Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018096
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_026/0008382
Ministry of Education, Youth and Sports of the Czech Republic
RAS-Piano Sulcis
CESA
AIM1890410-3
PON Ricerca e Innovazione
CUP F72F20000240007(2019)
University of Cagliari and Fondazione di Sardegna
PubMed
34835613
PubMed Central
PMC8624666
DOI
10.3390/nano11112848
PII: nano11112848
Knihovny.cz E-zdroje
- Klíčová slova
- blocking temperature, core-shell nanoparticles, frequency dependence, magnetic fluid hyperthermia, temperature-dependence, time dependence,
- Publikační typ
- časopisecké články MeSH
We explored a series of highly uniform magnetic nanoparticles (MNPs) with a core-shell nanoarchitecture prepared by an efficient solvothermal approach. In our study, we focused on the water dispersion of MNPs based on two different CoFe2O4 core sizes and the chemical nature of the shell (MnFe2O4 and spinel iron oxide). We performed an uncommon systematic investigation of the time and temperature evolution of the adiabatic heat release at different frequencies of the alternating magnetic field (AMF). Our systematic study elucidates the nontrivial variations in the heating efficiency of core-shell MNPs concerning their structural, magnetic, and morphological properties. In addition, we identified anomalies in the temperature and frequency dependencies of the specific power absorption (SPA). We conclude that after the initial heating phase, the heat release is governed by the competition of the Brown and Néel mechanism. In addition, we demonstrated that a rational parameter sufficiently mirroring the heating ability is the mean magnetic moment per MNP. Our study, thus, paves the road to fine control of the AMF-induced heating by MNPs with fine-tuned structural, chemical, and magnetic parameters. Importantly, we claim that the nontrivial variations of the SPA with the temperature must be considered, e.g., in the emerging concept of MF-assisted catalysis, where the temperature profile influences the undergoing chemical reactions.
Zobrazit více v PubMed
Khandhar A.P., Ferguson R.M., Krishnan K.M. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J. Appl. Phys. 2011;109:10–13. doi: 10.1063/1.3556948. PubMed DOI PMC
Kita E., Hashimoto S., Kayano T., Minagawa M., Yanagihara H., Kishimoto M., Yamada K., Oda T., Ohkohchi N., Takagi T., et al. Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia. J. Appl. Phys. 2010;107:09B321. doi: 10.1063/1.3355917. DOI
Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. doi: 10.1016/j.phrs.2010.01.014. PubMed DOI
Reiss G., Hütten A. Applications beyond data storage. Nat. Mater. 2005;4:725–726. doi: 10.1038/nmat1494. PubMed DOI
Akbarzadeh A., Samiei M., Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012;7:144. doi: 10.1186/1556-276X-7-144. PubMed DOI PMC
Tartaj P., del Puerto Morales M., Veintemillas-Verdaguer S., Gonzalez-Carreño T., Serna C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003;36:R182. doi: 10.1088/0022-3727/36/13/202. DOI
Chatterjee D.K., Diagaradjane P., Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2011;2:1001–1014. doi: 10.4155/tde.11.72. PubMed DOI PMC
Dewey W.C., Hopwood L.E., Sapareto S.A., Gerweck L.E. Cellular Responses to Combinations of Hyperthermia and Radiation. Radiology. 1977;123:463–474. doi: 10.1148/123.2.463. PubMed DOI
Meffre A., Mehdaoui B., Connord V., Carrey J., Fazzini P.F., Lachaize S., Respaud M., Chaudret B. Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Lett. 2015;15:3241–3248. doi: 10.1021/acs.nanolett.5b00446. PubMed DOI
Ceylan S., Coutable L., Wegner J., Kirschning A. Inductive heating with magnetic materials inside flow reactors. Chem. Eur. J. 2011;17:1884–1893. doi: 10.1002/chem.201002291. PubMed DOI
Bordet A., Lacroix L.-M., Fazzini P.-F., Carrey J., Soulantica K., Chaudret B. Magnetically Induced Continuous CO 2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angew. Chem. 2016;128:16126–16130. doi: 10.1002/ange.201609477. PubMed DOI
Asensio J.M., Miguel A.B., Fazzini P.F., van Leeuwen P.W.N.M., Chaudret B. Hydrodeoxygenation Using Magnetic Induction: High-Temperature Heterogeneous Catalysis in Solution. Angew. Chem., Int. Ed. 2019;58:11306–11310. doi: 10.1002/anie.201904366. PubMed DOI
Rosensweig R.E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 2002;252:370–374. doi: 10.1016/S0304-8853(02)00706-0. DOI
Ruta S., Chantrell R., Hovorka O. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci. Rep. 2015;5:9090. doi: 10.1038/srep09090. PubMed DOI PMC
