Hard-Soft Core-Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles

. 2023 May 19 ; 13 (10) : . [epub] 20230519

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37242095

Grantová podpora
Marco Sanna Angotzi Regione Autonoma della Sardegna - Progetto CESA - Piano Sulcis
Valentina Mameli Regione Autonoma della Sardegna - Progetto CESA - Piano Sulcis
Fausto Secci MIUR-National Program PON Ricerca e Innovazione 2014-2020 (CUP J88D19001040001)
Fausto Secci Fondazione di Sardegna, Italy, Fondazione di Sardegna (FdS)" Project: CUP F72F20000240007(2019)
Contract No. DE-SC0012704 Center for Functional Nanomaterials at Brookhaven National Laboratory
Program No. UNCE/SCI/014 Charles University Research Centre

Cubic bi-magnetic hard-soft core-shell nanoarchitectures were prepared starting from cobalt ferrite nanoparticles, prevalently with cubic shape, as seeds to grow a manganese ferrite shell. The combined use of direct (nanoscale chemical mapping via STEM-EDX) and indirect (DC magnetometry) tools was adopted to verify the formation of the heterostructures at the nanoscale and bulk level, respectively. The results showed the obtainment of core-shell NPs (CoFe2O4@MnFe2O4) with a thin shell (heterogenous nucleation). In addition, manganese ferrite was found to homogeneously nucleate to form a secondary nanoparticle population (homogenous nucleation). This study shed light on the competitive formation mechanism of homogenous and heterogenous nucleation, suggesting the existence of a critical size, beyond which, phase separation occurs and seeds are no longer available in the reaction medium for heterogenous nucleation. These findings may allow one to tailor the synthesis process in order to achieve better control of the materials' features affecting the magnetic behaviour, and consequently, the performances as heat mediators or components for data storage devices.

Zobrazit více v PubMed

Sanna Angotzi M., Mameli V., Cara C., Grillo V., Enzo S., Musinu A., Cannas C. Defect-assisted synthesis of magneto-plasmonic silver-spinel ferrite heterostructures in a flower-like architecture. Sci. Rep. 2020;10:17015. doi: 10.1038/s41598-020-73502-5. PubMed DOI PMC

Sun X., Frey Huls N., Sigdel A., Sun S. Tuning Exchange Bias in Core/Shell FeO/Fe3O4 Nanoparticles. Nano Lett. 2012;12:246–251. doi: 10.1021/nl2034514. PubMed DOI

Salazar-Alvarez G., Lidbaum H., López-Ortega A., Estrader M., Leifer K., Sort J., Suriñach S., Baró M.D., Nogués J. Two-, Three-, and four-component magnetic multilayer onion nanoparticles based on iron oxides and manganese oxides. J. Am. Chem. Soc. 2011;133:16738–16741. doi: 10.1021/ja205810t. PubMed DOI

Liu P., Yao Z., Ng V.M.H., Zhou J., Kong L.B., Yue K. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 2018;115:371–382. doi: 10.1016/j.compositesa.2018.10.014. DOI

Liu P., Yao Z., Zhou J., Yang Z., Kong L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 2016;4:9738–9749. doi: 10.1039/C6TC03518C. DOI

Vacca M.A., Cara C., Mameli V., Sanna Angotzi M., Scorciapino M.A., Cutrufello M.G., Musinu A., Tyrpekl V., Pala L., Cannas C. Hexafluorosilicic Acid (FSA): From Hazardous Waste to Precious Resource in Obtaining High Value-Added Mesostructured Silica. ACS Sustain. Chem. Eng. 2020;8:14286–14300. doi: 10.1021/acssuschemeng.0c03218. DOI

Sanna Angotzi M., Mameli V., Cara C., Borchert K.B.L., Steinbach C., Boldt R., Schwarz D., Cannas C. Meso- and macroporous silica-based arsenic adsorbents: Effect of pore size, nature of the active phase, and silicon release. Nanoscale Adv. 2021;3:6100–6113. doi: 10.1039/D1NA00487E. PubMed DOI PMC

Domingo N., Testa A.M., Fiorani D., Binns C., Baker S., Tejada J. Exchange bias in Co nanoparticles embedded in an Mn matrix. J. Magn. Magn. Mater. 2007;316:155–158. doi: 10.1016/j.jmmm.2007.02.058. DOI

