Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27842570
PubMed Central
PMC5109812
DOI
10.1186/s13071-016-1869-7
PII: 10.1186/s13071-016-1869-7
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-inflammatory cytokines, Astrocytes, Avian schistosome, Cathepsin B, Microglia, Neuroinfection, Nitric oxide, Proinflammatory cytokines, Trichobilharzia regenti,
- MeSH
- astrocyty imunologie parazitologie MeSH
- interleukin-6 metabolismus MeSH
- kultivované buňky MeSH
- myši MeSH
- neuroglie imunologie parazitologie MeSH
- oxid dusnatý metabolismus MeSH
- Schistosomatidae imunologie MeSH
- TNF-alfa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-6, mouse MeSH Prohlížeč
- interleukin-6 MeSH
- oxid dusnatý MeSH
- TNF-alfa MeSH
BACKGROUND: Helminth neuroinfections represent a serious health problem, but host immune mechanisms in the nervous tissue often remain undiscovered. This study aims at in vitro characterization of the response of murine astrocytes and microglia exposed to Trichobilharzia regenti which is a neuropathogenic schistosome migrating through the central nervous system of vertebrate hosts. Trichobilharzia regenti infects birds and mammals in which it may cause severe neuromotor impairment. This study was focused on astrocytes and microglia as these are immunocompetent cells of the nervous tissue and their activation was recently observed in T. regenti-infected mice. RESULTS: Primary astrocytes and microglia were exposed to several stimulants of T. regenti origin. Living schistosomulum-like stages caused increased secretion of IL-6 in astrocyte cultures, but no changes in nitric oxide (NO) production were noticed. Nevertheless, elevated parasite mortality was observed in these cultures. Soluble fraction of the homogenate from schistosomulum-like stages stimulated NO production by both astrocytes and microglia, and IL-6 and TNF-α secretion in astrocyte cultures. Similarly, recombinant cathepsins B1.1 and B2 triggered IL-6 and TNF-α release in astrocyte and microglia cultures, and NO production in astrocyte cultures. Stimulants had no effect on production of anti-inflammatory cytokines IL-10 or TGF-β1. CONCLUSIONS: Both astrocytes and microglia are capable of production of NO and proinflammatory cytokines IL-6 and TNF-α following in vitro exposure to various stimulants of T. regenti origin. Astrocytes might be involved in triggering the tissue inflammation in the early phase of T. regenti infection and are proposed to participate in destruction of migrating schistosomula. However, NO is not the major factor responsible for parasite damage. Both astrocytes and microglia can be responsible for the nervous tissue pathology and maintaining the ongoing inflammation since they are a source of NO and proinflammatory cytokines which are released after exposure to parasite antigens.
Zobrazit více v PubMed
Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36:180–90. doi: 10.1002/glia.1107. PubMed DOI
Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al. Role of microglia in central nervous system infections. Clin Microbiol Rev. 2004;17:942–64. doi: 10.1128/CMR.17.4.942-964.2004. PubMed DOI PMC
Horák P, Kolářová L, Dvořák J. Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite. 1998;5:349–57. doi: 10.1051/parasite/1998054349. PubMed DOI
Christiansen AØ, Olsen A, Buchmann K, Kania PW, Nejsum P, Vennervald BJ. Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitol Res. 2016;115:1027–37. doi: 10.1007/s00436-015-4830-3. PubMed DOI
Jouet D, Skírnisson K, Kolářová L, Ferté H. Final hosts and variability of Trichobilharzia regenti under natural conditions. Parasitol Res. 2010;107:923–30. doi: 10.1007/s00436-010-1953-4. PubMed DOI
Skírnisson K, Kolářová L, Horák P, Ferté H, Jouet D. Morphological features of the nasal blood fluke Trichobilharzia regenti (Schistosomatidae, Digenea) from naturally infected hosts. Parasitol Res. 2012;110:1881–92. doi: 10.1007/s00436-011-2713-9. PubMed DOI
Korsunenko AV, Chrisanfova GG, Ryskov AP, Movsessian SO, Vasilyev VA, Semyenova SK. Detection of European Trichobilharzia schistosomes (T. franki, T. szidati, and T. regenti) based on novel genome sequences. J Parasitol. 2010;96:802–6. doi: 10.1645/GE-2297.1. PubMed DOI
