Membrane insertion of-and membrane potential sensing by-semiconductor voltage nanosensors: Feasibility demonstration
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 GM071940
NIGMS NIH HHS - United States
S10 RR023057
NCRR NIH HHS - United States
PubMed
29349292
PubMed Central
PMC5770167
DOI
10.1126/sciadv.1601453
PII: 1601453
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky metody MeSH
- elektřina * MeSH
- HEK293 buňky MeSH
- kvantové tečky chemie MeSH
- lidé MeSH
- membránové potenciály fyziologie MeSH
- nanotrubičky ultrastruktura MeSH
- povrchové vlastnosti MeSH
- studie proveditelnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
We developed membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. We provide here a feasibility study for their utilization. We use a rationally designed peptide to functionalize the nanosensors, imparting them with the ability to self-insert into a lipid membrane with a desired orientation. Once inserted, these nanosensors could sense membrane potential via the quantum confined Stark effect, with a single-particle sensitivity. With further improvements, these nanosensors could potentially be used for simultaneous recording of action potentials from multiple neurons in a large field of view over a long duration and for recording electrical signals on the nanoscale, such as across one synapse.
California NanoSystems Institute University of California Los Angeles Los Angeles CA 90095 USA
Department of Chemistry and Chemical Biology Harvard University MA 02138 USA
Department of Physics University of California Los Angeles Los Angeles CA 90095 USA
Department of Physiology University of California Los Angeles Los Angeles CA 90095 USA
Institute of Organic Chemistry and Biochemistry AS CR Prague 166 10 Czech Republic
Zobrazit více v PubMed
Murray C. B., Norris D. J., Bawendi M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).
Peng X., Manna L., Yang W., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000). PubMed
Peng Z. A., Peng X., Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002). PubMed
Manna L., Scher E. C., Alivisatos A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).
Talapin D. V., Nelson J. H., Shevchenko E. V., Aloni S., Sadtler B., Alivisatos A. P., Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007). PubMed
Müller J., Lupton J. M., Lagoudakis P. G., Schindler F., Koeppe R., Rogach A. L., Feldmann J., Talapin D. V., Weller H., Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett. 5, 2044–2049 (2005). PubMed
Hewa-Kasakarage N. N., Kirsanova M., Nemchinov A., Schmall N., El-Khoury P. Z., Tarnovsky A. N., Zamkov M., Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J. Am. Chem. Soc. 131, 1328–1334 (2009). PubMed
Müller J., Lupton J. M., Rogach A. L., Feldmann J., Talapin D. V., Weller H., Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures. Phys. Rev. B 72, 205339 (2005).
Kim T.-H., Cho K.-S., Lee E. K., Lee S. J., Chae J., Kim J. W., Kim D. H., Kwon J.-Y., Amaratunga G., Lee S. Y., Choi B. L., Kuk Y., Kim J. M., Kim K., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5, 176–182 (2011).
Klimov V. I., Ivanov S. A., Nanda J., Achermann M., Bezel I., McGuire J. A., Piryatinski A., Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007). PubMed
Michalet X., Pinaud F. F., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Sundaresan G., Wu A. M., Gambhir S. S., Weiss S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). PubMed PMC
Li S., Zhang K., Yang J.-M., Lin L., Yang H., Single quantum dots as local temperature markers. Nano Lett. 7, 3102–3105 (2007). PubMed
Ruedas-Rama M. J., Hall E. A. H., Azamacrocycle activated quantum dot for zinc ion detection. Anal. Chem. 80, 8260–8268 (2008). PubMed
Aouani H., Itzhakov S., Gachet D., Devaux E., Ebbesen T. W., Rigneault H., Oron D., Wenger J., Colloidal quantum dots as probes of excitation field enhancement in photonic antennas. ACS Nano 4, 4571–4578 (2010). PubMed
Zhu H., Song N., Lv H., Hill C. L., Lian T., Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 134, 11701–11708 (2012). PubMed
Mora-Seró I. N., Bisquert J., Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010).
