Raman spectroscopy adds complementary detail to the high-resolution x-ray crystal structure of photosynthetic PsbP from Spinacia oleracea
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23071614
PubMed Central
PMC3465285
DOI
10.1371/journal.pone.0046694
PII: PONE-D-12-00685
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- fotosystém II (proteinový komplex) chemie MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- Ramanova spektroskopie MeSH
- rostlinné proteiny chemie MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- Spinacia oleracea chemie MeSH
- terciární struktura proteinů MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- rostlinné proteiny MeSH
Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.
Zobrazit více v PubMed
Carey PR (1999) Raman spectroscopy, the sleeping giant in structural biology, awakes. J Biol Chem 274: 26625–26628. PubMed
Kopecký V Jr, Ettrich R, Hofbauerová K, Baumruk V (2004) Vibrational spectroscopy and computer modeling of proteins: solving structure of human α1-acid glycoprotein. Spectrosc–Int J 18: 323–330.
Carey PR, Dong J (2004) Following ligand binding and ligand reactions in proteins via Raman crystallography. Biochemistry 43: 8885–8893. PubMed
Carpentier P, Royant A, Weik M, Bourgeois D (2010) Raman-assisted crystallography suggests a mechanism of X-ray-induced disulfide radical formation and reparation. Structure 18: 1410–1419. PubMed
McGeehan JE, Bourgeois D, Royant A, Carpentier P (2011) Raman-assisted crystallography of biomolecules at the synchrotron: Instrumentation, methods and applications. Biochim Biophys Acta 1814: 750–759. PubMed
Lafaye C, Iwema T, Carpentier P, Jullian-Binard C, Kroll JS, et al. (2009) Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis . J Mol Biol 392: 952–966. PubMed
Yu N-T (1974) Comparison of protein structure in crystals, in lyophilized state, and in solution by laser Raman scattering. 3. α-Lactalbumin. J Am Chem Soc 96: 4664–4668. PubMed
Li T, Chen Z, Johnson JE, Thomas GJ Jr (1992) Conformations, interactions, and thermostabilities of RNA and proteins in bean pod mottle virus: investigation of solution and crystal structures by laser Raman spectroscopy. Biochemistry 31: 6673–6682. PubMed
Thomas GA, Kubasek WL, Greene P, Grable J, Rosenberg JM (1989) Environmentally induced conformational changes in B-type DNA: comparison of the conformation of the oligonucleotide d(TCGCGAATTCGCG) in solution and in its crystalline complex with the restriction nuclease EcoRI. Biochemistry 28: 2001–2009. PubMed
Altose MD, Zheng Y, Dong J, Palfey BA, Carey PR (2001) Comparing protein–ligand interactions in solution and single crystals by Raman spectroscopy. Proc Natl Acad Sci USA 98: 3006–3011. PubMed PMC
Zhang D, Xie Y, Mrozek MF, Ortiz C, Davisson VJ, et al. (2003) Raman detection of proteomic analytes. Anal Chem 75: 5703–5709. PubMed
Kapitán J, Baumruk V, Kopecký V Jr, Pohl R, Bouř P (2006) Proline zwitterion dynamics in solution, glass, and crystalline state. J Am Chem Soc 128: 13451–13462. PubMed
Kopecký V Jr, Baumruk V (2006) Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib Spectrosc 42: 184–187.
Deegan RD, Bakajin O, Dupot TF, Huber G, Gel SR, et al. (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389: 827–829.