Fakhar M, Ghobaditara M, Brant SV, Karamian M, Gohardehi S, Bastani R. Phylogenetic analysis of nasal avian schistosomes (Trichobilharzia) from aquatic birds in Mazandaran Province, northern Iran. Parasitol Int. 2016;65:151–8. doi: 10.1016/j.parint.2015.11.009. PubMed DOI
Kouřilová P, Hogg KG, Kolářová L, Mountford AP. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. J Immunol. 2004;172:3766–74. doi: 10.4049/jimmunol.172.6.3766. PubMed DOI
Soldánová M, Selbach C, Kalbe M, Kostadinova A, Sures B. Swimmer’s itch: etiology, impact, and risk factors in Europe. Trends Parasitol. 2013;29:65–74. doi: 10.1016/j.pt.2012.12.002. PubMed DOI
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28:165–90. doi: 10.1128/CMR.00043-14. PubMed DOI PMC
Mikeš L, Zídková L, Kašný M, Dvořák J, Horák P. In vitro stimulation of penetration gland emptying by Trichobilharzia szidati and T. regenti (Schistosomatidae) cercariae. Quantitative collection and partial characterization of the products. Parasitol Res. 2005;96:230–41. doi: 10.1007/s00436-005-1347-1. PubMed DOI
Dolečková K, Kašný M, Mikeš L, Cartwright J, Jedelský P, Schneider EL, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol. 2009;39:201–11. doi: 10.1016/j.ijpara.2008.06.010. PubMed DOI PMC
Hrádková K, Horák P. Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. J Helminthol. 2002;76:137–41. doi: 10.1079/JOH2002113. PubMed DOI
Chanová M, Horák P. Terminal phase of bird schistosomiasis caused by Trichobilharzia regenti (Schistosomatidae) in ducks (Anas platyrhynchos f. domestica) Folia Parasitol. 2007;54:105–7. doi: 10.14411/fp.2007.014. PubMed DOI
Horák P, Dvořák J, Kolářová L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119:577–81. doi: 10.1017/S0031182099005132. PubMed DOI
Lichtenbergová L, Lassmann H, Jones M, Kolářová L, Horák P. Trichobilharzia regenti: Host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011;128:328–35. doi: 10.1016/j.exppara.2011.04.006. PubMed DOI
Dvořák J, Delcroix M, Rossi A, Vopálenský V, Pospíšek M, Šedinová M, et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol. 2005;35:895–910. doi: 10.1016/j.ijpara.2005.02.018. PubMed DOI
Blažová K, Horák P. Trichobilharzia regenti: the developmental differences in natural and abnormal hosts. Parasitol Int. 2005;54:167–72. doi: 10.1016/j.parint.2005.03.003. PubMed DOI
Kouřilová P, Syrůček M, Kolářová L. The severity of mouse pathologies caused by the bird schistosome Trichobilharzia regenti in relation to host immune status. Parasitol Res. 2004;93:8–16. doi: 10.1007/s00436-004-1079-7. PubMed DOI
Kolářová L, Horák P, Čada F. Histopathology of CNS and nasal infections caused by Trichobilharzia regenti in vertebrates. Parasitol Res. 2001;87:644–50. doi: 10.1007/s004360100431. PubMed DOI
Giulian D, Baker TJ. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986;6:2163–78. PubMed PMC
McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980;85:890–902. doi: 10.1083/jcb.85.3.890. PubMed DOI PMC
Chanová M, Bulantová J, Máslo P, Horák P. In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae) Parasitol Res. 2009;104:1445–52. doi: 10.1007/s00436-009-1343-y. PubMed DOI
Basch PF. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol. 1981;67:179–85. doi: 10.2307/3280632. PubMed DOI
Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587:250–6. doi: 10.1016/0006-8993(92)91004-X. PubMed DOI
Brown GC, Bolaños JP, Heales SJR, Clark JB. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett. 1995;193:201–4. doi: 10.1016/0304-3940(95)11703-Y. PubMed DOI
Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87:10–20. doi: 10.1016/j.brainresbull.2011.10.004. PubMed DOI PMC
Deng Y, Xie D, Fang M, Zhu G, Chen C, Zeng H, et al. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS ONE. 2014;9:e87420. doi: 10.1371/journal.pone.0087420. PubMed DOI PMC
Bulantová J, Macháček T, Panská L, Krejčí F, Karch J, Jährling N, et al. Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates. Micron. 2016;83:62–71. doi: 10.1016/j.micron.2016.01.009. PubMed DOI
Chanová M, Hrdý J. Impact of induced Th1/Th2 shift on Trichobilharzia regenti infection in mice. Folia Biol. 2016;62:26–33. PubMed
Chanová M, Lichtenbergová L, Bulantová J, Mikeš L, Horák P. Trichobilharzia regenti: Antigenic structures of intravertebrate stages. Cent Eur J Biol. 2012;7:83–90.
