Membrane insertion of-and membrane potential sensing by-semiconductor voltage nanosensors: Feasibility demonstration

. 2018 Jan ; 4 (1) : e1601453. [epub] 20180112

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid29349292

Grantová podpora
R01 GM071940 NIGMS NIH HHS - United States
S10 RR023057 NCRR NIH HHS - United States

We developed membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. We provide here a feasibility study for their utilization. We use a rationally designed peptide to functionalize the nanosensors, imparting them with the ability to self-insert into a lipid membrane with a desired orientation. Once inserted, these nanosensors could sense membrane potential via the quantum confined Stark effect, with a single-particle sensitivity. With further improvements, these nanosensors could potentially be used for simultaneous recording of action potentials from multiple neurons in a large field of view over a long duration and for recording electrical signals on the nanoscale, such as across one synapse.

Zobrazit více v PubMed

Murray C. B., Norris D. J., Bawendi M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

Peng X., Manna L., Yang W., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000). PubMed

Peng Z. A., Peng X., Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002). PubMed

Manna L., Scher E. C., Alivisatos A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

Talapin D. V., Nelson J. H., Shevchenko E. V., Aloni S., Sadtler B., Alivisatos A. P., Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007). PubMed

Müller J., Lupton J. M., Lagoudakis P. G., Schindler F., Koeppe R., Rogach A. L., Feldmann J., Talapin D. V., Weller H., Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett. 5, 2044–2049 (2005). PubMed

Hewa-Kasakarage N. N., Kirsanova M., Nemchinov A., Schmall N., El-Khoury P. Z., Tarnovsky A. N., Zamkov M., Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J. Am. Chem. Soc. 131, 1328–1334 (2009). PubMed

Müller J., Lupton J. M., Rogach A. L., Feldmann J., Talapin D. V., Weller H., Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures. Phys. Rev. B 72, 205339 (2005).

Kim T.-H., Cho K.-S., Lee E. K., Lee S. J., Chae J., Kim J. W., Kim D. H., Kwon J.-Y., Amaratunga G., Lee S. Y., Choi B. L., Kuk Y., Kim J. M., Kim K., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5, 176–182 (2011).

Klimov V. I., Ivanov S. A., Nanda J., Achermann M., Bezel I., McGuire J. A., Piryatinski A., Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007). PubMed

Michalet X., Pinaud F. F., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Sundaresan G., Wu A. M., Gambhir S. S., Weiss S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). PubMed PMC

Li S., Zhang K., Yang J.-M., Lin L., Yang H., Single quantum dots as local temperature markers. Nano Lett. 7, 3102–3105 (2007). PubMed

Ruedas-Rama M. J., Hall E. A. H., Azamacrocycle activated quantum dot for zinc ion detection. Anal. Chem. 80, 8260–8268 (2008). PubMed

Aouani H., Itzhakov S., Gachet D., Devaux E., Ebbesen T. W., Rigneault H., Oron D., Wenger J., Colloidal quantum dots as probes of excitation field enhancement in photonic antennas. ACS Nano 4, 4571–4578 (2010). PubMed

Zhu H., Song N., Lv H., Hill C. L., Lian T., Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 134, 11701–11708 (2012). PubMed

Mora-Seró I. N., Bisquert J., Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010).

Delehanty J. B., Medintz I. L., Pons T., Brunel F. M., Dawson P. E., Mattoussi H., Self-assembled quantum dot–peptide bioconjugates for selective intracellular delivery. Bioconjugate Chem. 17, 920–927 (2006). PubMed PMC

Pandey P., Singh S. P., Arya S. K., Gupta V., Datta M., Singh S., Malhotra B. D., Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23, 3333–3337 (2007). PubMed

Tikhomirov G., Hoogland S., Lee P. E., Fischer A., Sargent E. H., Kelley S. O., DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 6, 485–490 (2011). PubMed

Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005). PubMed

Medintz I. L., Stewart M. H., Trammell S. A., Susumu K., Delehanty J. B., Mei B. C., Melinger J. S., Blanco-Canosa J. B., Dawson P. E., Mattoussi H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9, 676–684 (2010). PubMed

Xu J., Teslaa T., Wu T.-H., Chiou P.-Y., Teitell M. A., Weiss S., Nanoblade delivery and incorporation of quantum dot conjugates into tubulin networks in live cells. Nano Lett. 12, 5669–5672 (2012). PubMed PMC

Schipper M. L., Iyer G., Koh A. L., Cheng Z., Ebenstein Y., Aharoni A., Keren S., Bentolila L. A., Li J. Q., Rao J., Chen X., Banin U., Wu A. M., Sinclair R., Weiss S., Gambhir S. S., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009). PubMed PMC

Blanco-Canosa J. B., Wu M., Susumu K., Petryayeva E., Jennings T. L., Dawson P. E., Algar W. R., Medintz I. L., Recent progress in the bioconjugation of quantum dots. Coord. Chem. Rev. 263–264, 101–137 (2014).

Al-Jamal W. T., Al-Jamal K. T., Tian B., Lacerda L., Bomans P. H., Frederik P. M., Kostarelos K., Lipid–quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2, 408–418 (2008). PubMed

Kloepfer J. A., Cohen N., Nadeau J. L., FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes. J. Phys. Chem. B 108, 17042–17049 (2004).