Ortiz C, Zhang D, Xie Y, Ribbe AE, Ben-Amotz D (2006) Validation of the drop coating deposition Raman method for protein analysis. Anal Biochem 353: 157–166. PubMed
Barber J (2003) Photosystem II: the engine of life. Q Rev Biophys 36: 71–89. PubMed
Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 1277: 35–60. PubMed
Suorsa M, Sirpio S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, et al. (2006) PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem 281: 145–150. PubMed
Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277: 35–60. PubMed
Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 193: 1175–1184. PubMed PMC
Ifuku K, Nakatsu T, Shimamoto R, Yamamoto Y, Ishihara S, et al. (2005) Structure and function of the PsbP protein of photosystem II from higher plants. Photosyn Res 84: 251–255. PubMed
Yi X, Hargett SR, Liu H, Frankel LK, Bricker TM (2007) The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana . J Biol Chem 282: 24833–24841. PubMed
De Las Rivas J, Heredia P, Roman A (2007) Oxygen-evolving extrinsic proteins (PsbO, P, Q, R): Bioinformatics and functional analysis. Biochim Biophys Acta 1767: 575–582. PubMed
Nield J, Balsera M, De Las Rivas J, Barber J (2002) Three dimensional cryo-EM study of extrinsic domains of the oxygen-evolving complex of spinach: assignment of the PsbO protein. J Biol Chem 277: 15006–15012. PubMed
Bumba L, Vacha FE (2003) Electron microscopy in structural studies of photosystem II. Photosynth Res 77: 1–19. PubMed
Caffarri S, Kouril R, Kereıche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28: 3052–3063. PubMed PMC
Zouni A, Witt HT, Kern J, Fromme P, Krauss N, et al. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–43. PubMed
Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–102. PubMed PMC
Loll B, Cern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044. PubMed
Guskov A, Kern J, Gabdullkhakov A, Broser M, Zouni A, et al. (2009) Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nature Struc Mol Biol 16: 334–341. PubMed
Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F (2008) Structure, function and evolution of the PsbP protein family in higher plants. Photosyn Res 98: 427–437. PubMed
Balsera M, Arellano JB, Revuelta JL, De Las Rivas J, Hermoso JA (2005) The 1.49 Å resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region. J Mol Biol 350: 1051–1060. PubMed
Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum . EMBO Rep 5: 362–367. PubMed PMC
Michoux F, Takasaka K, Boehm M, Nixon P, Murray JW (2010) Structure of CyanoP at 2.8 Å: implications for the evolution and function of the PsbP subunit of photosystem II. Biochemistry 49: 7411–741. PubMed
Kohoutová J, Kuta Smatanová I, Brynda J, Lapkouski M, Revuelta JL, et al. (2009) Crystallization and preliminary crystallographic characterization of the extrinsic PsbP protein of photosystem II from Spinacia olerace . Acta Cryst F65: 111–115. PubMed PMC
Ifuku K, Ido K, Sato F (2011) Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. J Photochem Photobiol 104: 158–164. PubMed
Miura T, Takeuchi H, Harada I (1989) Tryptophan Raman bands sensitive to hydrogen bonding and side-chain conformation. J Raman Spectrosc 20: 667–671.
Overman SA, Thomas GJ Jr (1999) Raman markers of nonaromatic side chains in an α-helix assembly: Ala, Asp, Glu, Gly, Ile, Leu, Lys, Ser, and Val residues of phage fd subunits. Biochemistry 38: 4018–4027. PubMed
Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36: 307–319.
Tensmeyer LG, Kauffman II EW (1996) Protein structure as revealed by nonresonance Raman spectroscopy. In: Havel HA, editor. Spectroscopic Methods for Determining Protein Structure in Solution. New York: VCH Publishers, pp. 69–95.
Miura T, Thomas GJ Jr (1995) Raman spectroscopy of proteins and their assemblies. In: Biswas BB, Roy S, editors. Subcellular Biochemistry, Vol. 24, Proteins: Structure, Function, and Engineering. New York: Plenum Press, pp. 55–99. PubMed
Williams RW (1986) The secondary structure analysis using Raman amide I and amide III spectra. Methods Enzymol 130: 311–331. PubMed
Berjot M, Marx J, Alix AJP (1987) Determination of the secondary structure of proteins from the Raman amide I band: the reference intensity profiles method. J Raman Spectrosc 18: 289–300.
Thomas GJ Jr, Prescott B, Urry DW (1987) Raman amide bands of type-II β-turns in cyclo-(VPGVG)3 and poly-(VPGVG), and implications for protein secondary-structure analysis. Biopolymers 26: 921–934. PubMed
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. PubMed PMC
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26: 283–291.
Munoz V, Serrano L (1994) Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comaprison with experimental scales. Proteins 20: 301–311. PubMed
Leslie AGW (1992) Recent changes to the MOSFLM package for processing film and image plate data. Jnt CCP4/ESF-EACBM Newsl Protein Crystallogr 26.
Collaborative Computational Project, Number 4 (1994) Acta Cryst D50: 760–763. PubMed
Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33: 491–497. PubMed
Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Cryst D55: 247–255. PubMed
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Cryst D60: 2126–2132. PubMed
Vagin A, Teplyakov A (1997) MOLREP: an Automated Program for Molecular Replacement. J Appl Cryst 30: 1022–1025.
Sali A, Overington JH (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3: 1582–1596. PubMed PMC
Berendsen HJC, Van der Spoel D, Van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91: 43–56.
Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. JCTC 4: 435–447. PubMed
Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690.
Jorgensen WL, Tirado-Rives J (1988) The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110: 1657–1666. PubMed
Essman U, Perela L, Berkowitz ML, Darden T, Lee H, et al. (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8592.
Feenstra KA, Hess B, Berendsen HJC (1999) Improving efficiency of large time-scale molecular dynamics of hydrogen-rich systems. J Comput Chem 20: 786–798. PubMed
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A LInear Constraint Solver for molecular simulations. J Comput Chem 18: 1463–1472.
Resonance assignment of PsbP: an extrinsic protein from photosystem II of Spinacia oleracea
PDB
2VU4