Mohapatra J., Xing M., Liu J.P. Inductive Thermal Effect of Ferrite Magnetic Nanoparticles. Materials. 2019;12:3208. doi: 10.3390/ma12193208. PubMed DOI PMC
Deatsch A.E., Evans B.A. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 2014;354:163–172. doi: 10.1016/j.jmmm.2013.11.006. DOI
Etemadi H., Plieger P.G. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Adv. Ther. 2020;3:2000061. doi: 10.1002/adtp.202000061. DOI
Tong S., Zhu H., Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today. 2019;31:86–99. doi: 10.1016/j.mattod.2019.06.003. PubMed DOI PMC
Carrey J., Mehdaoui B., Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 2011;109:083921. doi: 10.1063/1.3551582. DOI
Hergt R., Dutz S., Zeisberger M. Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology. 2009;21:015706. doi: 10.1088/0957-4484/21/1/015706. PubMed DOI
Mamiya H., Jeyadevan B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 2011;1:157. doi: 10.1038/srep00157. PubMed DOI PMC
Usov N.A., Nesmeyanov M.S., Tarasov V.P. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Sci. Rep. 2018;8:1224. doi: 10.1038/s41598-017-18162-8. PubMed DOI PMC
Usov N.A., Rytov R.A., Bautin V.A. Properties of assembly of superparamagnetic nanoparticles in viscous liquid. Sci. Rep. 2021;11:6999. doi: 10.1038/s41598-021-86323-x. PubMed DOI PMC
Torres T.E., Lima E., Calatayud M.P., Sanz B., Ibarra A., Fernández-Pacheco R., Mayoral A., Marquina C., Ibarra M.R., Goya F.G. The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Sci. Rep. 2019;9:3992. doi: 10.1038/s41598-019-40341-y. PubMed DOI PMC
Coey J.M.D., Khalafalla D. Superparamagnetic γ-Fe2O3. Phys. Status Solidi. 1972;11:229–241. doi: 10.1002/pssa.2210110125. DOI
Kittel C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles. Phys. Rev. 1946;70:965–971. doi: 10.1103/PhysRev.70.965. DOI
Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee T.R. Tuning the magnetic properties of nanoparticles. 1713743272Int. J. Mol. Sci. 2013;14:15977–16009. doi: 10.3390/ijms140815977. PubMed DOI PMC
Abenojar E.C., Wickramasinghe S., Bas-Concepcion J., Samia A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int. 2016;26:440–448. doi: 10.1016/j.pnsc.2016.09.004. DOI
Choi H., An M., Eom W., Lim S.W., Shim I.-B., Kim C.S., Kim S.J. Crystallographic and Magnetic Properties of the Hyperthermia Material CoFe2O4@AlFe2O4. J. Korean Phys. Soc. 2017;70:173–176. doi: 10.3938/jkps.70.173. DOI
Tong S., Quinto C.A., Zhang L., Mohindra P., Bao G. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles. ACS Nano. 2017;11:6808–6816. doi: 10.1021/acsnano.7b01762. PubMed DOI
Song Q., Zhang Z.J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J. Am. Chem. Soc. 2012;134:10182–10190. doi: 10.1021/ja302856z. PubMed DOI
Masala O., Hoffman D., Sundaram N., Page K., Proffen T., Lawes G., Seshadri R. Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid State Sci. 2006;8:1015–1022. doi: 10.1016/j.solidstatesciences.2006.04.014. DOI
Lee J.-H., Jang J., Choi J., Moon S.H., Noh S., Kim J., Kim J.-G., Kim I.-S., Park K.I., Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 2011;6:418–422. doi: 10.1038/nnano.2011.95. PubMed DOI
Angelakeris M., Li Z.A., Hilgendorff M., Simeonidis K., Sakellari D., Filippousi M., Tian H., Van Tendeloo G., Spasova M., Acet M., et al. Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles. J. Magn. Magn. Mater. 2015;381:179–187. doi: 10.1016/j.jmmm.2014.12.069. DOI
Kafrouni L., Savadogo O. Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog. Biomater. 2016;5:147–160. doi: 10.1007/s40204-016-0054-6. PubMed DOI PMC
Serantes D., Simeonidis K., Angelakeris M., Chubykalo-Fesenko O., Marciello M., Morales M.d.P., Baldomir D., Martinez-Boubeta C. Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. J. Phys. Chem. C. 2014;118:5927–5934. doi: 10.1021/jp410717m. DOI
Ranoo S., Lahiri B.B., Muthukumaran T., Philip J. Enhancement in hyperthermia efficiency under in situ orientation of superparamagnetic iron oxide nanoparticles in dispersions. Appl. Phys. Lett. 2019;115:43102. doi: 10.1063/1.5100077. DOI
de la Presa P., Luengo Y., Multigner M., Costo R., Morales M.P., Rivero G., Hernando A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles. J. Phys. Chem. C. 2012;116:25602–25610. doi: 10.1021/jp310771p. DOI
Cobianchi M., Lascialfari A., Kusigerki V., Mrakovic A., Knezevic N., Peddis D., Illes E. Effects of organic coating on hyperthermic efficiencies; Proceedings of the 2017 IEEE International Magnetics Conference (INTERMAG); Dublin, Ireland. 24–28 April 2017; p. 1.