Kurian M., Thankachan S. Structural diversity and applications of spinel ferrite core—Shell nanostructures—A review. Open Ceram. 2021;8:100179. doi: 10.1016/j.oceram.2021.100179. DOI

Zhang Y., Chen D., Li N., Xu Q., Li H., Lu J. Fabricating 1D/2D Co3O4/ZnIn2S4 core–shell heterostructures with boosted charge transfer for photocatalytic hydrogen production. Appl. Surf. Sci. 2023;610:155272. doi: 10.1016/j.apsusc.2022.155272. DOI

Ma B., Zhang C., Jia D., Zhao Q., Yang P. NiAl-LDH-Modified Core–Shell Rod-like ZnO@ZnS Heterostructures for Enhanced Photocatalytic Hydrogen Precipitation. J. Phys. Chem. C. 2023;127:2908–2917. doi: 10.1021/acs.jpcc.2c07734. DOI

Wang X., Gao Y., Zhang Q., He X., Wang X. Synthesis of MoO3 (1D) @SnO2 (2D) core-shell heterostructures for enhanced ethanol gas sensing performance. Sens. Actuators B Chem. 2023;382:133484. doi: 10.1016/j.snb.2023.133484. DOI

Chen K., Jiang Y., Tao W., Wang T., Liu F., Wang C., Yan X., Lu G., Sun P. MOF Structure engineering to synthesize core-shell heterostructures with controllable shell layer thickness: Regulating gas selectivity and sensitivity. Sens. Actuators B Chem. 2023;378:133117. doi: 10.1016/j.snb.2022.133117. DOI

Xiao Y., Tao Y., Jiang Y., Wang J., Zhang W., Liu Y., Zhang J., Wu X., Liu Z. Construction of core–shell CeO2 nanorods/SnIn4S8 nanosheets heterojunction with rapid spatial electronic migration for effective wastewater purification and H2O2 production. Sep. Purif. Technol. 2023;304:122385. doi: 10.1016/j.seppur.2022.122385. DOI

Yuan W., Jiang T., Fang X., Fan Y., Qian S., Gao Y., Cheng N., Xue H., Tian J. Interface engineering of S-doped Co2P@Ni2P core–shell heterostructures for efficient and energy-saving water splitting. Chem. Eng. J. 2022;439:135743. doi: 10.1016/j.cej.2022.135743. DOI

Xiao Y., Wang H., Jiang Y., Zhang W., Zhang J., Wu X., Liu Z., Deng W. Hierarchical Sb2S3/ZnIn2S4 core–shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation. J. Colloid Interface Sci. 2022;623:109–123. doi: 10.1016/j.jcis.2022.04.137. PubMed DOI

Shafiee A., Rabiee N., Ahmadi S., Baneshi M., Khatami M., Iravani S., Varma R.S. Core–Shell Nanophotocatalysts: Review of Materials and Applications. ACS Appl. Nano Mater. 2022;5:55–86. doi: 10.1021/acsanm.1c03714. DOI

Mulla R., Dunnill C.W. Core–shell nanostructures for better thermoelectrics. Mater. Adv. 2022;3:125–141. doi: 10.1039/D1MA00955A. DOI

Meiklejohn W.H., Bean C.P. New Magnetic Anisotropy. Phys. Rev. 1957;105:904–913. doi: 10.1103/PhysRev.105.904. DOI

Kneller E.F., Hawig R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991;27:3588–3600. doi: 10.1109/20.102931. DOI

López-ortega A., Estrader M., Salazar-alvarez G. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 2015;553:1–32. doi: 10.1016/j.physrep.2014.09.007. DOI

López-Ortega A., Tobia D., Winkler E., Golosovsky I.V., Salazar-Alvarez G., Estradé S., Estrader M., Sort J., González M.A., Suriñach S., et al. Size-Dependent Passivation Shell and Magnetic Properties in Antiferromagnetic/Ferrimagnetic Core/Shell MnO Nanoparticles. J. Am. Chem. Soc. 2010;132:9398–9407. doi: 10.1021/ja1021798. PubMed DOI

Kavich D.W., Dickerson J.H., Mahajan S.V., Hasan S.A., Park J.-H. Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals. Phys. Rev. B. 2008;78:174414. doi: 10.1103/PhysRevB.78.174414. DOI