Delehanty J. B., Medintz I. L., Pons T., Brunel F. M., Dawson P. E., Mattoussi H., Self-assembled quantum dot–peptide bioconjugates for selective intracellular delivery. Bioconjugate Chem. 17, 920–927 (2006). PubMed PMC
Pandey P., Singh S. P., Arya S. K., Gupta V., Datta M., Singh S., Malhotra B. D., Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23, 3333–3337 (2007). PubMed
Tikhomirov G., Hoogland S., Lee P. E., Fischer A., Sargent E. H., Kelley S. O., DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 6, 485–490 (2011). PubMed
Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005). PubMed
Medintz I. L., Stewart M. H., Trammell S. A., Susumu K., Delehanty J. B., Mei B. C., Melinger J. S., Blanco-Canosa J. B., Dawson P. E., Mattoussi H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9, 676–684 (2010). PubMed
Xu J., Teslaa T., Wu T.-H., Chiou P.-Y., Teitell M. A., Weiss S., Nanoblade delivery and incorporation of quantum dot conjugates into tubulin networks in live cells. Nano Lett. 12, 5669–5672 (2012). PubMed PMC
Schipper M. L., Iyer G., Koh A. L., Cheng Z., Ebenstein Y., Aharoni A., Keren S., Bentolila L. A., Li J. Q., Rao J., Chen X., Banin U., Wu A. M., Sinclair R., Weiss S., Gambhir S. S., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009). PubMed PMC
Blanco-Canosa J. B., Wu M., Susumu K., Petryayeva E., Jennings T. L., Dawson P. E., Algar W. R., Medintz I. L., Recent progress in the bioconjugation of quantum dots. Coord. Chem. Rev. 263–264, 101–137 (2014).
Al-Jamal W. T., Al-Jamal K. T., Tian B., Lacerda L., Bomans P. H., Frederik P. M., Kostarelos K., Lipid–quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2, 408–418 (2008). PubMed
Kloepfer J. A., Cohen N., Nadeau J. L., FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes. J. Phys. Chem. B 108, 17042–17049 (2004).
Gopalakrishnan G., Danelon C., Izewska P., Prummer M., Bolinger P.-Y., Geissbühler I., Demurtas D., Dubochet J., Vogel H., Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 45, 5478–5483 (2006). PubMed
Wi H. S., Kim S. J., Lee K., Kim S. M., Yang H. S., Pak H. K., Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability. Colloids Surf. B Biointerfaces 97, 37–42 (2012). PubMed
Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012). PubMed PMC
Seifert A., Göpfrich K., Burns J. R., Fertig N., Keyser U. F., Howorka S., Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9, 1117–1126 (2015). PubMed PMC
Geng J., Kim K., Zhang J., Escalada A., Tunuguntla R., Comolli L. R., Allen F. I., Shnyrova A. V., Cho K. R., Munoz D., Wang Y. M., Grigoropoulos C. P., Ajo-Franklin C. M., Frolov V. A., Noy A., Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014). PubMed
Becker K., Lupton J. M., Müller J., Rogach A. L., Talapin D. V., Weller H., Feldmann J., Electrical control of Förster energy transfer. Nat. Mater. 5, 777–781 (2006). PubMed
Kraus R. M., Lagoudakis P. G., Rogach A. L., Talapin D. V., Weller H., Lupton J. M., Feldmann J., Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys. Rev. Lett. 98, 017401 (2007). PubMed
Park K., Deutsch Z., Li J. J., Oron D., Weiss S., Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6, 10013–10023 (2012). PubMed PMC
Marshall J. D., Schnitzer M. J., Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7, 4601–4609 (2013). PubMed PMC
Kralj J. M., Douglass A. D., Hochbaum D. R., Maclaurin D., Cohen A. E., Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012). PubMed PMC