Liu X., Chen H.J., Alfadhl Y., Chen X., Parini C., Wen D. Conductivity and frequency dependent specific absorption rate. J. Appl. Phys. 2013;113:074092. doi: 10.1063/1.4791928. DOI
Conde-Leboran I., Baldomir D., Martinez-Boubeta C., Chubykalo-Fesenko O., del Puerto Morales M., Salas G., Cabrera D., Camarero J., Teran F.J., Serantes D. A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. J. Phys. Chem. C. 2015;119:15698–15706. doi: 10.1021/acs.jpcc.5b02555. DOI
Mehdaoui B., Meffre A., Carrey J., Lachaize S., Lacroix L.-M., Gougeon M., Chaudret B., Respaud M. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 2011;21:4573–4581. doi: 10.1002/adfm.201101243. DOI
Shaterabadi Z., Nabiyouni G., Soleymani M. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog. Biophys. Mol. Biol. 2018;133:9–19. doi: 10.1016/j.pbiomolbio.2017.10.001. PubMed DOI
Sanna Angotzi M., Mameli V., Cara C., Musinu A., Sangregorio C., Niznansky D., Xin H.L., Vejpravova J., Cannas C. Coupled hard-soft spinel ferrite-based core-shell nanoarchitectures: Magnetic properties and heating abilities. Nanoscale Adv. 2020;2:3191–3201. doi: 10.1039/D0NA00134A. PubMed DOI PMC
Sanna Angotzi M., Mameli V., Zákutná D., Kubániová D., Cara C., Cannas C. Evolution of the Magnetic and Structural Properties with the Chemical Composition in Oleate-Capped MnxCo1–xFe2O4 Nanoparticles. J. Phys. Chem. C. 2021;125:20626–20638. doi: 10.1021/acs.jpcc.1c06211. DOI
Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H.L., Cannas C. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI
Pacakova B., Kubickova S., Salas G., Mantlikova A.R., Marciello M., Morales M.P., Niznansky D., Vejpravova J. The internal structure of magnetic nanoparticles determines the magnetic response. Nanoscale. 2017;9:5129–5140. doi: 10.1039/C6NR07262C. PubMed DOI
Vatansever E., Acharyya M. Nonequilibrium multiple transitions in the core-shell Ising nanoparticles driven by randomly varying magnetic fields. J. Magn. Magn. Mater. 2021;527:167721. doi: 10.1016/j.jmmm.2020.167721. DOI
Kneller E.F., Hawig R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991;27:3560–3588. doi: 10.1109/20.102931. DOI
Ruta S., Rannala E., Serantes D., Hovorka O., Chantrell R. Optimisation of properties for magnetic hyperthermia beyond LRT; Proceedings of the 2nd Workshop on Magnetic Nanoparticles for Hypothermia, Challenges and Opportunities; Santiago de Compostela, Spain. 15 July 2019.
Ota S., Takemura Y. Characterization of Néel and Brownian Relaxations Isolated from Complex Dynamics Influenced by Dipole Interactions in Magnetic Nanoparticles. J. Phys. Chem. C. 2019;123:28859–28866. doi: 10.1021/acs.jpcc.9b06790. DOI
Shasha C., Krishnan K.M. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. Adv. Mater. 2021;33:48–50. doi: 10.1002/adma.201904131. PubMed DOI PMC
Garaio E., Sandre O., Collantes J.M., Garcia J.A., Mornet S., Plazaola F. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry) Nanotechnology. 2015;26:015704. doi: 10.1088/0957-4484/26/1/015704. PubMed DOI
Hard-Soft Core-Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles