Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
W 1250
Austrian Science Fund FWF - Austria
PubMed
26138376
PubMed Central
PMC4758407
DOI
10.1002/prot.24853
Knihovny.cz E-zdroje
- Klíčová slova
- Spinacia oleracea, dynamic N-terminus, extrinsic photosynthetic protein, hydrogen bond dynamics, intrinsic disorder, solution structure,
- MeSH
- fotosystém II (proteinový komplex) chemie genetika metabolismus MeSH
- krystalografie rentgenová MeSH
- magnetická rezonanční spektroskopie metody MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- rostlinné proteiny chemie genetika metabolismus MeSH
- roztoky MeSH
- sekundární struktura proteinů * MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- Spinacia oleracea genetika metabolismus MeSH
- terciární struktura proteinů MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- rekombinantní proteiny MeSH
- rostlinné proteiny MeSH
- roztoky MeSH
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Organic Chemistry Johannes Kepler University Linz Linz 4040 Austria
Lohmann Animal Health Cuxhaven 27472 Germany
Scientific Computing Johannes Kepler University Linz Linz 4040 Austria
Zobrazit více v PubMed
Blankenship R. Origin and early evolution of photosynthesis. Photosynth Res 1992;33:91–111. PubMed
Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton‐Rye JJ. The extrinsic proteins of Photosystem II. Biochim Biophys Acta 2012;1817:121–142. PubMed
Roose JL, Wegener KM, Pakrasi HB. The extrinsic proteins of Photosystem II. Photosynth Res 2007;92:369–387. PubMed
Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB. Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 2004;16:2164–2175. PubMed PMC
Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 2002;41:8004–8012. PubMed
Ghanotakis DF, Topper JN, Youcum CF. Structural organization of the oxidizing side of photosystem II. Exogenous reductants reduce and destroy the Mn‐complex in photosystems II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 1984;767:524–531.
Miyao M, Murata N. Role of the 33‐kDa polypeptide in preserving Mn in the photosynthetic oxygen‐evolution system and its replacement by chloride ions. FEBS Lett 1984;170:350–354.
Nowaczyk M, Berghaus C, Stoll R, Rogner M. Preliminary structural characterisation of the 33 kDa protein (PsbO) in solution studied by site‐directed mutagenesis and NMR spectroscopy. Phys Chem Chem Phys 2004;6:4878–4881.
Bricker TM. Oxygen evolution in the absence of the 33‐kilodalton manganese‐stabilizing protein. Biochemistry 1992;31:4623–4628. PubMed
Kakiuchi S, Uno C, Ido K, Nishimura T, Noguchi T, Ifuku K, Sato F. The PsbQ protein stabilizes the functional binding of the PsbP protein to photosystem II in higher plants. Biochim Biophys Acta 2012;8:25. PubMed
Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K. Cross‐linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem 2014;289:20150–20157. PubMed PMC
Kopecky V, Jr. , Kohoutova J, Lapkouski M, Hofbauerova K, Sovova Z, Ettrichova O, Gonzalez‐Perez S, Dulebo A, Kaftan D, Smatanova IK, Revuelta JL, Arellano JB, Carey J, Ettrich R. Raman spectroscopy adds complementary detail to the high‐resolution X‐ray crystal structure of photosynthetic PsbP from Spinacia oleracea . PLoS One 2012;7:e46694. PubMed PMC
Ifuku K, Nakatsu T, Kato H, Sato F. Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum . EMBO Rep 2004;5:362–367. PubMed PMC
Balsera M, Arellano JB, Revuelta JL, de las Rivas J, Hermoso JA. The 1.49 A resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N‐terminal region. J Mol Biol 2005;350:1051–1060. PubMed
Cao P, Xie Y, Li M, Pan X, Zhang H, Zhao X, Su X, Cheng T, Chang W. Crystal structure analysis of extrinsic PsbP protein of photosystem II reveals a manganese‐induced conformational change. Mol Plant 2015;8:664–666. PubMed
Jackson SA, Fagerlund RD, Wilbanks SM, Eaton‐Rye JJ. Crystal structure of PsbQ from synechocystis sp. PCC 6803 at 1.8 Å: implications for binding and function in cyanobacterial photosystem II. Biochemistry 2010;49:2765–2767. PubMed
Nagao R, Suga M, Niikura A, Okumura A, Koua FHM, Suzuki T, Tomo T, Enami I, Shen J‐R. Crystal structure of Psb31, a novel extrinsic protein of photosystem II from a marine centric diatom and implications for its binding and function. Biochemistry 2013;52:6646–6652. PubMed
Nagao R, Suzuki T, Okumura A, Niikura A, Iwai M, Dohmae N, Tomo T, Shen J‐R, Ikeuchi M, Enami I. Topological analysis of the extrinsic PsbO, PsbP and PsbQ proteins in a green algal PSII complex by cross‐linking with a water‐soluble carbodiimide. Plant Cell Physiol 2010;51:718–727. PubMed
Hornicakova M, Kohoutova J, Schlagnitweit J, Wohlschlager C, Ettrich R, Fiala R, Schoefberger W, Müller N. Backbone assignment and secondary structure of the PsbQ protein from photosystem II. Biomol NMR Assign 2011;5:169–175. PubMed
Bax A, Clore GM, Gronenborn AM. 1H–1H correlation via isotropic mixing of 13C magnetization, a new three‐dimensional approach for assigning 1H and 13C spectra of 13C‐enriched proteins. J Magn Reson (1969) 1990;88:425–431.