Winkler E.L., Lima E., Tobia D., Saleta M.E., Troiani H.E., Agostinelli E., Fiorani D., Zysler R.D. Origin of magnetic anisotropy in ZnO/CoFe2O4 and CoO/CoFe2O4 core/shell nanoparticle systems. Appl. Phys. Lett. 2012;101:252405. doi: 10.1063/1.4771993. DOI

Lottini E., López-Ortega A., Bertoni G., Turner S., Meledina M., Van Tendeloo G., de Julián Fernández C., Sangregorio C. Strongly Exchange Coupled Core|Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets. Chem. Mater. 2016;28:4214–4222. doi: 10.1021/acs.chemmater.6b00623. DOI

Kirschning A., Kupracz L., Hartwig J. New Synthetic Opportunities in Miniaturized Flow Reactors with Inductive Heating. Chem. Lett. 2012;41:562–570. doi: 10.1246/cl.2012.562. DOI

Baig R.B.N., Varma R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013;49:752–770. doi: 10.1039/C2CC35663E. PubMed DOI

Polshettiwar V., Luque R., Fihri A., Zhu H., Bouhrara M., Basset J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011;111:3036–3075. doi: 10.1021/cr100230z. PubMed DOI

Zhang D., Zhou C., Sun Z., Wu L.-Z., Tung C.-H., Zhang T. Magnetically recyclable nanocatalysts (MRNCs): A versatile integration of high catalytic activity and facile recovery. Nanoscale. 2012;4:6244. doi: 10.1039/c2nr31929b. PubMed DOI

Viñas S.L., Simeonidis K., Li Z.-A., Ma Z., Myrovali E., Makridis A., Sakellari D., Angelakeris M., Wiedwald U., Spasova M., et al. Tuning the magnetism of ferrite nanoparticles. J. Magn. Magn. Mater. 2016;415:20–23. doi: 10.1016/j.jmmm.2016.02.098. DOI

Choi H., An M., Eom W., Lim S.W., Shim I.-B., Kim C.S., Kim S.J. Crystallographic and magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4. J. Korean Phys. Soc. 2017;70:173–176. doi: 10.3938/jkps.70.173. DOI

Lee J.-H., Jang J., Choi J., Moon S.H., Noh S., Kim J., Kim J.-G., Kim I.-S., Park K.I., Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 2011;6:418–422. doi: 10.1038/nnano.2011.95. PubMed DOI

Liébana-Viñas S., Simeonidis K., Wiedwald U., Li Z.-A., Ma Z., Myrovali E., Makridis A., Sakellari D., Vourlias G., Spasova M., et al. Optimum nanoscale design in ferrite based nanoparticles for magnetic particle hyperthermia. RSC Adv. 2016;6:72918–72925. doi: 10.1039/C6RA17892H. DOI

Zhang Q., Castellanos-Rubio I., Munshi R., Orue I., Pelaz B., Gries K.I., Parak W.J., del Pino P., Pralle A. Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core–Shell Ferrite Nanoparticles for Maximal Hysteretic Loss. Chem. Mater. 2015;27:7380–7387. doi: 10.1021/acs.chemmater.5b03261. PubMed DOI PMC

Robles J., Das R., Glassell M., Phan M.H., Srikanth H. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia. AIP Adv. 2018;8:056719. doi: 10.1063/1.5007249. DOI

Hammad M., Nica V., Hempelmann R. Synthesis and Characterization of Bi-Magnetic Core/Shell Nanoparticles for Hyperthermia Applications. IEEE Trans. Magn. 2017;53:1–6. doi: 10.1109/TMAG.2016.2635696. DOI

Yelenich O.V., Solopan S.O., Greneche J.M., Belous A.G. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core–shell structures. Solid State Sci. 2015;46:19–26. doi: 10.1016/j.solidstatesciences.2015.05.011. DOI

Kim M., Kim C.S., Kim H.J., Yoo K.-H., Hahn E. Effect hyperthermia in CoFe2O4@MnFe2O4 nanoparticles studied by using field-induced Mössbauer spectroscopy. J. Korean Phys. Soc. 2013;63:2175–2178. doi: 10.3938/jkps.63.2175. DOI

Noh S., Na W., Jang J., Lee J.-H., Lee E.J., Moon S.H., Lim Y., Shin J.-S., Cheon J. Nanoscale Magnetism Control via Surface and Exchange Anisotropy for Optimized Ferrimagnetic Hysteresis. Nano Lett. 2012;12:3716–3721. doi: 10.1021/nl301499u. PubMed DOI