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett. 2014;565:30–8. doi: 10.1016/j.neulet.2013.12.071. PubMed DOI
Furuoka H, Sato H, Kubo M, Owaki S, Kobayashi Y, Matsui T, et al. Neuropathological observation of rabbits (Oryctolagus cuniculus) affected with raccoon roundworm (Baylisascaris procyonis) larva migrans in Japan. J Vet Med Sci. 2003;65:695–9. doi: 10.1292/jvms.65.695. PubMed DOI
Lee J-C, Cho G-S, Kwon JH, Shin MH, Lim JH, Kim W-K. Macrophageal/microglial cell activation and cerebral injury induced by excretory-secretory products secreted by Paragonimus westermani. Neurosci Res. 2006;54:133–9. doi: 10.1016/j.neures.2005.11.001. PubMed DOI
Pittella J. Vascular changes in cerebral schistosomiasis mansoni: a histopathological study of fifteen cases. Am J Trop Med Hyg. 1985;34:898–902. PubMed
Huh S, Wang KC, Hong ST, Chai JY, Lee SH, Choi KS, et al. Histopathological changes of the cat brain in experimental sparganosis. Pathol Res Pract. 1993;189:1181–6. doi: 10.1016/S0344-0338(11)80841-1. PubMed DOI
Liao C-W, Fan C-K, Kao T-C, Ji D-D, Su K-E, Lin Y-H, et al. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice. BMC Infect Dis. 2008;8:84. doi: 10.1186/1471-2334-8-84. PubMed DOI PMC
Othman AA, Abdel-Aleem GA, Saied EM, Mayah WW, Elatrash AM. Biochemical and immunopathological changes in experimental neurotoxocariasis. Mol Biochem Parasitol. 2010;172:1–8. doi: 10.1016/j.molbiopara.2010.03.006. PubMed DOI
Alvarez JI, Teale JM. Breakdown of the blood brain barrier and blood-cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol. 2006;173:45–55. doi: 10.1016/j.jneuroim.2005.11.020. PubMed DOI
Fischer HG, Nitzgen B, Reichmann G, Hadding U. Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells. Eur J Immunol. 1997;27:1539–48. doi: 10.1002/eji.1830270633. PubMed DOI
McLaren DJ, James SL. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro. Parasite Immunol. 1985;7:315–31. doi: 10.1111/j.1365-3024.1985.tb00079.x. PubMed DOI
James SL, Glaven J. Macrophage cytotoxicity against schistosomula of Schistosoma mansoni involves arginine-dependent production of reactive nitrogen intermediates. J Immunol. 1989;143:4208–12. PubMed
Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006;8:929–47. doi: 10.1089/ars.2006.8.929. PubMed DOI PMC
Wei J, Wu F, Sun X, Zeng X, Liang J-Y, Zheng H-Q, et al. Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitol Res. 2013;112:207–14. doi: 10.1007/s00436-012-3127-z. PubMed DOI
di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, et al. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One. 2013;8:e54722. PubMed PMC
Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149:2736–41. PubMed
Wei J, Wu F, He A, Zeng X, Ouyang L, Liu M, et al. Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model. Parasitol Res. 2015;114:3247–54. doi: 10.1007/s00436-015-4541-9. PubMed DOI
