Coupled hard-soft spinel ferrite-based core-shell nanoarchitectures: magnetic properties and heating abilities
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36134260
PubMed Central
PMC9419663
DOI
10.1039/d0na00134a
PII: d0na00134a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bi-magnetic core-shell spinel ferrite-based nanoparticles with different CoFe2O4 core size, chemical nature of the shell (MnFe2O4 and spinel iron oxide), and shell thickness were prepared using an efficient solvothermal approach to exploit the magnetic coupling between a hard and a soft ferrimagnetic phase for magnetic heat induction. The magnetic behavior, together with morphology, stoichiometry, cation distribution, and spin canting, were investigated to identify the key parameters affecting the heat release. General trends in the heating abilities, as a function of the core size, the nature and the thickness of the shell, were hypothesized based on this systematic fundamental study and confirmed by experiments conducted on the water-based ferrofluids.
Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Italy
Consorzio per la Promozione di Attività Universitarie Sulcis Iglesiente Italy
Department of Condensed Matter Physics Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
Department of Inorganic Chemistry Charles University Hlavova 8 12800 Prague 2 Czech Republic
Department of Physics and Astronomy University of California Irvine CA 92697 USA
Istituto di Chimica dei Composti OrganoMetallici Consiglio Nazionale delle Ricerche Italy
Zobrazit více v PubMed
Jun Y. Choi J. Cheon J. Chem. Commun. 2007:1203–1214. doi: 10.1039/B614735F. PubMed DOI
Chaudhuri R. G. Paria S. Chem. Rev. 2012;112:2373–2433. doi: 10.1021/cr100449n. PubMed DOI
Carbone L. Cozzoli P. D. Nano Today. 2010;5:449–493. doi: 10.1016/j.nantod.2010.08.006. DOI
Mélinon P. Begin-Colin S. Duvail J. L. Gauffre F. Boime N. H. Ledoux G. Plain J. Reiss P. Silly F. Warot-Fonrose B. Phys. Rep. 2014;543:163–197. doi: 10.1016/j.physrep.2014.05.003. DOI
Stamps R. L. J. Phys. D. 2000;3:444.
Sun X. Frey Huls N. Sigdel A. Sun S. Nano Lett. 2012;12:246–251. doi: 10.1021/nl2034514. PubMed DOI
Nogués J. Sort J. Langlais V. Skumryev V. Suriñach S. Muñoz J. S. Baró M. D. Phys. Rep. 2005;422:65–117. doi: 10.1016/j.physrep.2005.08.004. DOI
Troitiño N. F. Rivas-Murias B. Rodríguez-González B. Salgueiriño V. Chem. Mater. 2014;26:5566–5575. doi: 10.1021/cm501951u. DOI
Mameli V. Musinu A. Niznansky D. Peddis D. Ennas G. Ardu A. Lugliè C. Cannas C. J. Phys. Chem. C. 2016;120:27635–27645. doi: 10.1021/acs.jpcc.6b08387. DOI
Kneller E. F. Hawig R. IEEE Trans. Magn. 1991;27:3560–3588.
López-Ortega A. Estrader M. Salazar-Alvarez G. Roca A. G. Nogués J. Phys. Rep. 2015;553:1–32. doi: 10.1016/j.physrep.2014.09.007. DOI
Virginia Commonwealth University, US Pat., 2015 0001437A1, 2015
Harris V. G., US Pat., 2012O16867OA1, 2012
Industry-University Cooperation Foundation, US Pat., 20140286817A1, Hanyang University Erica Campus, LG Electronics INC., 2014
Fujifilm Corporation, US Pat., 20110027588A1, Tohoku University, 2011
Liu S., US Pat., 2006OOO5898A1, 2006
BASF Aktiengesellschaft, US Pat.,4770903, 1988
University of Louisiana at Lafayette, USOO7964O13B2, 2011
Kirschning A. Kupracz L. Hartwig J. Chem. Lett. 2012;41:562–570. doi: 10.1246/cl.2012.562. DOI
Baig R. B. N. Varma R. S. Chem. Commun. 2013;49:752–770. doi: 10.1039/C2CC35663E. PubMed DOI
Polshettiwar V. Luque R. Fihri A. Zhu H. Bouhrara M. Basset J. M. Chem. Rev. 2011;111:3036–3075. doi: 10.1021/cr100230z. PubMed DOI
Zhang D. Zhou C. Sun Z. Wu L.-Z. Tung C.-H. Zhang T. Nanoscale. 2012;4:6244. doi: 10.1039/C2NR31929B. PubMed DOI
Viñas S. L. Simeonidis K. Li Z. A. Ma Z. Myrovali E. Makridis A. Sakellari D. Angelakeris M. Wiedwald U. Spasova M. Farle M. J. Magn. Magn. Mater. 2016;415:20–23. doi: 10.1016/j.jmmm.2016.02.098. DOI
Choi H. An M. Eom W. Lim S. W. Shim I. B. Kim C. S. Kim S. J. J. Korean Phys. Soc. 2017;70:173–176. doi: 10.3938/jkps.70.173. DOI
Kim M. S. Kim C. S. Kim H. J. Yoo K.-H. H. Hahn E. J. J. Korean Phys. Soc. 2013;63:2175–2178. doi: 10.3938/jkps.63.2175. DOI
Noh S. Na W. Jang J. Lee J.-H. Lee E. J. Moon S. H. Lim Y. Shin J.-S. Cheon J. Nano Lett. 2012;12:3716–3721. doi: 10.1021/nl301499u. PubMed DOI
Wang J. Zhou Z. Wang L. Wei J. Yang H. Yang S. Zhao J. RSC Adv. 2015;5:7349–7355. doi: 10.1039/C4RA12733A. DOI
Pilati V. Cabreira Gomes R. Gomide G. Coppola P. Silva F. G. Paula F. L. O. Perzynski R. Goya G. F. Aquino R. Depeyrot J. J. Phys. Chem. C. 2018;122:3028–3038. doi: 10.1021/acs.jpcc.7b11014. DOI
Wang L. Yan Y. Wang M. Yang H. Zhou Z. Peng C. Yang S. J. Mater. Chem. B. 2016;4:1908–1914. doi: 10.1039/C5TB01910A. PubMed DOI
Solopan S. O. Nedelko N. Lewińska S. Ślawska-Waniewska A. Zamorskyi V. O. Tovstolytkin A. I. Belous A. G. J. Alloys Compd. 2019;788:1203–1210. doi: 10.1016/j.jallcom.2019.02.276. DOI
Fabris F. Lima E. De Biasi E. Troiani H. E. Vásquez Mansilla M. Torres T. E. Fernández Pacheco R. Ibarra M. R. Goya G. F. Zysler R. D. Winkler E. L. Nanoscale. 2019;11:3164–3172. doi: 10.1039/C8NR07834C. PubMed DOI
Angelakeris M. Li Z.-A. A. Hilgendorff M. Simeonidis K. Sakellari D. Filippousi M. Tian H. Van Tendeloo G. Spasova M. Acet M. Farle M. J. Magn. Magn. Mater. 2015;381:179–187. doi: 10.1016/j.jmmm.2014.12.069. DOI
Lee J.-H. Jang J.-T. Choi J.-S. Moon S. H. Noh S.-H. Kim J.-W. Kim J.-G. Kim I.-S. Park K. I. Cheon J. Nat. Nanotechnol. 2011;6:418–422. doi: 10.1038/nnano.2011.95. PubMed DOI
Liébana-Viñas S. Simeonidis K. Wiedwald U. Li Z.-A. Ma Z. Myrovali E. Makridis A. Sakellari D. Vourlias G. Spasova M. Farle M. Angelakeris M. RSC Adv. 2016;6:72918–72925. doi: 10.1039/C6RA17892H. DOI
Zhang Q. Castellanos-Rubio I. Munshi R. Orue I. Pelaz B. Gries K. I. Parak W. J. Del Pino P. Pralle A. Chem. Mater. 2015;27:7380–7387. doi: 10.1021/acs.chemmater.5b03261. PubMed DOI PMC
Robles J. Das R. Glassell M. Phan M. H. Srikanth H. AIP Adv. 2018;8:2–8.
Hammad M. Nica V. Hempelmann R. IEEE Trans. Magn. 2017;53:1–6.
Yelenich O. V. Solopan S. O. Greneche J. M. Belous A. G. Solid State Sci. 2015;46:19–26. doi: 10.1016/j.solidstatesciences.2015.05.011. DOI
Laurent S. Forge D. Port M. Roch A. Robic C. Vander Elst L. Muller R. N. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
Reddy L. H. Arias J. L. Nicolas J. Couvreur P. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI
Cara C. Musinu A. Mameli V. Ardu A. Niznansky D. Bursik J. Scorciapino M. A. Manzo G. Cannas C. Cryst. Growth Des. 2015;15:2364–2372. doi: 10.1021/acs.cgd.5b00160. DOI
Cannas C. Ardu A. Musinu A. Suber L. Ciasca G. Amenitsch H. Campi G. ACS Nano. 2015;9:7277–7286. doi: 10.1021/acsnano.5b02145. PubMed DOI
Sanna Angotzi M. Musinu A. Mameli V. Ardu A. Cara C. Niznansky D. Xin H. L. Cannas C. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI
Fullerton E. E. Jiang J. . Bader S. . J. Magn. Magn. Mater. 1999;200:392–404. doi: 10.1016/S0304-8853(99)00376-5. DOI
Mameli V. Musinu A. Ardu A. Ennas G. Peddis D. Niznansky D. Sangregorio C. Innocenti C. Thanh N. T. K. Cannas C. Nanoscale. 2016;8:10124–10137. doi: 10.1039/C6NR01303A. PubMed DOI
Pacakova B. Kubickova S. Salas G. Mantlikova A. R. Marciello M. Morales M. P. Niznansky D. Vejpravova J. Nanoscale. 2017;9:5129–5140. doi: 10.1039/C6NR07262C. PubMed DOI
Pereira C. Pereira A. M. Fernandes C. Rocha M. Mendes R. Fernández-García M. P. Guedes A. Tavares P. B. Grenéche J. M. Araújo J. P. Freire C. Chem. Mater. 2012;24:1496–1504. doi: 10.1021/cm300301c. DOI
Greneche J.-M. Hyperfine Interact. 2003;148/149:79–89. doi: 10.1023/B:HYPE.0000003767.27069.54. DOI
Rodriguez-Carvajal J. Roisnel T. Int. Union Crystallogr. 1998;20:35–36.
Mondini S. Ferretti a. M. Puglisi a. Ponti a. Nanoscale. 2012;4:5356. doi: 10.1039/C2NR31276J. PubMed DOI
Mameli V. Angotzi M. S. Cara C. Cannas C. J. Nanosci. Nanotechnol. 2019;19:4857–4887. doi: 10.1166/jnn.2019.16808. PubMed DOI
Angotzi M. S. Mameli V. Musinu A. Nizňnanský D. J. Nanosci. Nanotechnol. 2019;19:5008–5013. doi: 10.1166/jnn.2019.16793. PubMed DOI
Sanna Angotzi M. Mameli V. Cara C. Ardu A. Nizňnanský D. Musinu A. J. Nanosci. Nanotechnol. 2019;19:4954–4963. doi: 10.1166/jnn.2019.16785. PubMed DOI
Peddis D. Yaacoub N. Ferretti M. Martinelli A. Piccaluga G. Musinu A. Cannas C. Navarra G. Greneche J. M. Fiorani D. J. Phys. Condens. Matter. 2011;23:426004. doi: 10.1088/0953-8984/23/42/426004. PubMed DOI
Fantechi E. Campo G. Carta D. Corrias A. de Julián Fernández C. Gatteschi D. Innocenti C. Pineider F. Rugi F. Sangregorio C. J. Phys. Chem. C. 2012;116:8261–8270. doi: 10.1021/jp300806j. DOI
Carta D. Casula M. F. Falqui A. Loche D. Mountjoy G. Sangregorio C. Corrias A. J. Phys. Chem. C. 2009;113:8606–8615. doi: 10.1021/jp901077c. DOI
Blanco-Gutiérrez V. Gallastegui J. A. Bonville P. Torralvo-Fernández M. J. Sáez-Puche R. J. Phys. Chem. C. 2012;116:24331–24339. doi: 10.1021/jp307371q. DOI