Gopalakrishnan G., Danelon C., Izewska P., Prummer M., Bolinger P.-Y., Geissbühler I., Demurtas D., Dubochet J., Vogel H., Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 45, 5478–5483 (2006). PubMed

Wi H. S., Kim S. J., Lee K., Kim S. M., Yang H. S., Pak H. K., Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability. Colloids Surf. B Biointerfaces 97, 37–42 (2012). PubMed

Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012). PubMed PMC

Seifert A., Göpfrich K., Burns J. R., Fertig N., Keyser U. F., Howorka S., Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9, 1117–1126 (2015). PubMed PMC

Geng J., Kim K., Zhang J., Escalada A., Tunuguntla R., Comolli L. R., Allen F. I., Shnyrova A. V., Cho K. R., Munoz D., Wang Y. M., Grigoropoulos C. P., Ajo-Franklin C. M., Frolov V. A., Noy A., Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014). PubMed

Becker K., Lupton J. M., Müller J., Rogach A. L., Talapin D. V., Weller H., Feldmann J., Electrical control of Förster energy transfer. Nat. Mater. 5, 777–781 (2006). PubMed

Kraus R. M., Lagoudakis P. G., Rogach A. L., Talapin D. V., Weller H., Lupton J. M., Feldmann J., Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys. Rev. Lett. 98, 017401 (2007). PubMed

Park K., Deutsch Z., Li J. J., Oron D., Weiss S., Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6, 10013–10023 (2012). PubMed PMC

Marshall J. D., Schnitzer M. J., Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7, 4601–4609 (2013). PubMed PMC

Kralj J. M., Douglass A. D., Hochbaum D. R., Maclaurin D., Cohen A. E., Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012). PubMed PMC

Miller E. W., Lin J. Y., Frady E. P., Steinbach P. A., Kristan W. B. Jr, Tsien R. Y., Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc. Natl. Acad. Sci. U.S.A. 109, 2114–2119 (2012). PubMed PMC

Park K., Weiss S., Design rules for membrane-embedded voltage-sensing nanoparticles. Biophys. J. 112, 703–713 (2017). PubMed PMC

Pinaud F., King D., Moore H.-P., Weiss S., Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004). PubMed PMC

Pinaud F., Michalet X., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Iyer G., Weiss S., Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687 (2006). PubMed PMC

Tsay J. M., Doose S., Pinaud F., Weiss S., Enhancing the photoluminescence of peptide-coated nanocrystals with shell composition and UV irradiation. J. Phys. Chem. B 109, 1669–1674 (2005). PubMed PMC

Iyer G., Pinaud F., Tsay J., Weiss S., Solubilization of quantum dots with a recombinant peptide from Escherichia coli. Small 3, 793–798 (2007). PubMed PMC

Iyer G., Michalet X., Chang Y.-P., Pinaud F. F., Matyas S. E., Payne G., Weiss S., High affinity scFv–hapten pair as a tool for quantum dot labeling and tracking of single proteins in live cells. Nano Lett. 8, 4618–4623 (2008). PubMed PMC

Senes A., Chadi D. C., Law P. B., Walters R. F. S., Nanda V., DeGrado W. F., Ez, a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: Derivation and applications to determining the orientation of transmembrane and interfacial helices. J. Mol. Biol. 366, 436–448 (2007). PubMed

Wrobel I., Collins D., Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235, 296–304 (1995). PubMed

Axelrod D., Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–574 (1979). PubMed PMC

Xu J., Ruchala P., Ebenstain Y., Li J. J., Weiss S., Stable, compact, bright biofunctional quantum dots with improved peptide coating. J. Phys. Chem. B 116, 11370–11378 (2012). PubMed PMC

Lonez C., Lensink M. F., Kleiren E., Vanderwinden J.-M., Ruysschaert J.-M., Vandenbranden M., Fusogenic activity of cationic lipids and lipid shape distribution. Cell. Mol. Life Sci. 67, 483–494 (2010). PubMed PMC

Park J., Werley C. A., Venkatachalam V., Kralj J. M., Dib-Hajj S. D., Waxman S. G., Cohen A. E., Screening fluorescent voltage indicators with spontaneously spiking HEK cells. PLOS ONE 8, e85221 (2013). PubMed PMC

Nirmal M., Dabbousi B. O., Bawendi M. G., Macklin J. J., Trautman J. K., Harris T. D., Brus L. E., Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

Talapin D. V., Koeppe R., Götzinger S., Kornowski A., Lupton J. M., Rogach A. L., Benson O., Feldmann J., Weller H., Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).

Climente J. I., Movilla J. L., Planelles J., Auger recombination suppression in nanocrystals with asymmetric electron–hole confinement. Small 8, 754–759 (2012). PubMed

Kinosita K., Itoh H., Ishiwata S., Hirano K., Nishizaka T., Hayakawa T., Dual-view microscopy with a single camera: Real-time imaging of molecular orientations and calcium. J. Cell Biol. 115, 67–73 (1991). PubMed PMC

Molokanova E., Bartel J. A., Zhao W., Naasani I., Ignatius M. J., Treadway J. A., Savtchenko A., Quantum dots move beyond fluorescence imaging. Biophotonics Int. 26–31 (2008).

Molokanova E., Savchenko A., Bright future of optical assays for ion channel drug discovery. Drug Discov. Today 13, 14–22 (2008). PubMed

Shen H., Interactive notebooks: Sharing the code. Nature 515, 151–152 (2014). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interfacing with the Brain: How Nanotechnology Can Contribute

. 2025 Mar 25 ; 19 (11) : 10630-10717. [epub] 20250310

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...