Wang J., Zhou Z., Wang L., Wei J., Yang H., Yang S., Zhao J. CoFe2O4 @MnFe2O4/polypyrrole nanocomposites for in vitro photothermal/magnetothermal combined therapy. RSC Adv. 2015;5:7349–7355. doi: 10.1039/C4RA12733A. DOI

Pilati V., Cabreira Gomes R., Gomide G., Coppola P., Silva F.G., Paula F.L.O., Perzynski R., Goya G.F., Aquino R., Depeyrot J. Core/Shell Nanoparticles of Non-Stoichiometric Zn–Mn and Zn–Co Ferrites as Thermosensitive Heat Sources for Magnetic Fluid Hyperthermia. J. Phys. Chem. C. 2018;122:3028–3038. doi: 10.1021/acs.jpcc.7b11014. DOI

Wang L., Yan Y., Wang M., Yang H., Zhou Z., Peng C., Yang S. An integrated nanoplatform for theranostics via multifunctional core–shell ferrite nanocubes. J. Mater. Chem. B. 2016;4:1908–1914. doi: 10.1039/C5TB01910A. PubMed DOI

Solopan S.O., Nedelko N., Lewińska S., Ślawska-Waniewska A., Zamorskyi V.O., Tovstolytkin A.I., Belous A.G. Core/shell architecture as an efficient tool to tune DC magnetic parameters and AC losses in spinel ferrite nanoparticles. J. Alloys Compd. 2019;788:1203–1210. doi: 10.1016/j.jallcom.2019.02.276. DOI

Fabris F., Lima E., De Biasi E., Troiani H.E., Vásquez Mansilla M., Torres T.E., Fernández Pacheco R., Ibarra M.R., Goya G.F., Zysler R.D., et al. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core–shell nanoparticles. Nanoscale. 2019;11:3164–3172. doi: 10.1039/C8NR07834C. PubMed DOI

Angelakeris M., Li Z.A., Hilgendorff M., Simeonidis K., Sakellari D., Filippousi M., Tian H., Van Tendeloo G., Spasova M., Acet M., et al. Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles. J. Magn. Magn. Mater. 2015;381:179–187. doi: 10.1016/j.jmmm.2014.12.069. DOI

Sanna Angotzi M., Mameli V., Cara C., Musinu A., Sangregorio C., Niznansky D., Xin H.L., Vejpravova J., Cannas C. Coupled hard–soft spinel ferrite-based core–shell nanoarchitectures: Magnetic properties and heating abilities. Nanoscale Adv. 2020;2:3191–3201. doi: 10.1039/D0NA00134A. PubMed DOI PMC

Cannas C., Ardu A., Musinu A., Suber L., Ciasca G., Amenitsch H., Campi G. Hierarchical Formation Mechanism of CoFe2O4 Mesoporous Assemblies. ACS Nano. 2015;9:7277–7286. doi: 10.1021/acsnano.5b02145. PubMed DOI

Zeng H., Li J., Wang Z.L., Liu J.P., Sun S. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Lett. 2004;4:187–190. doi: 10.1021/nl035004r. DOI

Masala O., Hoffman D., Sundaram N., Page K., Proffen T., Lawes G., Seshadri R. Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid State Sci. 2006;8:1015–1022. doi: 10.1016/j.solidstatesciences.2006.04.014. DOI

López-Ortega A., Estrader M., Salazar-Alvarez G., Estradé S., Golosovsky I.V., Dumas R.K., Keavney D.J., Vasilakaki M., Trohidou K.N., Sort J., et al. Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3−xO4/FexMn3−xO4, core/shell heterostructured nanoparticles. Nanoscale. 2012;4:5138. doi: 10.1039/c2nr30986f. PubMed DOI

Chen J., Ye X., Oh S.J., Kikkawa J.M., Kagan C.R., Murray C.B. Bistable Magnetoresistance Switching in Exchange-Coupled CoFe 2 O 4 –Fe 3 O 4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing. ACS Nano. 2013;7:1478–1486. doi: 10.1021/nn3052617. PubMed DOI

Estrader M., López-Ortega A., Estradé S., Golosovsky I.V., Salazar-Alvarez G., Vasilakaki M., Trohidou K.N., Varela M., Stanley D.C., Sinko M., et al. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat. Commun. 2013;4:2960. doi: 10.1038/ncomms3960. PubMed DOI