Sun Y, Chauhan A, Sukumaran P, Sharma J, Singh BB, Mishra BB. Inhibition of store-operated calcium entry in microglia by helminth factors: implications for immune suppression in neurocysticercosis. J Neuroinflammation. 2014;11:210. doi: 10.1186/s12974-014-0210-7. PubMed DOI PMC
Dolečková K, Albrecht T, Mikeš L, Horák P. Cathepsins B1 and B2 in the neuropathogenic schistosome Trichobilharzia regenti: distinct gene expression profiles and presumptive roles throughout the life cycle. Parasitol Res. 2010;107:751–5. doi: 10.1007/s00436-010-1943-6. PubMed DOI
Leontovyč R, Young ND, Korhonen PK, Hall RS, Tan P, Mikeš L, et al. Comparative transcriptomic exploration reveals unique molecular adaptations of neuropathogenic Trichobilharzia to invade and parasitize its avian definitive host. PLoS Negl Trop Dis. 2016;10:e0004406. doi: 10.1371/journal.pntd.0004406. PubMed DOI PMC
Han Y, Li Z, Li B, Sun X, Zhu C, Ling X, et al. Molecular cloning and characterization of a cathepsin B from Angiostrongylus cantonensis. Parasitol Res. 2011;109:369–78. doi: 10.1007/s00436-011-2264-0. PubMed DOI
Jin Y, Lee J-C, Choi IY, Kim EA, Shin MH, Kim W-K. Excretory-secretory products produced by Paragonimus westermani differentially regulate the nitric oxide production and viability of microglial cells. Int Arch Allergy Immunol. 2006;139:16–24. doi: 10.1159/000089518. PubMed DOI
Lee J, Kang JM, Kim TI, Kim JH, Sohn HJ, Na BK, Shin HJ. Excretory and secretory proteins of Naegleria fowleri induce inflammatory responses in BV-2 microglial cells. J Euk Microbiol. 2016; (In press). PubMed
Deckert-Schlüter M, Buck C, Weiner D, Kaefer N, Rang A, Hof H, et al. Interleukin-10 downregulates the intracerebral immune response in chronic Toxoplasma encephalitis. J Neuroimmunol. 1997;76:167–76. doi: 10.1016/S0165-5728(97)00047-7. PubMed DOI
Rozenfeld C, Martinez R, Seabra S, Sant’anna C, Gonçalves JGR, Bozza M, et al. Toxoplasma gondii prevents neuron degeneration by interferon-gamma-activated microglia in a mechanism involving inhibition of inducible nitric oxide synthase and transforming growth factor-beta1 production by infected microglia. Am J Pathol. 2005;167:1021–31. doi: 10.1016/S0002-9440(10)61191-1. PubMed DOI PMC
Deininger MH, Kremsner PG, Meyermann R, Schluesener HJ. Differential cellular accumulation of transforming growth factor-beta1, -beta2, and -beta3 in brains of patients who died with cerebral malaria. J Infect Dis. 2000;181:2111–5. doi: 10.1086/315493. PubMed DOI
Restrepo B, Alvarez J, Castano J, Arias L, Restrepo M, Trujillo J, et al. Brain granulomas in neurocysticercosis patients are associated with a Th1 and Th2 profile. Infect Immun. 2001;69:4554. doi: 10.1128/IAI.69.7.4554-4560.2001. PubMed DOI PMC
Hamilton CM, Brandes S, Holland CV, Pinelli E. Cytokine expression in the brains of Toxocara canis-infected mice. Parasite Immunol. 2008;30:181–5. doi: 10.1111/j.1365-3024.2007.01002.x. PubMed DOI
Other Schistosomatoidea and Diplostomoidea