Miller E. W., Lin J. Y., Frady E. P., Steinbach P. A., Kristan W. B. Jr, Tsien R. Y., Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc. Natl. Acad. Sci. U.S.A. 109, 2114–2119 (2012). PubMed PMC
Park K., Weiss S., Design rules for membrane-embedded voltage-sensing nanoparticles. Biophys. J. 112, 703–713 (2017). PubMed PMC
Pinaud F., King D., Moore H.-P., Weiss S., Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004). PubMed PMC
Pinaud F., Michalet X., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Iyer G., Weiss S., Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687 (2006). PubMed PMC
Tsay J. M., Doose S., Pinaud F., Weiss S., Enhancing the photoluminescence of peptide-coated nanocrystals with shell composition and UV irradiation. J. Phys. Chem. B 109, 1669–1674 (2005). PubMed PMC
Iyer G., Pinaud F., Tsay J., Weiss S., Solubilization of quantum dots with a recombinant peptide from Escherichia coli. Small 3, 793–798 (2007). PubMed PMC
Iyer G., Michalet X., Chang Y.-P., Pinaud F. F., Matyas S. E., Payne G., Weiss S., High affinity scFv–hapten pair as a tool for quantum dot labeling and tracking of single proteins in live cells. Nano Lett. 8, 4618–4623 (2008). PubMed PMC
Senes A., Chadi D. C., Law P. B., Walters R. F. S., Nanda V., DeGrado W. F., Ez, a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: Derivation and applications to determining the orientation of transmembrane and interfacial helices. J. Mol. Biol. 366, 436–448 (2007). PubMed
Wrobel I., Collins D., Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235, 296–304 (1995). PubMed
Axelrod D., Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–574 (1979). PubMed PMC
Xu J., Ruchala P., Ebenstain Y., Li J. J., Weiss S., Stable, compact, bright biofunctional quantum dots with improved peptide coating. J. Phys. Chem. B 116, 11370–11378 (2012). PubMed PMC
Lonez C., Lensink M. F., Kleiren E., Vanderwinden J.-M., Ruysschaert J.-M., Vandenbranden M., Fusogenic activity of cationic lipids and lipid shape distribution. Cell. Mol. Life Sci. 67, 483–494 (2010). PubMed PMC
Park J., Werley C. A., Venkatachalam V., Kralj J. M., Dib-Hajj S. D., Waxman S. G., Cohen A. E., Screening fluorescent voltage indicators with spontaneously spiking HEK cells. PLOS ONE 8, e85221 (2013). PubMed PMC
Nirmal M., Dabbousi B. O., Bawendi M. G., Macklin J. J., Trautman J. K., Harris T. D., Brus L. E., Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).
Talapin D. V., Koeppe R., Götzinger S., Kornowski A., Lupton J. M., Rogach A. L., Benson O., Feldmann J., Weller H., Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).
Climente J. I., Movilla J. L., Planelles J., Auger recombination suppression in nanocrystals with asymmetric electron–hole confinement. Small 8, 754–759 (2012). PubMed
Kinosita K., Itoh H., Ishiwata S., Hirano K., Nishizaka T., Hayakawa T., Dual-view microscopy with a single camera: Real-time imaging of molecular orientations and calcium. J. Cell Biol. 115, 67–73 (1991). PubMed PMC
Molokanova E., Bartel J. A., Zhao W., Naasani I., Ignatius M. J., Treadway J. A., Savtchenko A., Quantum dots move beyond fluorescence imaging. Biophotonics Int. 26–31 (2008).
Molokanova E., Savchenko A., Bright future of optical assays for ion channel drug discovery. Drug Discov. Today 13, 14–22 (2008). PubMed
Shen H., Interactive notebooks: Sharing the code. Nature 515, 151–152 (2014). PubMed
Interfacing with the Brain: How Nanotechnology Can Contribute