Gavrilov-Isaac V., Neveu S., Dupuis V., Taverna D., Gloter A., Cabuil V. Synthesis of Trimagnetic Multishell MnFe2O4 @CoFe2O4 @NiFe2O4 Nanoparticles. Small. 2015;11:2614–2618. doi: 10.1002/smll.201402845. PubMed DOI

Song Q., Zhang Z.J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J. Am. Chem. Soc. 2012;134:10182–10190. doi: 10.1021/ja302856z. PubMed DOI

Thanh N.T.K., Maclean N., Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014;114:7610–7630. doi: 10.1021/cr400544s. PubMed DOI

Xia Y., Gilroy K.D., Peng H.-C., Xia X. Seed-Mediated Growth of Colloidal Metal Nanocrystals. Angew. Chem. Int. Ed. 2017;56:60–95. doi: 10.1002/anie.201604731. PubMed DOI

Cannas C., Musinu A., Peddis D., Piccaluga G. Synthesis and Characterization of CoFe2O4 Nanoparticles Dispersed in a Silica Matrix by a Sol−Gel Autocombustion Method. Chem. Mater. 2006;18:3835–3842. doi: 10.1021/cm060650n. DOI

Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004;126:273–279. doi: 10.1021/ja0380852. PubMed DOI

Niederberger M., Pinna N. Metal Oxide Nanoparticles in Organic Solvents. Synthesis, Formation, Assembly and Application. Springer; Berlin/Heidelberg, Germany: 2009.

Cannas C., Musinu A., Ardu A., Orrù F., Peddis D., Casu M., Sanna R., Angius F., Diaz G., Piccaluga G. CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: Magnetic and spectroscopic study. Chem. Mater. 2010;22:3353–3361. doi: 10.1021/cm903837g. DOI

Cannas C., Ardu A., Peddis D., Sangregorio C., Piccaluga G., Musinu A. Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies. J. Colloid Interface Sci. 2010;343:415–422. doi: 10.1016/j.jcis.2009.12.007. PubMed DOI

Nobile C., Cozzoli P.D. Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials. Nanomaterials. 2022;12:1729. doi: 10.3390/nano12101729. PubMed DOI PMC

Ghosh Chaudhuri R., Paria S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012;112:2373–2433. doi: 10.1021/cr100449n. PubMed DOI

Salazar-Alvarez G., Qin J., Šepelák V., Bergmann I., Vasilakaki M., Trohidou K.N., Ardisson J.D., Macedo W.A.A., Mikhaylova M., Muhammed M., et al. Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy. J. Am. Chem. Soc. 2008;130:13234–13239. doi: 10.1021/ja0768744. PubMed DOI

Gavilán H., Posth O., Bogart L.K., Steinhoff U., Gutiérrez L., Morales M.P. How shape and internal structure affect the magnetic properties of anisometric magnetite nanoparticles. Acta Mater. 2017;125:416–424. doi: 10.1016/j.actamat.2016.12.016. DOI

Niraula G., Coaquira J.A.H., Zoppellaro G., Villar B.M.G., Garcia F., Bakuzis A.F., Longo J.P.F., Rodrigues M.C., Muraca D., Ayesh A.I., et al. Engineering Shape Anisotropy of Fe3O4-γ-Fe2O3 Hollow Nanoparticles for Magnetic Hyperthermia. ACS Appl. Nano Mater. 2021;4:3148–3158. doi: 10.1021/acsanm.1c00311. DOI

Roca A.G., Gutiérrez L., Gavilán H., Fortes Brollo M.E., Veintemillas-Verdaguer S., Morales M. del P. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv. Drug Deliv. Rev. 2019;138:68–104. doi: 10.1016/j.addr.2018.12.008. PubMed DOI

Ma Z., Mohapatra J., Wei K., Liu J.P., Sun S. Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chem. Rev. 2021;123:3904–3943. doi: 10.1021/acs.chemrev.1c00860. PubMed DOI

Peddis D., Muscas G., Mathieu R., Kumar P.A., Varvaro G., Singh G., Orue I., Gil-Carton D., Marcano L., Muela A., et al. Studying nanoparticles’ 3D shape by aspect maps: Determination of the morphology of bacterial magnetic nanoparticles. Faraday Discuss. 2016;191:177–188. doi: 10.1039/C6FD00059B. PubMed DOI

Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H.L., Cannas C. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI

Sanna Angotzi M., Mameli V., Cara C., Ardu A., Nizňanský D., Musinu A. Oleate-Based Solvothermal Approach for Size Control of MIIFe2IIIO4 (MII ═ MnII, FeII) Colloidal Nanoparticles. J. Nanosci. Nanotechnol. 2019;19:4954–4963. doi: 10.1166/jnn.2019.16785. PubMed DOI

Sanna Angotzi M., Mameli V., Musinu A., Nizňanský D. 57Fe Mössbauer Spectroscopy for the Study of Nanostructured Mixed Mn–Co Spinel Ferrites. J. Nanosci. Nanotechnol. 2019;19:5008–5013. doi: 10.1166/jnn.2019.16793. PubMed DOI

Sanna Angotzi M., Mameli V., Zákutná D., Kubániová D., Cara C., Cannas C. Evolution of the Magnetic and Structural Properties with the Chemical Composition in Oleate-Capped MnxCo1−xFe2O4 Nanoparticles. J. Phys. Chem. C. 2021;125:20626–20638. doi: 10.1021/acs.jpcc.1c06211. DOI

Sanna Angotzi M., Mameli V., Cara C., Peddis D., Xin H.L., Sangregorio C., Mercuri M.L., Cannas C. On the synthesis of bi-magnetic manganese ferrite-based core–shell nanoparticles. Nanoscale Adv. 2021;3:1612–1623. doi: 10.1039/D0NA00967A. PubMed DOI PMC

Khanal S., Sanna Angotzi M., Mameli V., Veverka M., Xin H.L., Cannas C., Vejpravová J. Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies. Nanomaterials. 2021;11:2848. doi: 10.3390/nano11112848. PubMed DOI PMC

Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI

Bergmann J., Monecke T., Kleeberg R. Alternative algorithm for the correction of preferred orientation in Rietveld analysis. J. Appl. Crystallogr. 2001;34:16–19. doi: 10.1107/S002188980001623X. DOI

Mondini S., Ferretti A.M., Puglisi A., Ponti A. Pebbles and PebbleJuggler: Software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale. 2012;4:5356. doi: 10.1039/c2nr31276j. PubMed DOI

Morrish A.H. The Physical Principles of Magnetism. Wiley-VCH; Weinheim, Germany: 1965.

Repko A., Nižňanský D., Poltierová-Vejpravová J. A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles. J. Nanoparticle Res. 2011;13:5021–5031. doi: 10.1007/s11051-011-0483-z. DOI

Repko A., Nižňanský D., Matulková I., Kalbáč M., Vejpravová J. Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran. J. Nanopart. Res. 2013;15:1767. doi: 10.1007/s11051-013-1767-2. DOI

Repko A., Vejpravová J., Vacková T., Zákutná D., Nižňanský D. Oleate-based hydrothermal preparation of CoFe2O4 nanoparticles, and their magnetic properties with respect to particle size and surface coating. J. Magn. Magn. Mater. 2015;390:142–151. doi: 10.1016/j.jmmm.2015.04.090. DOI

Chang H., Kim B.H., Lim S.G., Baek H., Park J., Hyeon T. Role of the Precursor Composition in the Synthesis of Metal Ferrite Nanoparticles. Inorg. Chem. 2021;60:4261–4268. doi: 10.1021/acs.inorgchem.0c03567. PubMed DOI

Bronstein L., Huang X. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 2007;19:3624–3632. doi: 10.1021/cm062948j. DOI

Creutzburg M., Konuk M., Tober S., Chung S., Arndt B., Noei H., Meißner R.H., Stierle A. Adsorption of oleic acid on magnetite facets. Commun. Chem. 2022;5:1–9. doi: 10.1038/s42004-022-00741-0. PubMed DOI PMC

Mameli V., Musinu A., Ardu A., Ennas G., Peddis D., Niznansky D., Sangregorio C., Innocenti C., Thanh N.T.K., Cannas C. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale. 2016;8:10124–10137. doi: 10.1039/C6NR01303A. PubMed DOI

White W.B., De Angelis B.A. Interpretation of the vibrational spectra of spinels. Spectrochim. Acta Part A Mol. Spectrosc. 1967;23:985–995. doi: 10.1016/0584-8539(67)80023-0. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...