Grzesiek S, Anglister J, Bax A. Correlation of backbone amide and aliphatic side‐chain resonances in 13C/15N‐enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson Series B 1993;101:114–119.
Grzesiek S, Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N‐enriched proteins. J Biomol NMR 1993;3:185–204. PubMed
Bax A, Clore GM, Driscoll PC, Gronenborn AM, Ikura M, Kay LE. Practical aspects of proton‐carbon‐carbon‐proton three‐dimensional correlation spectroscopy of 13C‐labeled proteins. J Magn Reson (1969) 1990;87:620–627.
Kay LE, Ikura M, Bax A. Proton‐proton correlation via carbon‐carbon couplings: a three‐dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with carbon‐13. J Am Chem Soc 1990;112:888–889.
Ikura M, Kay L, Bax A. Improved three‐dimensional 1H−13C−1H correlation spectroscopy of a 13C‐labeled protein using constant‐time evolution. J Biomol NMR 1991;1:299–304. PubMed
Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM. Overcoming the overlap problem in the assignment of proton NMR spectra of larger proteins by use of three‐dimensional heteronuclear proton‐nitrogen‐15 Hartmann‐Hahn‐multiple quantum coherence and nuclear Overhauser‐multiple quantum coherence spectroscopy: application to interleukin 1β. Biochemistry 1989;28:6150–6156. PubMed
Yamazaki T, Forman‐Kay JD, Kay LE. Two‐dimensional NMR experiments for correlating carbon‐13 β and proton δ/ε chemical shifts of aromatic residues in 13C‐labeled proteins via scalar couplings. J Am Chem Soc 1993;115:11054–11055.
Palmer AG. 3rd. NMR probes of molecular dynamics: overview and comparison with other techniques. Annu Rev Biophys Biomol Struct 2001;30:129–155. PubMed
Marion D, Kay LE, Sparks SW, Torchia DA, Bax A. Three‐dimensional heteronuclear NMR of nitrogen‐15 labeled proteins. J Am Chem Soc 1989;111:1515–1517.
Zuiderweg ERP, Fesik SW. Heteronuclear three‐dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 1989;28:2387–2391. PubMed
Keller RLJ. Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. Diss. ETH No. 15947, 2004.
Bartels C, Xia T, Billeter M, Güntert P, Wüthrich K. The program XEASY for computer‐supported NMR spectral analysis of biological macromolecules. J Biomol NMR 1995;5:1–10. PubMed
Güntert P, Braun W, Wüthrich K. Efficient computation of three‐dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol 1991;217:517–530. PubMed
Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 2013; 56:227–241. PubMed PMC
Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 1997;273:283–298. PubMed
Krieger E, Joo K, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K. Improving physical realism, stereochemistry, and side‐chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009;114–122. PubMed PMC
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field. Proteins 2002;47:393–402. PubMed
Ristvejova J, Kopecky V, Jr , Sovova Z, Balsera M, Arellano JB, Green M, Ettrich R. Structure and dynamics of the N‐terminal loop of PsbQ from photosystem II of Spinacia oleracea. Biochem Biophys Res Commun 2006;345:287–291. PubMed
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem 2005;26:1701–1718. PubMed
Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message‐passing parallel molecular dynamics implementation. Comp Phys Commun 1995;91:43–56.
Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E. GROMACS 4.5: a high‐throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013;29:845–854. PubMed PMC
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006;65:712–725. PubMed PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926–935.
Darden T, York D, Pedersen L. Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089–10092.
Hess B, Bekker H Berendsen HJC., Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997;18:1463–1472.
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007;126:014101 PubMed
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 1981;52:7182–7190.
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996;14:33–38. PubMed
Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 1989;28:8972–8979. PubMed
Michoux F, Boehm M, Bialek W, Takasaka K, Maghlaoui K, Barber J, Murray JW, Nixon PJ. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynth Res 2014;122:57–67. PubMed PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–1612. PubMed
Laskowski RA, Macarthur MW, Moss DS, Thornton JM. {PROCHECK}: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993;26:283–291.
Rathner A, Chandra K, Rathner P, Hornicakova M, Schlagnitweit J, Kohoutova J, Ettrich R, Müller N. Resonance assignment of PsbP; an extrinsic protein from photosystem II of Spinacia oleracea . Biomol NMR Assign, doi:10.1007/s12104‐015‐9606‐2. PubMed DOI PMC