, Ortega JMJM, Franco GRGR. Clustering of Schistosoma mansoni mRNA sequences and analysis of the most transcribed genes: Implications in metabolism and biology of different developmental stages. Mem Inst Oswaldo Cruz. 2002;97: 61–69. 10.1590/S0074-02762002000900014 PubMed DOI

Tielens AG, Van der Meer P, van den Heuvel JM, van den Bergh SG. The enigmatic presence of all gluconeogenic enzymes in Schistosoma mansoni adults. Parasitology. 1991;102 Pt 2: 267–276. PubMed

Burenina EA. [Properties of gluconeogenesis enzymes from flatworms]. Zh Evol Biokhim Fiziol. 2001;37: 85–91. PubMed

Van Oordt BE, Tielens AG, Van den Bergh SG. Aerobic to anaerobic transition in the carbohydrate metabolism of Schistosoma mansoni cercariae during transformation in vitro. Parasitology. 1989;98 Pt 3: 409–415. PubMed

Tielens A. G. M., Hellemond van JJ. Unusual aspects of metabolism in flatworm parasites Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CAB International; 2006. 10.1079/9780851990279.0387 DOI

Barrett J. Amino acid metabolism in helminths. Adv Parasitol. ENGLAND; 1991;30: 39–105. PubMed

Santos TM, Johnston D a, Azevedo V, Ridgers IL, Martinez MF, Marotta GB, et al. Analysis of the gene expression profile of Schistosoma mansoni cercariae using the expressed sequence tag approach. Mol Biochem Parasitol. 1999;103: 79–97. PubMed

Ram D, Grossman Z, Markovics A, Avivi A, Ziv E, Lantner F, et al. Rapid changes in the expression of a gene encoding a calcium-binding protein in Schistosoma mansoni. Mol Biochem Parasitol. 1989;34: 167–175. PubMed

Dorsey CH, Stirewalt MA. Schistosoma mansoni: localization of calcium-detecting reagents in electron-lucent areas of specific preacetabular gland granules. Z Parasitenkd. 1977;54: 165–173. PubMed

Modha J, Redman CA, Thornhill JA, Kusel JR. Schistosomes: unanswered questions on the basic biology of the host-parasite relationship. Parasitol Today. 1998;14: 396–401. PubMed

Dresden MH, Edlin EM. Schistosoma mansoni: effect of some cations on the proteolytic enzymes of cercariae. Exp Parasitol. 1974;35: 299–303. PubMed

McKerrow JH, Jones P, Sage H, Pino-Heiss S. Proteinases from invasive larvae of the trematode parasite Schistosoma mansoni degrade connective-tissue and basement-membrane macromolecules. Biochem J. 1985;231: 47–51. PubMed PMC

Siddiqui AA, Zhou Y, Podesta RB, Karcz SR, Tognon CE, Strejan GH, et al. Characterization of Ca(2+)-dependent neutral protease (calpain) from human blood flukes, Schistosoma mansoni. Biochim Biophys Acta. 1993;1181: 37–44. PubMed

Rowe JA, Claessens A, Corrigan RA, Arman M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med. 2009;11: e16 10.1017/S1462399409001082 PubMed DOI PMC

Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84: 345–357. PubMed

Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009;104: 428–441. 10.1161/CIRCRESAHA.108.188144 PubMed DOI

Ou C-Y, Shen K. Setting up presynaptic structures at specific positions. Curr Opin Neurobiol. 2010;20: 489–493. 10.1016/j.conb.2010.04.011 PubMed DOI PMC

Skelly PJ, Shoemaker CB. Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. Int J Parasitol. 2000;30: 625–631. PubMed

Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood “n” guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20: 241–8. 10.1016/j.pt.2004.03.004 PubMed DOI

Dvorak J, Delcroix M, Rossi A, Vopalensky V, Pospisek M, Sedinova M, et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol. 2005;35: 895–910. 10.1016/j.ijpara.2005.02.018 PubMed DOI

Pils B, Schultz J. Inactive enzyme-homologues find new function in regulatory processes. J Mol Biol. 2004;340: 399–404. 10.1016/j.jmb.2004.04.063 PubMed DOI

Dolecková K, Albrecht T, Mikes L, Horák P. Cathepsins B1 and B2 in the neuropathogenic schistosome Trichobilharzia regenti: distinct gene expression profiles and presumptive roles throughout the life cycle. Parasitol Res. 2010;107: 751–5. 10.1007/s00436-010-1943-6 PubMed DOI

Berasaín P, Goñi F, McGonigle S, Dowd a, Dalton JP, Frangione B, et al. Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components. J Parasitol. 1997;83: 1–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/9057688 PubMed

Collins PR, Stack CM, O’Neill SM, Doyle S, Ryan T, Brennan GP, et al. Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propetide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. J Biol Chem. 2004;279: 17038–17046. 10.1074/jbc.M308831200 PubMed DOI

Yamakami K, Hamajima F, Akao S, Tadakuma T. Purification and characterization of acid cysteine protease from metacercariae of the mammalian trematode parasite Paragonimus westermani. Eur J Biochem. 1995;233: 490–497. PubMed

Verity CK, Loukas A, McManus DP, Brindley PJ. Schistosoma japonicum cathepsin D aspartic protease cleaves human IgG and other serum components. Parasitology. 2001;122: 415–421. PubMed

Delcroix M, Sajid M, Caffrey CR, Lim K-C, Dvorák J, Hsieh I, et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem. 2006;281: 39316–29. 10.1074/jbc.M607128200 PubMed DOI

Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol. 2011;12: R107 10.1186/gb-2011-12-10-r107 PubMed DOI PMC

Vesa J, Hellsten E, Makela TP, Jarvela I, Airaksinen T, Santavuori P, et al. A single PCR marker in strong allelic association with the infantile form of neuronal ceroid lipofuscinosis facilitates reliable prenatal diagnostics and disease carrier identification. Eur J Hum Genet. 1993;1: 125–132. PubMed

Chikh K, Vey S, Simonot C, Vanier MT, Millat G. Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Mol Genet Metab. 2004;83: 220–230. PubMed

Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, et al. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun. 2014;5: 4378 10.1038/ncomms5378 PubMed DOI PMC

Bruhn H. A short guided tour through functional and structural features of saposin-like proteins. Biochem J. 2005;389: 249–257. 10.1042/BJ20050051 PubMed DOI PMC

Furst W, Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta. 1992;1126: 1–16. PubMed

Leippe M, Tannich E, Nickel R, van der Goot G, Pattus F, Horstmann RD, et al. Primary and secondary structure of the pore-forming peptide of pathogenic Entamoeba histolytica. EMBO J. 1992;11: 3501–3506. PubMed PMC

Don TA, Bethony JM, Loukas A. Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int J Infect Dis. 2008;12: e39–47. 10.1016/j.ijid.2007.10.007 PubMed DOI

Espino AM, Hillyer G V. Molecular cloning of a member of the Fasciola hepatica saposin-like protein family. J Parasitol. 2003;89: 545–552. 10.1645/GE-3113 PubMed DOI

Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, James MNG. Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol. 2003;327: 1093–1109. PubMed PMC

Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci. 2013;33: 10195–10208. 10.1523/JNEUROSCI.0822-13.2013 PubMed DOI PMC

Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta. 1999;1455: 105–138. PubMed

Rhoads ML. Purification, characterization, and immunochemical studies of beta-N-acetyl-D-hexosaminidase from the parasitic nematode Trichinella spiralis. Mol Biochem Parasitol. 1988;31: 57–69. PubMed

Zobrazit více v PubMed

BioProject
GDKR01000000

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...