Repko A. Vejpravová J. Vacková T. Zákutná D. Nižňanský D. J. Magn. Magn. Mater. 2015;390:142–151. doi: 10.1016/j.jmmm.2015.04.090. DOI
Vamvakidis K. Katsikini M. Sakellari D. Paloura E. C. Kalogirou O. Dendrinou-Samara C. Dalton Trans. 2014;43:12754–12765. doi: 10.1039/C4DT00162A. PubMed DOI
Coey J. M. D., Magnetism and magnetic materials, Cambridge University Press, Cambridge, 2009
Muscas G. Concas G. Laureti S. Testa A. M. Mathieu R. De Toro J. A. Cannas C. Musinu A. Novak M. A. Sangregorio C. Lee S. S. Peddis D. Phys. Chem. Chem. Phys. 2018;20:28634–28643. doi: 10.1039/C8CP03934H. PubMed DOI
de la Presa P. Luengo Y. Multigner M. Costo R. Morales M. P. Rivero G. Hernando A. J. Phys. Chem. C. 2012;116:25602–25610. doi: 10.1021/jp310771p. DOI
Rosensweig R. E. J. Magn. Magn. Mater. 2002;252:370–374. doi: 10.1016/S0304-8853(02)00706-0. DOI
Aslibeiki B. Kameli P. Salamati H. Concas G. Salvador Fernandez M. Talone A. Muscas G. Peddis D. Beilstein J. Nanotechnol. 2019;10:856–865. doi: 10.3762/bjnano.10.86. PubMed DOI PMC
Hergt R. Dutz S. Zeisberger M. Nanotechnology. 2010;21:015706. doi: 10.1088/0957-4484/21/1/015706. PubMed DOI
Niculaes D. Lak A. Anyfantis G. C. Marras S. Laslett O. Avugadda S. K. Cassani M. Serantes D. Hovorka O. Chantrell R. Pellegrino T. ACS Nano. 2017;11:12121–12133. doi: 10.1021/acsnano.7b05182. PubMed DOI PMC
Gutiérrez L. L. de la Cueva L. Moros M. Mazarío E. de Bernardo S. de la Fuente J. M. Morales M. P. Salas G. Nanotechnology. 2019;30:112001. doi: 10.1088/1361-6528/aafbff. PubMed DOI
Serantes D. Simeonidis K. Angelakeris M. Chubykalo-Fesenko O. Marciello M. Del Puerto Morales M. Baldomir D. Martinez-Boubeta C. J. Phys. Chem. C. 2014;118:5927–5934. doi: 10.1021/jp410717m. DOI
De La Presa P. Luengo Y. Velasco V. Morales M. P. Iglesias M. Veintemillas-Verdaguer S. Crespo P. Hernando A. J. Phys. Chem. C. 2015;119:11022–11030. doi: 10.1021/jp5115515. DOI
Martinez-Boubeta C. Simeonidis K. Makridis A. Angelakeris M. Iglesias O. Guardia P. Cabot A. Yedra L. Estradé S. Peiró F. Saghi Z. Midgley P. A. Conde-Leborán I. Serantes D. Baldomir D. Sci. Rep. 2013;3:1–8. PubMed PMC
Guibert C. Dupuis V. Peyre V. Fresnais J. J. Phys. Chem. C. 2015;119:28148–28154. doi: 10.1021/acs.jpcc.5b07796. DOI
Coral D. F. Mendoza Zélis P. Marciello M. Morales M. D. P. Craievich A. Sánchez F. H. Fernández Van Raap M. B. Langmuir. 2016;32:1201–1213. doi: 10.1021/acs.langmuir.5b03559. PubMed DOI
Conde-Leboran I. Baldomir D. Martinez-Boubeta C. Chubykalo-Fesenko O. Del Puerto Morales M. Salas G. Cabrera D. Camarero J. Teran F. J. Serantes D. J. Phys. Chem. C. 2015;119:15698–15706. doi: 10.1021/acs.jpcc.5b02555. DOI
Hard-Soft Core-Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles
Effect of different molecular coatings on the heating properties of maghemite nanoparticles